977a394ae290b51d4db105d79c229bae5615c771
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     rswitch_scalar   = fr->rcoulomb_switch;
146     rswitch          = _mm_set1_pd(rswitch_scalar);
147     /* Setup switch parameters */
148     d_scalar         = rcutoff_scalar-rswitch_scalar;
149     d                = _mm_set1_pd(d_scalar);
150     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
151     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
154     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_pd();
184         fiy0             = _mm_setzero_pd();
185         fiz0             = _mm_setzero_pd();
186         fix1             = _mm_setzero_pd();
187         fiy1             = _mm_setzero_pd();
188         fiz1             = _mm_setzero_pd();
189         fix2             = _mm_setzero_pd();
190         fiy2             = _mm_setzero_pd();
191         fiz2             = _mm_setzero_pd();
192         fix3             = _mm_setzero_pd();
193         fiy3             = _mm_setzero_pd();
194         fiz3             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx20             = _mm_sub_pd(ix2,jx0);
222             dy20             = _mm_sub_pd(iy2,jy0);
223             dz20             = _mm_sub_pd(iz2,jz0);
224             dx30             = _mm_sub_pd(ix3,jx0);
225             dy30             = _mm_sub_pd(iy3,jy0);
226             dz30             = _mm_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = gmx_mm_invsqrt_pd(rsq00);
235             rinv10           = gmx_mm_invsqrt_pd(rsq10);
236             rinv20           = gmx_mm_invsqrt_pd(rsq20);
237             rinv30           = gmx_mm_invsqrt_pd(rsq30);
238
239             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248
249             fjx0             = _mm_setzero_pd();
250             fjy0             = _mm_setzero_pd();
251             fjz0             = _mm_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
270             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
272             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
273
274             d                = _mm_sub_pd(r00,rswitch);
275             d                = _mm_max_pd(d,_mm_setzero_pd());
276             d2               = _mm_mul_pd(d,d);
277             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
278
279             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
280
281             /* Evaluate switch function */
282             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
283             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
284             vvdw             = _mm_mul_pd(vvdw,sw);
285             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
289             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             fscal            = _mm_and_pd(fscal,cutoff_mask);
294
295             /* Calculate temporary vectorial force */
296             tx               = _mm_mul_pd(fscal,dx00);
297             ty               = _mm_mul_pd(fscal,dy00);
298             tz               = _mm_mul_pd(fscal,dz00);
299
300             /* Update vectorial force */
301             fix0             = _mm_add_pd(fix0,tx);
302             fiy0             = _mm_add_pd(fiy0,ty);
303             fiz0             = _mm_add_pd(fiz0,tz);
304
305             fjx0             = _mm_add_pd(fjx0,tx);
306             fjy0             = _mm_add_pd(fjy0,ty);
307             fjz0             = _mm_add_pd(fjz0,tz);
308
309             }
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             if (gmx_mm_any_lt(rsq10,rcutoff2))
316             {
317
318             r10              = _mm_mul_pd(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_pd(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_pd(r10,ewtabscale);
327             ewitab           = _mm_cvttpd_epi32(ewrt);
328             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
337             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
338             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
340
341             d                = _mm_sub_pd(r10,rswitch);
342             d                = _mm_max_pd(d,_mm_setzero_pd());
343             d2               = _mm_mul_pd(d,d);
344             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
345
346             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
347
348             /* Evaluate switch function */
349             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
350             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
351             velec            = _mm_mul_pd(velec,sw);
352             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_pd(velec,cutoff_mask);
356             velecsum         = _mm_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_pd(fscal,cutoff_mask);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_pd(fscal,dx10);
364             ty               = _mm_mul_pd(fscal,dy10);
365             tz               = _mm_mul_pd(fscal,dz10);
366
367             /* Update vectorial force */
368             fix1             = _mm_add_pd(fix1,tx);
369             fiy1             = _mm_add_pd(fiy1,ty);
370             fiz1             = _mm_add_pd(fiz1,tz);
371
372             fjx0             = _mm_add_pd(fjx0,tx);
373             fjy0             = _mm_add_pd(fjy0,ty);
374             fjz0             = _mm_add_pd(fjz0,tz);
375
376             }
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             if (gmx_mm_any_lt(rsq20,rcutoff2))
383             {
384
385             r20              = _mm_mul_pd(rsq20,rinv20);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq20             = _mm_mul_pd(iq2,jq0);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _mm_mul_pd(r20,ewtabscale);
394             ewitab           = _mm_cvttpd_epi32(ewrt);
395             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
399             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
400             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
401             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
402             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
403             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
404             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
405             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
406             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
407
408             d                = _mm_sub_pd(r20,rswitch);
409             d                = _mm_max_pd(d,_mm_setzero_pd());
410             d2               = _mm_mul_pd(d,d);
411             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
412
413             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
414
415             /* Evaluate switch function */
416             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
417             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
418             velec            = _mm_mul_pd(velec,sw);
419             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_and_pd(velec,cutoff_mask);
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_and_pd(fscal,cutoff_mask);
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm_mul_pd(fscal,dx20);
