Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset1;
81     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
82     int              vdwioffset2;
83     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
84     int              vdwioffset3;
85     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
124     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
125     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_pd(rcutoff_scalar);
130     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = _mm_set1_pd(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm_set1_pd(d_scalar);
137     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
168                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix1             = _mm_setzero_pd();
171         fiy1             = _mm_setzero_pd();
172         fiz1             = _mm_setzero_pd();
173         fix2             = _mm_setzero_pd();
174         fiy2             = _mm_setzero_pd();
175         fiz2             = _mm_setzero_pd();
176         fix3             = _mm_setzero_pd();
177         fiy3             = _mm_setzero_pd();
178         fiz3             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv10           = gmx_mm_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm_invsqrt_pd(rsq20);
215             rinv30           = gmx_mm_invsqrt_pd(rsq30);
216
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             if (gmx_mm_any_lt(rsq10,rcutoff2))
233             {
234
235             r10              = _mm_mul_pd(rsq10,rinv10);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq10             = _mm_mul_pd(iq1,jq0);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _mm_mul_pd(r10,ewtabscale);
244             ewitab           = _mm_cvttpd_epi32(ewrt);
245             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
246             ewitab           = _mm_slli_epi32(ewitab,2);
247             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
248             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
249             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
250             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
251             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
252             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
253             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
254             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
255             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
256             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
257
258             d                = _mm_sub_pd(r10,rswitch);
259             d                = _mm_max_pd(d,_mm_setzero_pd());
260             d2               = _mm_mul_pd(d,d);
261             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
262
263             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
264
265             /* Evaluate switch function */
266             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
267             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
268             velec            = _mm_mul_pd(velec,sw);
269             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velec            = _mm_and_pd(velec,cutoff_mask);
273             velecsum         = _mm_add_pd(velecsum,velec);
274
275             fscal            = felec;
276
277             fscal            = _mm_and_pd(fscal,cutoff_mask);
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx10);
281             ty               = _mm_mul_pd(fscal,dy10);
282             tz               = _mm_mul_pd(fscal,dz10);
283
284             /* Update vectorial force */
285             fix1             = _mm_add_pd(fix1,tx);
286             fiy1             = _mm_add_pd(fiy1,ty);
287             fiz1             = _mm_add_pd(fiz1,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             }
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             if (gmx_mm_any_lt(rsq20,rcutoff2))
300             {
301
302             r20              = _mm_mul_pd(rsq20,rinv20);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq20             = _mm_mul_pd(iq2,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r20,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
317             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
318             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
320             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
321             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
322             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
323             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
324
325             d                = _mm_sub_pd(r20,rswitch);
326             d                = _mm_max_pd(d,_mm_setzero_pd());
327             d2               = _mm_mul_pd(d,d);
328             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
329
330             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
331
332             /* Evaluate switch function */
333             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
334             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
335             velec            = _mm_mul_pd(velec,sw);
336             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_and_pd(velec,cutoff_mask);
340             velecsum         = _mm_add_pd(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm_and_pd(fscal,cutoff_mask);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq30,rcutoff2))
367             {
368
369             r30              = _mm_mul_pd(rsq30,rinv30);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq30             = _mm_mul_pd(iq3,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_pd(r30,ewtabscale);
378             ewitab           = _mm_cvttpd_epi32(ewrt);
379             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
384             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
385             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
386             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
387             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
388             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
