Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_pd(d_scalar);
136     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm_invsqrt_pd(rsq00);
203
204             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm_any_lt(rsq00,rcutoff2))
216             {
217
218             r00              = _mm_mul_pd(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_pd(iq0,jq0);
222             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _mm_mul_pd(r00,ewtabscale);
229             ewitab           = _mm_cvttpd_epi32(ewrt);
230             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
231             ewitab           = _mm_slli_epi32(ewitab,2);
232             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
233             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
234             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
235             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
236             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
238             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
239             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
240             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
241             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
249             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
250
251             d                = _mm_sub_pd(r00,rswitch);
252             d                = _mm_max_pd(d,_mm_setzero_pd());
253             d2               = _mm_mul_pd(d,d);
254             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
255
256             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
257
258             /* Evaluate switch function */
259             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
260             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
261             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
262             velec            = _mm_mul_pd(velec,sw);
263             vvdw             = _mm_mul_pd(vvdw,sw);
264             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velec            = _mm_and_pd(velec,cutoff_mask);
268             velecsum         = _mm_add_pd(velecsum,velec);
269             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
270             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
271
272             fscal            = _mm_add_pd(felec,fvdw);
273
274             fscal            = _mm_and_pd(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_pd(fscal,dx00);
278             ty               = _mm_mul_pd(fscal,dy00);
279             tz               = _mm_mul_pd(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm_add_pd(fix0,tx);
283             fiy0             = _mm_add_pd(fiy0,ty);
284             fiz0             = _mm_add_pd(fiz0,tz);
285
286             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
287
288             }
289
290             /* Inner loop uses 83 flops */
291         }
292
293         if(jidx<j_index_end)
294         {
295
296             jnrA             = jjnr[jidx];
297             j_coord_offsetA  = DIM*jnrA;
298
299             /* load j atom coordinates */
300             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
301                                               &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm_sub_pd(ix0,jx0);
305             dy00             = _mm_sub_pd(iy0,jy0);
306             dz00             = _mm_sub_pd(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm_invsqrt_pd(rsq00);
312
313             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             jq0              = _mm_load_sd(charge+jnrA+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq00,rcutoff2))
324             {
325
326             r00              = _mm_mul_pd(rsq00,rinv00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _mm_mul_pd(iq0,jq0);
330             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_pd(r00,ewtabscale);
336             ewitab           = _mm_cvttpd_epi32(ewrt);
337             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_setzero_pd();
341             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
342             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
343             ewtabFn          = _mm_setzero_pd();
344             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
345             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
346             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
347             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
348             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
349
350             /* LENNARD-JONES DISPERSION/REPULSION */
351
352             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
353             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
354             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
355             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
356             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
357
358             d                = _mm_sub_pd(r00,rswitch);
359             d                = _mm_max_pd(d,_mm_setzero_pd());
360             d2               = _mm_mul_pd(d,d);
361             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
362
363             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
364
365             /* Evaluate switch function */
366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
367             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
368             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
369             velec            = _mm_mul_pd(velec,sw);
370             vvdw             = _mm_mul_pd(vvdw,sw);
371             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_and_pd(velec,cutoff_mask);
375             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
376             velecsum         = _mm_add_pd(velecsum,velec);
377             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
378             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
379             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
380
381             fscal            = _mm_add_pd(felec,fvdw);
382
383             fscal            = _mm_and_pd(fscal,cutoff_mask);
384
385             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
386
387             /* Calculate temporary vectorial force */
388             tx               = _mm_mul_pd(fscal,dx00);
389             ty               = _mm_mul_pd(fscal,dy00);
390             tz               = _mm_mul_pd(fscal,dz00);
391
392             /* Update vectorial force */
393             fix0             = _mm_add_pd(fix0,tx);
394             fiy0             = _mm_add_pd(fiy0,ty);
395             fiz0             = _mm_add_pd(fiz0,tz);
396
397             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
398
399             }
400
401             /* Inner loop uses 83 flops */
402         }
403
404         /* End of innermost loop */
405
406         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
407                                               f+i_coord_offset,fshift+i_shift_offset);
408
409         ggid                        = gid[iidx];
410         /* Update potential energies */
411         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
412         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
413
414         /* Increment number of inner iterations */
415         inneriter                  += j_index_end - j_index_start;
416
417         /* Outer loop uses 9 flops */
418     }
419
420     /* Increment number of outer iterations */
421     outeriter        += nri;
422
423     /* Update outer/inner flops */
424
425     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
426 }
427 /*
428  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_double
429  * Electrostatics interaction: Ewald
430  * VdW interaction:            LennardJones
431  * Geometry:                   Particle-Particle
432  * Calculate force/pot:        Force
433  */
434 void
435 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_double
436                     (t_nblist                    * gmx_restrict       nlist,
437                      rvec                        * gmx_restrict          xx,
438                      rvec                        * gmx_restrict          ff,
439                      t_forcerec                  * gmx_restrict          fr,
440                      t_mdatoms                   * gmx_restrict     mdatoms,
441                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
442                      t_nrnb                      * gmx_restrict        nrnb)
443 {
444     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
445      * just 0 for non-waters.