431             ty               = _mm_mul_pd(fscal,dy20);
432             tz               = _mm_mul_pd(fscal,dz20);
433
434             /* Update vectorial force */
435             fix2             = _mm_add_pd(fix2,tx);
436             fiy2             = _mm_add_pd(fiy2,ty);
437             fiz2             = _mm_add_pd(fiz2,tz);
438
439             fjx0             = _mm_add_pd(fjx0,tx);
440             fjy0             = _mm_add_pd(fjy0,ty);
441             fjz0             = _mm_add_pd(fjz0,tz);
442
443             }
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             if (gmx_mm_any_lt(rsq30,rcutoff2))
450             {
451
452             r30              = _mm_mul_pd(rsq30,rinv30);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq30             = _mm_mul_pd(iq3,jq0);
456
457             /* EWALD ELECTROSTATICS */
458
459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
460             ewrt             = _mm_mul_pd(r30,ewtabscale);
461             ewitab           = _mm_cvttpd_epi32(ewrt);
462             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
463             ewitab           = _mm_slli_epi32(ewitab,2);
464             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
465             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
466             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
467             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
468             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
469             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
470             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
471             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
472             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
473             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
474
475             d                = _mm_sub_pd(r30,rswitch);
476             d                = _mm_max_pd(d,_mm_setzero_pd());
477             d2               = _mm_mul_pd(d,d);
478             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
479
480             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
481
482             /* Evaluate switch function */
483             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
484             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
485             velec            = _mm_mul_pd(velec,sw);
486             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_and_pd(velec,cutoff_mask);
490             velecsum         = _mm_add_pd(velecsum,velec);
491
492             fscal            = felec;
493
494             fscal            = _mm_and_pd(fscal,cutoff_mask);
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_pd(fscal,dx30);
498             ty               = _mm_mul_pd(fscal,dy30);
499             tz               = _mm_mul_pd(fscal,dz30);
500
501             /* Update vectorial force */
502             fix3             = _mm_add_pd(fix3,tx);
503             fiy3             = _mm_add_pd(fiy3,ty);
504             fiz3             = _mm_add_pd(fiz3,tz);
505
506             fjx0             = _mm_add_pd(fjx0,tx);
507             fjy0             = _mm_add_pd(fjy0,ty);
508             fjz0             = _mm_add_pd(fjz0,tz);
509
510             }
511
512             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
513
514             /* Inner loop uses 257 flops */
515         }
516
517         if(jidx<j_index_end)
518         {
519
520             jnrA             = jjnr[jidx];
521             j_coord_offsetA  = DIM*jnrA;
522
523             /* load j atom coordinates */
524             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
525                                               &jx0,&jy0,&jz0);
526
527             /* Calculate displacement vector */
528             dx00             = _mm_sub_pd(ix0,jx0);
529             dy00             = _mm_sub_pd(iy0,jy0);
530             dz00             = _mm_sub_pd(iz0,jz0);
531             dx10             = _mm_sub_pd(ix1,jx0);
532             dy10             = _mm_sub_pd(iy1,jy0);
533             dz10             = _mm_sub_pd(iz1,jz0);
534             dx20             = _mm_sub_pd(ix2,jx0);
535             dy20             = _mm_sub_pd(iy2,jy0);
536             dz20             = _mm_sub_pd(iz2,jz0);
537             dx30             = _mm_sub_pd(ix3,jx0);
538             dy30             = _mm_sub_pd(iy3,jy0);
539             dz30             = _mm_sub_pd(iz3,jz0);
540
541             /* Calculate squared distance and things based on it */
542             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
543             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
544             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
545             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
546
547             rinv00           = gmx_mm_invsqrt_pd(rsq00);
548             rinv10           = gmx_mm_invsqrt_pd(rsq10);
549             rinv20           = gmx_mm_invsqrt_pd(rsq20);
550             rinv30           = gmx_mm_invsqrt_pd(rsq30);
551
552             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
553             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
554             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
555             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
556
557             /* Load parameters for j particles */
558             jq0              = _mm_load_sd(charge+jnrA+0);
559             vdwjidx0A        = 2*vdwtype[jnrA+0];
560
561             fjx0             = _mm_setzero_pd();
562             fjy0             = _mm_setzero_pd();
563             fjz0             = _mm_setzero_pd();
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm_any_lt(rsq00,rcutoff2))
570             {
571
572             r00              = _mm_mul_pd(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
580             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
581             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
582             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
583             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
584
585             d                = _mm_sub_pd(r00,rswitch);
586             d                = _mm_max_pd(d,_mm_setzero_pd());
587             d2               = _mm_mul_pd(d,d);
588             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
589
590             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
591
592             /* Evaluate switch function */
593             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
594             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
595             vvdw             = _mm_mul_pd(vvdw,sw);
596             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
600             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
601             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
602
603             fscal            = fvdw;
604
605             fscal            = _mm_and_pd(fscal,cutoff_mask);
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_pd(fscal,dx00);
611             ty               = _mm_mul_pd(fscal,dy00);