389             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
390             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
391
392             d                = _mm_sub_pd(r30,rswitch);
393             d                = _mm_max_pd(d,_mm_setzero_pd());
394             d2               = _mm_mul_pd(d,d);
395             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
396
397             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
398
399             /* Evaluate switch function */
400             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
401             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
402             velec            = _mm_mul_pd(velec,sw);
403             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm_and_pd(velec,cutoff_mask);
407             velecsum         = _mm_add_pd(velecsum,velec);
408
409             fscal            = felec;
410
411             fscal            = _mm_and_pd(fscal,cutoff_mask);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm_mul_pd(fscal,dx30);
415             ty               = _mm_mul_pd(fscal,dy30);
416             tz               = _mm_mul_pd(fscal,dz30);
417
418             /* Update vectorial force */
419             fix3             = _mm_add_pd(fix3,tx);
420             fiy3             = _mm_add_pd(fiy3,ty);
421             fiz3             = _mm_add_pd(fiz3,tz);
422
423             fjx0             = _mm_add_pd(fjx0,tx);
424             fjy0             = _mm_add_pd(fjy0,ty);
425             fjz0             = _mm_add_pd(fjz0,tz);
426
427             }
428
429             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 198 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             jnrA             = jjnr[jidx];
438             j_coord_offsetA  = DIM*jnrA;
439
440             /* load j atom coordinates */
441             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx10             = _mm_sub_pd(ix1,jx0);
446             dy10             = _mm_sub_pd(iy1,jy0);
447             dz10             = _mm_sub_pd(iz1,jz0);
448             dx20             = _mm_sub_pd(ix2,jx0);
449             dy20             = _mm_sub_pd(iy2,jy0);
450             dz20             = _mm_sub_pd(iz2,jz0);
451             dx30             = _mm_sub_pd(ix3,jx0);
452             dy30             = _mm_sub_pd(iy3,jy0);
453             dz30             = _mm_sub_pd(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
457             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
458             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
459
460             rinv10           = gmx_mm_invsqrt_pd(rsq10);
461             rinv20           = gmx_mm_invsqrt_pd(rsq20);
462             rinv30           = gmx_mm_invsqrt_pd(rsq30);
463
464             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
465             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
466             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
467
468             /* Load parameters for j particles */
469             jq0              = _mm_load_sd(charge+jnrA+0);
470
471             fjx0             = _mm_setzero_pd();
472             fjy0             = _mm_setzero_pd();
473             fjz0             = _mm_setzero_pd();
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (gmx_mm_any_lt(rsq10,rcutoff2))
480             {
481
482             r10              = _mm_mul_pd(rsq10,rinv10);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq10             = _mm_mul_pd(iq1,jq0);
486
487             /* EWALD ELECTROSTATICS */
488
489             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
490             ewrt             = _mm_mul_pd(r10,ewtabscale);
491             ewitab           = _mm_cvttpd_epi32(ewrt);
492             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
493             ewitab           = _mm_slli_epi32(ewitab,2);
494             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
495             ewtabD           = _mm_setzero_pd();
496             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
497             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
498             ewtabFn          = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
500             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
501             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
502             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
503             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
504
505             d                = _mm_sub_pd(r10,rswitch);
506             d                = _mm_max_pd(d,_mm_setzero_pd());
507             d2               = _mm_mul_pd(d,d);
508             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
509
510             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
511
512             /* Evaluate switch function */
513             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
514             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
515             velec            = _mm_mul_pd(velec,sw);
516             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_pd(velec,cutoff_mask);
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_and_pd(fscal,cutoff_mask);
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx10);
531             ty               = _mm_mul_pd(fscal,dy10);
532             tz               = _mm_mul_pd(fscal,dz10);
533
534             /* Update vectorial force */
535             fix1             = _mm_add_pd(fix1,tx);
536             fiy1             = _mm_add_pd(fiy1,ty);
537             fiz1             = _mm_add_pd(fiz1,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq20,rcutoff2))
550             {
551
552             r20              = _mm_mul_pd(rsq20,rinv20);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq20             = _mm_mul_pd(iq2,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r20,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
563             ewitab           = _mm_slli_epi32(ewitab,2);
564             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
565             ewtabD           = _mm_setzero_pd();
566             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
567             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