446      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
447      * jnr indices corresponding to data put in the four positions in the SIMD register.
448      */
449     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
450     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
451     int              jnrA,jnrB;
452     int              j_coord_offsetA,j_coord_offsetB;
453     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
454     real             rcutoff_scalar;
455     real             *shiftvec,*fshift,*x,*f;
456     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
457     int              vdwioffset0;
458     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
459     int              vdwjidx0A,vdwjidx0B;
460     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
461     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
462     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
463     real             *charge;
464     int              nvdwtype;
465     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
466     int              *vdwtype;
467     real             *vdwparam;
468     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
469     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
470     __m128i          ewitab;
471     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
472     real             *ewtab;
473     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
474     real             rswitch_scalar,d_scalar;
475     __m128d          dummy_mask,cutoff_mask;
476     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
477     __m128d          one     = _mm_set1_pd(1.0);
478     __m128d          two     = _mm_set1_pd(2.0);
479     x                = xx[0];
480     f                = ff[0];
481
482     nri              = nlist->nri;
483     iinr             = nlist->iinr;
484     jindex           = nlist->jindex;
485     jjnr             = nlist->jjnr;
486     shiftidx         = nlist->shift;
487     gid              = nlist->gid;
488     shiftvec         = fr->shift_vec[0];
489     fshift           = fr->fshift[0];
490     facel            = _mm_set1_pd(fr->epsfac);
491     charge           = mdatoms->chargeA;
492     nvdwtype         = fr->ntype;
493     vdwparam         = fr->nbfp;
494     vdwtype          = mdatoms->typeA;
495
496     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
497     ewtab            = fr->ic->tabq_coul_FDV0;
498     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
499     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
500
501     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
502     rcutoff_scalar   = fr->rcoulomb;
503     rcutoff          = _mm_set1_pd(rcutoff_scalar);
504     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
505
506     rswitch_scalar   = fr->rcoulomb_switch;
507     rswitch          = _mm_set1_pd(rswitch_scalar);
508     /* Setup switch parameters */
509     d_scalar         = rcutoff_scalar-rswitch_scalar;
510     d                = _mm_set1_pd(d_scalar);
511     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
512     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
513     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
514     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
515     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
516     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
517
518     /* Avoid stupid compiler warnings */
519     jnrA = jnrB = 0;
520     j_coord_offsetA = 0;
521     j_coord_offsetB = 0;
522
523     outeriter        = 0;
524     inneriter        = 0;
525
526     /* Start outer loop over neighborlists */
527     for(iidx=0; iidx<nri; iidx++)
528     {
529         /* Load shift vector for this list */
530         i_shift_offset   = DIM*shiftidx[iidx];
531
532         /* Load limits for loop over neighbors */
533         j_index_start    = jindex[iidx];
534         j_index_end      = jindex[iidx+1];
535
536         /* Get outer coordinate index */
537         inr              = iinr[iidx];
538         i_coord_offset   = DIM*inr;
539
540         /* Load i particle coords and add shift vector */
541         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
542
543         fix0             = _mm_setzero_pd();
544         fiy0             = _mm_setzero_pd();
545         fiz0             = _mm_setzero_pd();
546
547         /* Load parameters for i particles */
548         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
549         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
550
551         /* Start inner kernel loop */
552         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
553         {
554
555             /* Get j neighbor index, and coordinate index */
556             jnrA             = jjnr[jidx];
557             jnrB             = jjnr[jidx+1];
558             j_coord_offsetA  = DIM*jnrA;
559             j_coord_offsetB  = DIM*jnrB;
560
561             /* load j atom coordinates */
562             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
563                                               &jx0,&jy0,&jz0);
564
565             /* Calculate displacement vector */
566             dx00             = _mm_sub_pd(ix0,jx0);
567             dy00             = _mm_sub_pd(iy0,jy0);
568             dz00             = _mm_sub_pd(iz0,jz0);
569
570             /* Calculate squared distance and things based on it */
571             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
572
573             rinv00           = gmx_mm_invsqrt_pd(rsq00);
574
575             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
576
577             /* Load parameters for j particles */
578             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
579             vdwjidx0A        = 2*vdwtype[jnrA+0];
580             vdwjidx0B        = 2*vdwtype[jnrB+0];
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (gmx_mm_any_lt(rsq00,rcutoff2))
587             {
588
589             r00              = _mm_mul_pd(rsq00,rinv00);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm_mul_pd(iq0,jq0);
593             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
594                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_pd(r00,ewtabscale);
600             ewitab           = _mm_cvttpd_epi32(ewrt);
601             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
606             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
607             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