612             tz               = _mm_mul_pd(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm_add_pd(fix0,tx);
616             fiy0             = _mm_add_pd(fiy0,ty);
617             fiz0             = _mm_add_pd(fiz0,tz);
618
619             fjx0             = _mm_add_pd(fjx0,tx);
620             fjy0             = _mm_add_pd(fjy0,ty);
621             fjz0             = _mm_add_pd(fjz0,tz);
622
623             }
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             if (gmx_mm_any_lt(rsq10,rcutoff2))
630             {
631
632             r10              = _mm_mul_pd(rsq10,rinv10);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq10             = _mm_mul_pd(iq1,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _mm_mul_pd(r10,ewtabscale);
641             ewitab           = _mm_cvttpd_epi32(ewrt);
642             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
643             ewitab           = _mm_slli_epi32(ewitab,2);
644             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
645             ewtabD           = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
647             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
648             ewtabFn          = _mm_setzero_pd();
649             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
650             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
651             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
652             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
653             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
654
655             d                = _mm_sub_pd(r10,rswitch);
656             d                = _mm_max_pd(d,_mm_setzero_pd());
657             d2               = _mm_mul_pd(d,d);
658             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
659
660             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
661
662             /* Evaluate switch function */
663             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
664             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
665             velec            = _mm_mul_pd(velec,sw);
666             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm_and_pd(velec,cutoff_mask);
670             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
671             velecsum         = _mm_add_pd(velecsum,velec);
672
673             fscal            = felec;
674
675             fscal            = _mm_and_pd(fscal,cutoff_mask);
676
677             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm_mul_pd(fscal,dx10);
681             ty               = _mm_mul_pd(fscal,dy10);
682             tz               = _mm_mul_pd(fscal,dz10);
683
684             /* Update vectorial force */
685             fix1             = _mm_add_pd(fix1,tx);
686             fiy1             = _mm_add_pd(fiy1,ty);
687             fiz1             = _mm_add_pd(fiz1,tz);
688
689             fjx0             = _mm_add_pd(fjx0,tx);
690             fjy0             = _mm_add_pd(fjy0,ty);
691             fjz0             = _mm_add_pd(fjz0,tz);
692
693             }
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm_any_lt(rsq20,rcutoff2))
700             {
701
702             r20              = _mm_mul_pd(rsq20,rinv20);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq20             = _mm_mul_pd(iq2,jq0);
706
707             /* EWALD ELECTROSTATICS */
708
709             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
710             ewrt             = _mm_mul_pd(r20,ewtabscale);
711             ewitab           = _mm_cvttpd_epi32(ewrt);
712             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
713             ewitab           = _mm_slli_epi32(ewitab,2);
714             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
715             ewtabD           = _mm_setzero_pd();
716             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
717             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
718             ewtabFn          = _mm_setzero_pd();
719             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
720             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
721             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
722             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
723             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
724
725             d                = _mm_sub_pd(r20,rswitch);
726             d                = _mm_max_pd(d,_mm_setzero_pd());
727             d2               = _mm_mul_pd(d,d);
728             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
729
730             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
731
732             /* Evaluate switch function */
733             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
734             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
735             velec            = _mm_mul_pd(velec,sw);
736             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
737
738             /* Update potential sum for this i atom from the interaction with this j atom. */
739             velec            = _mm_and_pd(velec,cutoff_mask);
740             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
741             velecsum         = _mm_add_pd(velecsum,velec);
742
743             fscal            = felec;
744
745             fscal            = _mm_and_pd(fscal,cutoff_mask);
746
747             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm_mul_pd(fscal,dx20);
751             ty               = _mm_mul_pd(fscal,dy20);
752             tz               = _mm_mul_pd(fscal,dz20);
753
754             /* Update vectorial force */
755             fix2             = _mm_add_pd(fix2,tx);
756             fiy2             = _mm_add_pd(fiy2,ty);
757             fiz2             = _mm_add_pd(fiz2,tz);
758
759             fjx0             = _mm_add_pd(fjx0,tx);
760             fjy0             = _mm_add_pd(fjy0,ty);
761             fjz0             = _mm_add_pd(fjz0,tz);
762
763             }
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             if (gmx_mm_any_lt(rsq30,rcutoff2))
770             {
771
772             r30              = _mm_mul_pd(rsq30,rinv30);
773
774             /* Compute parameters for interactions between i and j atoms */
775             qq30             = _mm_mul_pd(iq3,jq0);
776
777             /* EWALD ELECTROSTATICS */
778
779             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
780             ewrt             = _mm_mul_pd(r30,ewtabscale);
781             ewitab           = _mm_cvttpd_epi32(ewrt);
782             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
783             ewitab           = _mm_slli_epi32(ewitab,2);
784             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
785             ewtabD           = _mm_setzero_pd();
786             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
787             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
788             ewtabFn          = _mm_setzero_pd();
789             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
790             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
791             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