568             ewtabFn          = _mm_setzero_pd();
569             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
570             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
571             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
572             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
573             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
574
575             d                = _mm_sub_pd(r20,rswitch);
576             d                = _mm_max_pd(d,_mm_setzero_pd());
577             d2               = _mm_mul_pd(d,d);
578             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
579
580             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
581
582             /* Evaluate switch function */
583             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
584             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
585             velec            = _mm_mul_pd(velec,sw);
586             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm_and_pd(velec,cutoff_mask);
590             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
591             velecsum         = _mm_add_pd(velecsum,velec);
592
593             fscal            = felec;
594
595             fscal            = _mm_and_pd(fscal,cutoff_mask);
596
597             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm_mul_pd(fscal,dx20);
601             ty               = _mm_mul_pd(fscal,dy20);
602             tz               = _mm_mul_pd(fscal,dz20);
603
604             /* Update vectorial force */
605             fix2             = _mm_add_pd(fix2,tx);
606             fiy2             = _mm_add_pd(fiy2,ty);
607             fiz2             = _mm_add_pd(fiz2,tz);
608
609             fjx0             = _mm_add_pd(fjx0,tx);
610             fjy0             = _mm_add_pd(fjy0,ty);
611             fjz0             = _mm_add_pd(fjz0,tz);
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm_any_lt(rsq30,rcutoff2))
620             {
621
622             r30              = _mm_mul_pd(rsq30,rinv30);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq30             = _mm_mul_pd(iq3,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r30,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_setzero_pd();
636             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
637             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
638             ewtabFn          = _mm_setzero_pd();
639             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
640             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
641             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
642             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
643             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
644
645             d                = _mm_sub_pd(r30,rswitch);
646             d                = _mm_max_pd(d,_mm_setzero_pd());
647             d2               = _mm_mul_pd(d,d);
648             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
649
650             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
651
652             /* Evaluate switch function */
653             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
654             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
655             velec            = _mm_mul_pd(velec,sw);
656             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velec            = _mm_and_pd(velec,cutoff_mask);
660             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
661             velecsum         = _mm_add_pd(velecsum,velec);
662
663             fscal            = felec;
664
665             fscal            = _mm_and_pd(fscal,cutoff_mask);
666
667             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm_mul_pd(fscal,dx30);
671             ty               = _mm_mul_pd(fscal,dy30);
672             tz               = _mm_mul_pd(fscal,dz30);
673
674             /* Update vectorial force */
675             fix3             = _mm_add_pd(fix3,tx);
676             fiy3             = _mm_add_pd(fiy3,ty);
677             fiz3             = _mm_add_pd(fiz3,tz);
678
679             fjx0             = _mm_add_pd(fjx0,tx);
680             fjy0             = _mm_add_pd(fjy0,ty);
681             fjz0             = _mm_add_pd(fjz0,tz);
682
683             }
684
685             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
686
687             /* Inner loop uses 198 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
693                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
694
695         ggid                        = gid[iidx];
696         /* Update potential energies */
697         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
698
699         /* Increment number of inner iterations */
700         inneriter                  += j_index_end - j_index_start;
701
702         /* Outer loop uses 19 flops */
703     }
704
705     /* Increment number of outer iterations */
706     outeriter        += nri;
707
708     /* Update outer/inner flops */
709
710     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*198);
711 }
712 /*
713  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_double
714  * Electrostatics interaction: Ewald
715  * VdW interaction:            None
716  * Geometry:                   Water4-Particle
717  * Calculate force/pot:        Force
718  */
719 void
720 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_double
721                     (t_nblist                    * gmx_restrict       nlist,
722                      rvec                        * gmx_restrict          xx,
723                      rvec                        * gmx_restrict          ff,
724                      t_forcerec                  * gmx_restrict          fr,
725                      t_mdatoms                   * gmx_restrict     mdatoms,
726                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
727                      t_nrnb                      * gmx_restrict        nrnb)
728 {
729     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
730      * just 0 for non-waters.
731      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
732      * jnr indices corresponding to data put in the four positions in the SIMD register.