792             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
793             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
794
795             d                = _mm_sub_pd(r30,rswitch);
796             d                = _mm_max_pd(d,_mm_setzero_pd());
797             d2               = _mm_mul_pd(d,d);
798             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
799
800             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
801
802             /* Evaluate switch function */
803             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
804             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
805             velec            = _mm_mul_pd(velec,sw);
806             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
807
808             /* Update potential sum for this i atom from the interaction with this j atom. */
809             velec            = _mm_and_pd(velec,cutoff_mask);
810             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
811             velecsum         = _mm_add_pd(velecsum,velec);
812
813             fscal            = felec;
814
815             fscal            = _mm_and_pd(fscal,cutoff_mask);
816
817             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
818
819             /* Calculate temporary vectorial force */
820             tx               = _mm_mul_pd(fscal,dx30);
821             ty               = _mm_mul_pd(fscal,dy30);
822             tz               = _mm_mul_pd(fscal,dz30);
823
824             /* Update vectorial force */
825             fix3             = _mm_add_pd(fix3,tx);
826             fiy3             = _mm_add_pd(fiy3,ty);
827             fiz3             = _mm_add_pd(fiz3,tz);
828
829             fjx0             = _mm_add_pd(fjx0,tx);
830             fjy0             = _mm_add_pd(fjy0,ty);
831             fjz0             = _mm_add_pd(fjz0,tz);
832
833             }
834
835             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
836
837             /* Inner loop uses 257 flops */
838         }
839
840         /* End of innermost loop */
841
842         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
843                                               f+i_coord_offset,fshift+i_shift_offset);
844
845         ggid                        = gid[iidx];
846         /* Update potential energies */
847         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
848         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
849
850         /* Increment number of inner iterations */
851         inneriter                  += j_index_end - j_index_start;
852
853         /* Outer loop uses 26 flops */
854     }
855
856     /* Increment number of outer iterations */
857     outeriter        += nri;
858
859     /* Update outer/inner flops */
860
861     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*257);
862 }
863 /*
864  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_double
865  * Electrostatics interaction: Ewald
866  * VdW interaction:            LennardJones
867  * Geometry:                   Water4-Particle
868  * Calculate force/pot:        Force
869  */
870 void
871 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_double
872                     (t_nblist                    * gmx_restrict       nlist,
873                      rvec                        * gmx_restrict          xx,
874                      rvec                        * gmx_restrict          ff,
875                      t_forcerec                  * gmx_restrict          fr,
876                      t_mdatoms                   * gmx_restrict     mdatoms,
877                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
878                      t_nrnb                      * gmx_restrict        nrnb)
879 {
880     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
881      * just 0 for non-waters.
882      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
883      * jnr indices corresponding to data put in the four positions in the SIMD register.
884      */
885     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
886     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
887     int              jnrA,jnrB;
888     int              j_coord_offsetA,j_coord_offsetB;
889     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
890     real             rcutoff_scalar;
891     real             *shiftvec,*fshift,*x,*f;
892     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
893     int              vdwioffset0;
894     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
895     int              vdwioffset1;
896     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
897     int              vdwioffset2;
898     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
899     int              vdwioffset3;
900     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
901     int              vdwjidx0A,vdwjidx0B;
902     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
903     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
904     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
905     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
906     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
907     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
908     real             *charge;
909     int              nvdwtype;
910     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
911     int              *vdwtype;
912     real             *vdwparam;
913     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
914     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
915     __m128i          ewitab;
916     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
917     real             *ewtab;
918     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
919     real             rswitch_scalar,d_scalar;
920     __m128d          dummy_mask,cutoff_mask;
921     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
922     __m128d          one     = _mm_set1_pd(1.0);
923     __m128d          two     = _mm_set1_pd(2.0);
924     x                = xx[0];
925     f                = ff[0];
926
927     nri              = nlist->nri;
928     iinr             = nlist->iinr;
929     jindex           = nlist->jindex;
930     jjnr             = nlist->jjnr;
931     shiftidx         = nlist->shift;
932     gid              = nlist->gid;
933     shiftvec         = fr->shift_vec[0];
934     fshift           = fr->fshift[0];
935     facel            = _mm_set1_pd(fr->epsfac);
936     charge           = mdatoms->chargeA;
937     nvdwtype         = fr->ntype;
938     vdwparam         = fr->nbfp;
939     vdwtype          = mdatoms->typeA;
940
941     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
942     ewtab            = fr->ic->tabq_coul_FDV0;
943     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
944     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
945
946     /* Setup water-specific parameters */
947     inr              = nlist->iinr[0];
948     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
949     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
950     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
951     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
952
953     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
954     rcutoff_scalar   = fr->rcoulomb;
955     rcutoff          = _mm_set1_pd(rcutoff_scalar);
956     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
957
958     rswitch_scalar   = fr->rcoulomb_switch;
959     rswitch          = _mm_set1_pd(rswitch_scalar);
960     /* Setup switch parameters */
961     d_scalar         = rcutoff_scalar-rswitch_scalar;
962     d                = _mm_set1_pd(d_scalar);
963     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
964     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
965     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
966     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
967     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
968     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
969
970     /* Avoid stupid compiler warnings */
971     jnrA = jnrB = 0;
972     j_coord_offsetA = 0;
973     j_coord_offsetB = 0;
974
975     outeriter        = 0;
976     inneriter        = 0;
977
978     /* Start outer loop over neighborlists */
979     for(iidx=0; iidx<nri; iidx++)
980     {
981         /* Load shift vector for this list */
982         i_shift_offset   = DIM*shiftidx[iidx];
983
984         /* Load limits for loop over neighbors */
985         j_index_start    = jindex[iidx];
986         j_index_end      = jindex[iidx+1];
987
988         /* Get outer coordinate index */
989         inr              = iinr[iidx];
990         i_coord_offset   = DIM*inr;
991
992         /* Load i particle coords and add shift vector */
993         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
994                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
995
996         fix0             = _mm_setzero_pd();
997         fiy0             = _mm_setzero_pd();
998         fiz0             = _mm_setzero_pd();
999         fix1             = _mm_setzero_pd();
1000         fiy1             = _mm_setzero_pd();
1001         fiz1             = _mm_setzero_pd();
1002         fix2             = _mm_setzero_pd();
1003         fiy2             = _mm_setzero_pd();
1004         fiz2             = _mm_setzero_pd();
1005         fix3             = _mm_setzero_pd();
1006         fiy3             = _mm_setzero_pd();
1007         fiz3             = _mm_setzero_pd();
1008
1009         /* Start inner kernel loop */
1010         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1011         {
1012
1013             /* Get j neighbor index, and coordinate index */
1014             jnrA             = jjnr[jidx];
1015             jnrB             = jjnr[jidx+1];
1016             j_coord_offsetA  = DIM*jnrA;
1017             j_coord_offsetB  = DIM*jnrB;
1018
1019             /* load j atom coordinates */
1020             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1021                                               &jx0,&jy0,&jz0);
1022
1023             /* Calculate displacement vector */
1024             dx00             = _mm_sub_pd(ix0,jx0);
1025             dy00             = _mm_sub_pd(iy0,jy0);
1026             dz00             = _mm_sub_pd(iz0,jz0);
1027             dx10             = _mm_sub_pd(ix1,jx0);
1028             dy10             = _mm_sub_pd(iy1,jy0);
1029             dz10             = _mm_sub_pd(iz1,jz0);
1030             dx20             = _mm_sub_pd(ix2,jx0);
1031             dy20             = _mm_sub_pd(iy2,jy0);
1032             dz20             = _mm_sub_pd(iz2,jz0);
1033             dx30             = _mm_sub_pd(ix3,jx0);
1034             dy30             = _mm_sub_pd(iy3,jy0);
1035             dz30             = _mm_sub_pd(iz3,jz0);
1036
1037             /* Calculate squared distance and things based on it */
1038             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1039             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1040             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1041             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1042
1043             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1044             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1045             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1046             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1047
1048             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1049             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1050             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1051             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1052
1053             /* Load parameters for j particles */
1054             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1055             vdwjidx0A        = 2*vdwtype[jnrA+0];
1056             vdwjidx0B        = 2*vdwtype[jnrB+0];
1057
1058             fjx0             = _mm_setzero_pd();
1059             fjy0             = _mm_setzero_pd();
1060             fjz0             = _mm_setzero_pd();
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_mm_any_lt(rsq00,rcutoff2))
1067             {
1068
1069             r00              = _mm_mul_pd(rsq00,rinv00);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1073                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1074
1075             /* LENNARD-JONES DISPERSION/REPULSION */
1076
1077             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1078             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1079             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1080             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1081             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1082
1083             d                = _mm_sub_pd(r00,rswitch);
1084             d                = _mm_max_pd(d,_mm_setzero_pd());
1085             d2               = _mm_mul_pd(d,d);
1086             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1087
1088             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1089
1090             /* Evaluate switch function */
1091             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1092             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1093             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1094
1095             fscal            = fvdw;
1096
1097             fscal            = _mm_and_pd(fscal,cutoff_mask);
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm_mul_pd(fscal,dx00);
1101             ty               = _mm_mul_pd(fscal,dy00);
1102             tz               = _mm_mul_pd(fscal,dz00);
1103
1104             /* Update vectorial force */
1105             fix0             = _mm_add_pd(fix0,tx);
1106             fiy0             = _mm_add_pd(fiy0,ty);
1107             fiz0             = _mm_add_pd(fiz0,tz);
1108
1109             fjx0             = _mm_add_pd(fjx0,tx);
1110             fjy0             = _mm_add_pd(fjy0,ty);
1111             fjz0             = _mm_add_pd(fjz0,tz);
1112
1113             }
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             if (gmx_mm_any_lt(rsq10,rcutoff2))
1120             {
1121
1122             r10              = _mm_mul_pd(rsq10,rinv10);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq10             = _mm_mul_pd(iq1,jq0);
1126
1127             /* EWALD ELECTROSTATICS */
1128