733      */
734     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
735     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
736     int              jnrA,jnrB;
737     int              j_coord_offsetA,j_coord_offsetB;
738     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
739     real             rcutoff_scalar;
740     real             *shiftvec,*fshift,*x,*f;
741     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
742     int              vdwioffset1;
743     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
744     int              vdwioffset2;
745     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
746     int              vdwioffset3;
747     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
748     int              vdwjidx0A,vdwjidx0B;
749     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
750     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
751     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
752     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
753     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
754     real             *charge;
755     __m128i          ewitab;
756     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
757     real             *ewtab;
758     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
759     real             rswitch_scalar,d_scalar;
760     __m128d          dummy_mask,cutoff_mask;
761     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
762     __m128d          one     = _mm_set1_pd(1.0);
763     __m128d          two     = _mm_set1_pd(2.0);
764     x                = xx[0];
765     f                = ff[0];
766
767     nri              = nlist->nri;
768     iinr             = nlist->iinr;
769     jindex           = nlist->jindex;
770     jjnr             = nlist->jjnr;
771     shiftidx         = nlist->shift;
772     gid              = nlist->gid;
773     shiftvec         = fr->shift_vec[0];
774     fshift           = fr->fshift[0];
775     facel            = _mm_set1_pd(fr->epsfac);
776     charge           = mdatoms->chargeA;
777
778     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
779     ewtab            = fr->ic->tabq_coul_FDV0;
780     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
781     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
782
783     /* Setup water-specific parameters */
784     inr              = nlist->iinr[0];
785     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
786     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
787     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
788
789     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
790     rcutoff_scalar   = fr->rcoulomb;
791     rcutoff          = _mm_set1_pd(rcutoff_scalar);
792     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
793
794     rswitch_scalar   = fr->rcoulomb_switch;
795     rswitch          = _mm_set1_pd(rswitch_scalar);
796     /* Setup switch parameters */
797     d_scalar         = rcutoff_scalar-rswitch_scalar;
798     d                = _mm_set1_pd(d_scalar);
799     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
800     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
801     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
802     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
803     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
804     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
805
806     /* Avoid stupid compiler warnings */
807     jnrA = jnrB = 0;
808     j_coord_offsetA = 0;
809     j_coord_offsetB = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
830                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
831
832         fix1             = _mm_setzero_pd();
833         fiy1             = _mm_setzero_pd();
834         fiz1             = _mm_setzero_pd();
835         fix2             = _mm_setzero_pd();
836         fiy2             = _mm_setzero_pd();
837         fiz2             = _mm_setzero_pd();
838         fix3             = _mm_setzero_pd();
839         fiy3             = _mm_setzero_pd();
840         fiz3             = _mm_setzero_pd();
841
842         /* Start inner kernel loop */
843         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrA             = jjnr[jidx];
848             jnrB             = jjnr[jidx+1];
849             j_coord_offsetA  = DIM*jnrA;
850             j_coord_offsetB  = DIM*jnrB;
851
852             /* load j atom coordinates */
853             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
854                                               &jx0,&jy0,&jz0);
855
856             /* Calculate displacement vector */
857             dx10             = _mm_sub_pd(ix1,jx0);
858             dy10             = _mm_sub_pd(iy1,jy0);
859             dz10             = _mm_sub_pd(iz1,jz0);
860             dx20             = _mm_sub_pd(ix2,jx0);
861             dy20             = _mm_sub_pd(iy2,jy0);
862             dz20             = _mm_sub_pd(iz2,jz0);
863             dx30             = _mm_sub_pd(ix3,jx0);
864             dy30             = _mm_sub_pd(iy3,jy0);
865             dz30             = _mm_sub_pd(iz3,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
869             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
870             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
871
872             rinv10           = gmx_mm_invsqrt_pd(rsq10);
873             rinv20           = gmx_mm_invsqrt_pd(rsq20);
874             rinv30           = gmx_mm_invsqrt_pd(rsq30);
875
876             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
877             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
878             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
882
883             fjx0             = _mm_setzero_pd();
884             fjy0             = _mm_setzero_pd();
885             fjz0             = _mm_setzero_pd();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             if (gmx_mm_any_lt(rsq10,rcutoff2))