1129             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1130             ewrt             = _mm_mul_pd(r10,ewtabscale);
1131             ewitab           = _mm_cvttpd_epi32(ewrt);
1132             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1133             ewitab           = _mm_slli_epi32(ewitab,2);
1134             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1135             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1136             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1137             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1138             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1139             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1140             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1141             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1142             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1143             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1144
1145             d                = _mm_sub_pd(r10,rswitch);
1146             d                = _mm_max_pd(d,_mm_setzero_pd());
1147             d2               = _mm_mul_pd(d,d);
1148             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1149
1150             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1151
1152             /* Evaluate switch function */
1153             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1154             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1155             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1156
1157             fscal            = felec;
1158
1159             fscal            = _mm_and_pd(fscal,cutoff_mask);
1160
1161             /* Calculate temporary vectorial force */
1162             tx               = _mm_mul_pd(fscal,dx10);
1163             ty               = _mm_mul_pd(fscal,dy10);
1164             tz               = _mm_mul_pd(fscal,dz10);
1165
1166             /* Update vectorial force */
1167             fix1             = _mm_add_pd(fix1,tx);
1168             fiy1             = _mm_add_pd(fiy1,ty);
1169             fiz1             = _mm_add_pd(fiz1,tz);
1170
1171             fjx0             = _mm_add_pd(fjx0,tx);
1172             fjy0             = _mm_add_pd(fjy0,ty);
1173             fjz0             = _mm_add_pd(fjz0,tz);
1174
1175             }
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             if (gmx_mm_any_lt(rsq20,rcutoff2))
1182             {
1183
1184             r20              = _mm_mul_pd(rsq20,rinv20);
1185
1186             /* Compute parameters for interactions between i and j atoms */
1187             qq20             = _mm_mul_pd(iq2,jq0);
1188
1189             /* EWALD ELECTROSTATICS */
1190
1191             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1192             ewrt             = _mm_mul_pd(r20,ewtabscale);
1193             ewitab           = _mm_cvttpd_epi32(ewrt);
1194             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1195             ewitab           = _mm_slli_epi32(ewitab,2);
1196             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1197             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1198             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1199             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1200             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1201             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1202             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1203             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1204             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1205             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1206
1207             d                = _mm_sub_pd(r20,rswitch);
1208             d                = _mm_max_pd(d,_mm_setzero_pd());
1209             d2               = _mm_mul_pd(d,d);
1210             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1211
1212             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1213
1214             /* Evaluate switch function */
1215             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1216             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1217             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm_and_pd(fscal,cutoff_mask);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm_mul_pd(fscal,dx20);
1225             ty               = _mm_mul_pd(fscal,dy20);
1226             tz               = _mm_mul_pd(fscal,dz20);
1227
1228             /* Update vectorial force */
1229             fix2             = _mm_add_pd(fix2,tx);
1230             fiy2             = _mm_add_pd(fiy2,ty);
1231             fiz2             = _mm_add_pd(fiz2,tz);
1232
1233             fjx0             = _mm_add_pd(fjx0,tx);
1234             fjy0             = _mm_add_pd(fjy0,ty);
1235             fjz0             = _mm_add_pd(fjz0,tz);
1236
1237             }
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             if (gmx_mm_any_lt(rsq30,rcutoff2))
1244             {
1245
1246             r30              = _mm_mul_pd(rsq30,rinv30);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq30             = _mm_mul_pd(iq3,jq0);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm_mul_pd(r30,ewtabscale);
1255             ewitab           = _mm_cvttpd_epi32(ewrt);
1256             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1257             ewitab           = _mm_slli_epi32(ewitab,2);
1258             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1259             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1260             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1261             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1262             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
1263             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1264             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1265             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1266             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1267             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1268
1269             d                = _mm_sub_pd(r30,rswitch);
1270             d                = _mm_max_pd(d,_mm_setzero_pd());
1271             d2               = _mm_mul_pd(d,d);
1272             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1273
1274             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1275
1276             /* Evaluate switch function */
1277             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1278             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1279             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_and_pd(fscal,cutoff_mask);
1284
1285             /* Calculate temporary vectorial force */
1286             tx               = _mm_mul_pd(fscal,dx30);
1287             ty               = _mm_mul_pd(fscal,dy30);
1288             tz               = _mm_mul_pd(fscal,dz30);
1289
1290             /* Update vectorial force */
1291             fix3             = _mm_add_pd(fix3,tx);
1292             fiy3             = _mm_add_pd(fiy3,ty);
1293             fiz3             = _mm_add_pd(fiz3,tz);
1294
1295             fjx0             = _mm_add_pd(fjx0,tx);
1296             fjy0             = _mm_add_pd(fjy0,ty);
1297             fjz0             = _mm_add_pd(fjz0,tz);
1298
1299             }
1300
1301             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1302
1303             /* Inner loop uses 245 flops */
1304         }
1305
1306         if(jidx<j_index_end)
1307         {
1308
1309             jnrA             = jjnr[jidx];
1310             j_coord_offsetA  = DIM*jnrA;
1311
1312             /* load j atom coordinates */
1313             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1314                                               &jx0,&jy0,&jz0);
1315
1316             /* Calculate displacement vector */
1317             dx00             = _mm_sub_pd(ix0,jx0);
1318             dy00             = _mm_sub_pd(iy0,jy0);
1319             dz00             = _mm_sub_pd(iz0,jz0);
1320             dx10             = _mm_sub_pd(ix1,jx0);
1321             dy10             = _mm_sub_pd(iy1,jy0);
1322             dz10             = _mm_sub_pd(iz1,jz0);
1323             dx20             = _mm_sub_pd(ix2,jx0);
1324             dy20             = _mm_sub_pd(iy2,jy0);
1325             dz20             = _mm_sub_pd(iz2,jz0);
1326             dx30             = _mm_sub_pd(ix3,jx0);
1327             dy30             = _mm_sub_pd(iy3,jy0);
1328             dz30             = _mm_sub_pd(iz3,jz0);
1329
1330             /* Calculate squared distance and things based on it */
1331             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1332             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1333             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1334             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1335
1336             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1337             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1338             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1339             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1340
1341             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1342             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1343             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1344             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1345
1346             /* Load parameters for j particles */
1347             jq0              = _mm_load_sd(charge+jnrA+0);
1348             vdwjidx0A        = 2*vdwtype[jnrA+0];
1349
1350             fjx0             = _mm_setzero_pd();
1351             fjy0             = _mm_setzero_pd();
1352             fjz0             = _mm_setzero_pd();
1353
1354             /**************************
1355              * CALCULATE INTERACTIONS *
1356              **************************/
1357
1358             if (gmx_mm_any_lt(rsq00,rcutoff2))
1359             {
1360
1361             r00              = _mm_mul_pd(rsq00,rinv00);
1362
1363             /* Compute parameters for interactions between i and j atoms */
1364             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1365
1366             /* LENNARD-JONES DISPERSION/REPULSION */
1367
1368             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1369             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1370             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1371             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
1372             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1373
1374             d                = _mm_sub_pd(r00,rswitch);
1375             d                = _mm_max_pd(d,_mm_setzero_pd());
1376             d2               = _mm_mul_pd(d,d);
1377             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1378
1379             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1380
1381             /* Evaluate switch function */
1382             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1383             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1384             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1385
1386             fscal            = fvdw;
1387
1388             fscal            = _mm_and_pd(fscal,cutoff_mask);
1389
1390             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1391
1392             /* Calculate temporary vectorial force */
1393             tx               = _mm_mul_pd(fscal,dx00);
1394             ty               = _mm_mul_pd(fscal,dy00);
1395             tz               = _mm_mul_pd(fscal,dz00);
1396
1397             /* Update vectorial force */
1398             fix0             = _mm_add_pd(fix0,tx);
1399             fiy0             = _mm_add_pd(fiy0,ty);
1400             fiz0             = _mm_add_pd(fiz0,tz);
1401
1402             fjx0             = _mm_add_pd(fjx0,tx);
1403             fjy0             = _mm_add_pd(fjy0,ty);
1404             fjz0             = _mm_add_pd(fjz0,tz);
1405
1406             }
1407
1408             /**************************
1409              * CALCULATE INTERACTIONS *
1410              **************************/
1411
1412             if (gmx_mm_any_lt(rsq10,rcutoff2))
1413             {
1414
1415             r10              = _mm_mul_pd(rsq10,rinv10);
1416
1417             /* Compute parameters for interactions between i and j atoms */
1418             qq10             = _mm_mul_pd(iq1,jq0);
1419
1420             /* EWALD ELECTROSTATICS */
1421
1422             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1423             ewrt             = _mm_mul_pd(r10,ewtabscale);
1424             ewitab           = _mm_cvttpd_epi32(ewrt);
1425             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1426             ewitab           = _mm_slli_epi32(ewitab,2);
1427             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1428             ewtabD           = _mm_setzero_pd();
1429             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1430             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1431             ewtabFn          = _mm_setzero_pd();
1432             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1433             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1434             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1435             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1436             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1437
1438             d                = _mm_sub_pd(r10,rswitch);
1439             d                = _mm_max_pd(d,_mm_setzero_pd());
1440             d2               = _mm_mul_pd(d,d);
1441             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1442
1443             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1444
1445             /* Evaluate switch function */
1446             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1447             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1448             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1449
1450             fscal            = felec;
1451
1452             fscal            = _mm_and_pd(fscal,cutoff_mask);
1453