892             {
893
894             r10              = _mm_mul_pd(rsq10,rinv10);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq10             = _mm_mul_pd(iq1,jq0);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _mm_mul_pd(r10,ewtabscale);
903             ewitab           = _mm_cvttpd_epi32(ewrt);
904             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
905             ewitab           = _mm_slli_epi32(ewitab,2);
906             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
907             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
908             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
909             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
910             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
911             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
912             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
913             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
914             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
915             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
916
917             d                = _mm_sub_pd(r10,rswitch);
918             d                = _mm_max_pd(d,_mm_setzero_pd());
919             d2               = _mm_mul_pd(d,d);
920             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
921
922             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
923
924             /* Evaluate switch function */
925             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
926             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
927             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
928
929             fscal            = felec;
930
931             fscal            = _mm_and_pd(fscal,cutoff_mask);
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm_mul_pd(fscal,dx10);
935             ty               = _mm_mul_pd(fscal,dy10);
936             tz               = _mm_mul_pd(fscal,dz10);
937
938             /* Update vectorial force */
939             fix1             = _mm_add_pd(fix1,tx);
940             fiy1             = _mm_add_pd(fiy1,ty);
941             fiz1             = _mm_add_pd(fiz1,tz);
942
943             fjx0             = _mm_add_pd(fjx0,tx);
944             fjy0             = _mm_add_pd(fjy0,ty);
945             fjz0             = _mm_add_pd(fjz0,tz);
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq20,rcutoff2))
954             {
955
956             r20              = _mm_mul_pd(rsq20,rinv20);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq20             = _mm_mul_pd(iq2,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r20,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
967             ewitab           = _mm_slli_epi32(ewitab,2);
968             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
969             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
970             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
971             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
972             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
973             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
974             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
975             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
976             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
977             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
978
979             d                = _mm_sub_pd(r20,rswitch);
980             d                = _mm_max_pd(d,_mm_setzero_pd());
981             d2               = _mm_mul_pd(d,d);
982             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
983
984             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
985
986             /* Evaluate switch function */
987             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
988             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
989             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
990
991             fscal            = felec;
992
993             fscal            = _mm_and_pd(fscal,cutoff_mask);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm_mul_pd(fscal,dx20);
997             ty               = _mm_mul_pd(fscal,dy20);
998             tz               = _mm_mul_pd(fscal,dz20);
999
1000             /* Update vectorial force */
1001             fix2             = _mm_add_pd(fix2,tx);
1002             fiy2             = _mm_add_pd(fiy2,ty);
1003             fiz2             = _mm_add_pd(fiz2,tz);
1004
1005             fjx0             = _mm_add_pd(fjx0,tx);
1006             fjy0             = _mm_add_pd(fjy0,ty);
1007             fjz0             = _mm_add_pd(fjz0,tz);
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_mm_any_lt(rsq30,rcutoff2))
1016             {
1017
1018             r30              = _mm_mul_pd(rsq30,rinv30);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq30             = _mm_mul_pd(iq3,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_pd(r30,ewtabscale);
1027             ewitab           = _mm_cvttpd_epi32(ewrt);
1028             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1029             ewitab           = _mm_slli_epi32(ewitab,2);
1030             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1031             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1032             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1033             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1034             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1035             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1036             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1037             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1038             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1039             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1040
1041             d                = _mm_sub_pd(r30,rswitch);
1042             d                = _mm_max_pd(d,_mm_setzero_pd());
1043             d2               = _mm_mul_pd(d,d);
1044             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1045
1046             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1047
1048             /* Evaluate switch function */
1049             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1050             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1051             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1052
1053             fscal            = felec;
1054
1055             fscal            = _mm_and_pd(fscal,cutoff_mask);
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm_mul_pd(fscal,dx30);
1059             ty               = _mm_mul_pd(fscal,dy30);
1060             tz               = _mm_mul_pd(fscal,dz30);
1061
1062             /* Update vectorial force */
1063             fix3             = _mm_add_pd(fix3,tx);
1064             fiy3             = _mm_add_pd(fiy3,ty);
1065             fiz3             = _mm_add_pd(fiz3,tz);
1066
1067             fjx0             = _mm_add_pd(fjx0,tx);
1068             fjy0             = _mm_add_pd(fjy0,ty);
1069             fjz0             = _mm_add_pd(fjz0,tz);
1070
1071             }
1072
1073             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1074
1075             /* Inner loop uses 189 flops */
1076         }
1077
1078         if(jidx<j_index_end)
1079         {
1080
1081             jnrA             = jjnr[jidx];
1082             j_coord_offsetA  = DIM*jnrA;
1083
1084             /* load j atom coordinates */
1085             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1086                                               &jx0,&jy0,&jz0);
1087
1088             /* Calculate displacement vector */
1089             dx10             = _mm_sub_pd(ix1,jx0);
1090             dy10             = _mm_sub_pd(iy1,jy0);
1091             dz10             = _mm_sub_pd(iz1,jz0);
1092             dx20             = _mm_sub_pd(ix2,jx0);
1093             dy20             = _mm_sub_pd(iy2,jy0);
1094             dz20             = _mm_sub_pd(iz2,jz0);
1095             dx30             = _mm_sub_pd(ix3,jx0);
1096             dy30             = _mm_sub_pd(iy3,jy0);
1097             dz30             = _mm_sub_pd(iz3,jz0);
1098
1099             /* Calculate squared distance and things based on it */
1100             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1101             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1102             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1103
1104             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1105             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1106             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1107
1108             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1109             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1110             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1111
1112             /* Load parameters for j particles */
1113             jq0              = _mm_load_sd(charge+jnrA+0);
1114
1115             fjx0             = _mm_setzero_pd();
1116             fjy0             = _mm_setzero_pd();
1117             fjz0             = _mm_setzero_pd();
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             if (gmx_mm_any_lt(rsq10,rcutoff2))
1124             {
1125
1126             r10              = _mm_mul_pd(rsq10,rinv10);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq10             = _mm_mul_pd(iq1,jq0);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r10,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1137             ewitab           = _mm_slli_epi32(ewitab,2);
1138             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1139             ewtabD           = _mm_setzero_pd();
1140             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1141             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1142             ewtabFn          = _mm_setzero_pd();
1143             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1144             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1145             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1146             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1147             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1148
1149             d                = _mm_sub_pd(r10,rswitch);
1150             d                = _mm_max_pd(d,_mm_setzero_pd());
1151             d2               = _mm_mul_pd(d,d);
1152             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1153
1154             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1155
1156             /* Evaluate switch function */
1157             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1158             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1159             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_and_pd(fscal,cutoff_mask);
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm_mul_pd(fscal,dx10);
1169             ty               = _mm_mul_pd(fscal,dy10);
1170             tz               = _mm_mul_pd(fscal,dz10);
1171
1172             /* Update vectorial force */
1173             fix1             = _mm_add_pd(fix1,tx);
1174             fiy1             = _mm_add_pd(fiy1,ty);
1175             fiz1             = _mm_add_pd(fiz1,tz);
1176
1177             fjx0             = _mm_add_pd(fjx0,tx);
1178             fjy0             = _mm_add_pd(fjy0,ty);
1179             fjz0             = _mm_add_pd(fjz0,tz);
1180
1181             }
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm_any_lt(rsq20,rcutoff2))
1188             {
1189
1190             r20              = _mm_mul_pd(rsq20,rinv20);
1191
1192             /* Compute parameters for interactions between i and j atoms */