1454             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1455
1456             /* Calculate temporary vectorial force */
1457             tx               = _mm_mul_pd(fscal,dx10);
1458             ty               = _mm_mul_pd(fscal,dy10);
1459             tz               = _mm_mul_pd(fscal,dz10);
1460
1461             /* Update vectorial force */
1462             fix1             = _mm_add_pd(fix1,tx);
1463             fiy1             = _mm_add_pd(fiy1,ty);
1464             fiz1             = _mm_add_pd(fiz1,tz);
1465
1466             fjx0             = _mm_add_pd(fjx0,tx);
1467             fjy0             = _mm_add_pd(fjy0,ty);
1468             fjz0             = _mm_add_pd(fjz0,tz);
1469
1470             }
1471
1472             /**************************
1473              * CALCULATE INTERACTIONS *
1474              **************************/
1475
1476             if (gmx_mm_any_lt(rsq20,rcutoff2))
1477             {
1478
1479             r20              = _mm_mul_pd(rsq20,rinv20);
1480
1481             /* Compute parameters for interactions between i and j atoms */
1482             qq20             = _mm_mul_pd(iq2,jq0);
1483
1484             /* EWALD ELECTROSTATICS */
1485
1486             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1487             ewrt             = _mm_mul_pd(r20,ewtabscale);
1488             ewitab           = _mm_cvttpd_epi32(ewrt);
1489             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1490             ewitab           = _mm_slli_epi32(ewitab,2);
1491             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1492             ewtabD           = _mm_setzero_pd();
1493             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1494             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1495             ewtabFn          = _mm_setzero_pd();
1496             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1497             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1498             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1499             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1500             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1501
1502             d                = _mm_sub_pd(r20,rswitch);
1503             d                = _mm_max_pd(d,_mm_setzero_pd());
1504             d2               = _mm_mul_pd(d,d);
1505             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1506
1507             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1508
1509             /* Evaluate switch function */
1510             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1511             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1512             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1513
1514             fscal            = felec;
1515
1516             fscal            = _mm_and_pd(fscal,cutoff_mask);
1517
1518             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1519
1520             /* Calculate temporary vectorial force */
1521             tx               = _mm_mul_pd(fscal,dx20);
1522             ty               = _mm_mul_pd(fscal,dy20);
1523             tz               = _mm_mul_pd(fscal,dz20);
1524
1525             /* Update vectorial force */
1526             fix2             = _mm_add_pd(fix2,tx);
1527             fiy2             = _mm_add_pd(fiy2,ty);
1528             fiz2             = _mm_add_pd(fiz2,tz);
1529
1530             fjx0             = _mm_add_pd(fjx0,tx);
1531             fjy0             = _mm_add_pd(fjy0,ty);
1532             fjz0             = _mm_add_pd(fjz0,tz);
1533
1534             }
1535
1536             /**************************
1537              * CALCULATE INTERACTIONS *
1538              **************************/
1539
1540             if (gmx_mm_any_lt(rsq30,rcutoff2))
1541             {
1542
1543             r30              = _mm_mul_pd(rsq30,rinv30);
1544
1545             /* Compute parameters for interactions between i and j atoms */
1546             qq30             = _mm_mul_pd(iq3,jq0);
1547
1548             /* EWALD ELECTROSTATICS */
1549
1550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1551             ewrt             = _mm_mul_pd(r30,ewtabscale);
1552             ewitab           = _mm_cvttpd_epi32(ewrt);
1553             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1554             ewitab           = _mm_slli_epi32(ewitab,2);
1555             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1556             ewtabD           = _mm_setzero_pd();
1557             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1558             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1559             ewtabFn          = _mm_setzero_pd();
1560             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1561             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1562             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1563             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1564             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1565
1566             d                = _mm_sub_pd(r30,rswitch);
1567             d                = _mm_max_pd(d,_mm_setzero_pd());
1568             d2               = _mm_mul_pd(d,d);
1569             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
1570
1571             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
1572
1573             /* Evaluate switch function */
1574             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1575             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1576             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1577
1578             fscal            = felec;
1579
1580             fscal            = _mm_and_pd(fscal,cutoff_mask);
1581
1582             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1583
1584             /* Calculate temporary vectorial force */
1585             tx               = _mm_mul_pd(fscal,dx30);
1586             ty               = _mm_mul_pd(fscal,dy30);
1587             tz               = _mm_mul_pd(fscal,dz30);
1588
1589             /* Update vectorial force */
1590             fix3             = _mm_add_pd(fix3,tx);
1591             fiy3             = _mm_add_pd(fiy3,ty);
1592             fiz3             = _mm_add_pd(fiz3,tz);
1593
1594             fjx0             = _mm_add_pd(fjx0,tx);
1595             fjy0             = _mm_add_pd(fjy0,ty);
1596             fjz0             = _mm_add_pd(fjz0,tz);
1597
1598             }
1599
1600             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1601
1602             /* Inner loop uses 245 flops */
1603         }
1604
1605         /* End of innermost loop */
1606
1607         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1608                                               f+i_coord_offset,fshift+i_shift_offset);
1609
1610         /* Increment number of inner iterations */
1611         inneriter                  += j_index_end - j_index_start;
1612
1613         /* Outer loop uses 24 flops */
1614     }
1615
1616     /* Increment number of outer iterations */
1617     outeriter        += nri;
1618
1619     /* Update outer/inner flops */
1620
1621     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*245);
1622 }