1193             qq20             = _mm_mul_pd(iq2,jq0);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _mm_mul_pd(r20,ewtabscale);
1199             ewitab           = _mm_cvttpd_epi32(ewrt);
1200             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1201             ewitab           = _mm_slli_epi32(ewitab,2);
1202             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1203             ewtabD           = _mm_setzero_pd();
1204             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1205             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1206             ewtabFn          = _mm_setzero_pd();
1207             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1208             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1209             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1210             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1211             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1212
1213             d                = _mm_sub_pd(r20,rswitch);
1214             d                = _mm_max_pd(d,_mm_setzero_pd());
1215             d2               = _mm_mul_pd(d,d);
1216             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1217
1218             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1219
1220             /* Evaluate switch function */
1221             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1222             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1223             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1224
1225             fscal            = felec;
1226
1227             fscal            = _mm_and_pd(fscal,cutoff_mask);
1228
1229             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = _mm_mul_pd(fscal,dx20);
1233             ty               = _mm_mul_pd(fscal,dy20);
1234             tz               = _mm_mul_pd(fscal,dz20);
1235
1236             /* Update vectorial force */
1237             fix2             = _mm_add_pd(fix2,tx);
1238             fiy2             = _mm_add_pd(fiy2,ty);
1239             fiz2             = _mm_add_pd(fiz2,tz);
1240
1241             fjx0             = _mm_add_pd(fjx0,tx);
1242             fjy0             = _mm_add_pd(fjy0,ty);
1243             fjz0             = _mm_add_pd(fjz0,tz);
1244
1245             }
1246
1247             /**************************
1248              * CALCULATE INTERACTIONS *
1249              **************************/
1250
1251             if (gmx_mm_any_lt(rsq30,rcutoff2))
1252             {
1253
1254             r30              = _mm_mul_pd(rsq30,rinv30);
1255
1256             /* Compute parameters for interactions between i and j atoms */
1257             qq30             = _mm_mul_pd(iq3,jq0);
1258
1259             /* EWALD ELECTROSTATICS */
1260
1261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1262             ewrt             = _mm_mul_pd(r30,ewtabscale);
1263             ewitab           = _mm_cvttpd_epi32(ewrt);
1264             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1265             ewitab           = _mm_slli_epi32(ewitab,2);
1266             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1267             ewtabD           = _mm_setzero_pd();
1268             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1269             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1270             ewtabFn          = _mm_setzero_pd();
1271             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1272             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1273             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1274             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1275             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1276
1277             d                = _mm_sub_pd(r30,rswitch);
1278             d                = _mm_max_pd(d,_mm_setzero_pd());
1279             d2               = _mm_mul_pd(d,d);
1280             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1281
1282             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1283
1284             /* Evaluate switch function */
1285             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1286             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1287             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1288
1289             fscal            = felec;
1290
1291             fscal            = _mm_and_pd(fscal,cutoff_mask);
1292
1293             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1294
1295             /* Calculate temporary vectorial force */
1296             tx               = _mm_mul_pd(fscal,dx30);
1297             ty               = _mm_mul_pd(fscal,dy30);
1298             tz               = _mm_mul_pd(fscal,dz30);
1299
1300             /* Update vectorial force */
1301             fix3             = _mm_add_pd(fix3,tx);
1302             fiy3             = _mm_add_pd(fiy3,ty);
1303             fiz3             = _mm_add_pd(fiz3,tz);
1304
1305             fjx0             = _mm_add_pd(fjx0,tx);
1306             fjy0             = _mm_add_pd(fjy0,ty);
1307             fjz0             = _mm_add_pd(fjz0,tz);
1308
1309             }
1310
1311             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1312
1313             /* Inner loop uses 189 flops */
1314         }
1315
1316         /* End of innermost loop */
1317
1318         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1319                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1320
1321         /* Increment number of inner iterations */
1322         inneriter                  += j_index_end - j_index_start;
1323
1324         /* Outer loop uses 18 flops */
1325     }
1326
1327     /* Increment number of outer iterations */
1328     outeriter        += nri;
1329
1330     /* Update outer/inner flops */
1331
1332     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*189);
1333 }