608             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
609             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
610             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
611             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
612             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
613
614             /* LENNARD-JONES DISPERSION/REPULSION */
615
616             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
617             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
618             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
619             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
620             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
621
622             d                = _mm_sub_pd(r00,rswitch);
623             d                = _mm_max_pd(d,_mm_setzero_pd());
624             d2               = _mm_mul_pd(d,d);
625             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
626
627             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
628
629             /* Evaluate switch function */
630             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
631             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
632             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
633             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
634
635             fscal            = _mm_add_pd(felec,fvdw);
636
637             fscal            = _mm_and_pd(fscal,cutoff_mask);
638
639             /* Calculate temporary vectorial force */
640             tx               = _mm_mul_pd(fscal,dx00);
641             ty               = _mm_mul_pd(fscal,dy00);
642             tz               = _mm_mul_pd(fscal,dz00);
643
644             /* Update vectorial force */
645             fix0             = _mm_add_pd(fix0,tx);
646             fiy0             = _mm_add_pd(fiy0,ty);
647             fiz0             = _mm_add_pd(fiz0,tz);
648
649             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
650
651             }
652
653             /* Inner loop uses 77 flops */
654         }
655
656         if(jidx<j_index_end)
657         {
658
659             jnrA             = jjnr[jidx];
660             j_coord_offsetA  = DIM*jnrA;
661
662             /* load j atom coordinates */
663             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
664                                               &jx0,&jy0,&jz0);
665
666             /* Calculate displacement vector */
667             dx00             = _mm_sub_pd(ix0,jx0);
668             dy00             = _mm_sub_pd(iy0,jy0);
669             dz00             = _mm_sub_pd(iz0,jz0);
670
671             /* Calculate squared distance and things based on it */
672             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
673
674             rinv00           = gmx_mm_invsqrt_pd(rsq00);
675
676             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
677
678             /* Load parameters for j particles */
679             jq0              = _mm_load_sd(charge+jnrA+0);
680             vdwjidx0A        = 2*vdwtype[jnrA+0];
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             if (gmx_mm_any_lt(rsq00,rcutoff2))
687             {
688
689             r00              = _mm_mul_pd(rsq00,rinv00);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq00             = _mm_mul_pd(iq0,jq0);
693             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
694
695             /* EWALD ELECTROSTATICS */
696
697             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
698             ewrt             = _mm_mul_pd(r00,ewtabscale);
699             ewitab           = _mm_cvttpd_epi32(ewrt);
700             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
701             ewitab           = _mm_slli_epi32(ewitab,2);
702             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
703             ewtabD           = _mm_setzero_pd();
704             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
705             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
706             ewtabFn          = _mm_setzero_pd();
707             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
708             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
709             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
710             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
711             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
712
713             /* LENNARD-JONES DISPERSION/REPULSION */
714
715             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
716             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
717             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
718             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
719             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
720
721             d                = _mm_sub_pd(r00,rswitch);
722             d                = _mm_max_pd(d,_mm_setzero_pd());
723             d2               = _mm_mul_pd(d,d);
724             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
725
726             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
727
728             /* Evaluate switch function */
729             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
730             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
731             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
732             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
733
734             fscal            = _mm_add_pd(felec,fvdw);
735
736             fscal            = _mm_and_pd(fscal,cutoff_mask);
737
738             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm_mul_pd(fscal,dx00);
742             ty               = _mm_mul_pd(fscal,dy00);
743             tz               = _mm_mul_pd(fscal,dz00);
744
745             /* Update vectorial force */
746             fix0             = _mm_add_pd(fix0,tx);
747             fiy0             = _mm_add_pd(fiy0,ty);
748             fiz0             = _mm_add_pd(fiz0,tz);
749
750             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
751
752             }
753
754             /* Inner loop uses 77 flops */
755         }
756
757         /* End of innermost loop */
758
759         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
760                                               f+i_coord_offset,fshift+i_shift_offset);
761
762         /* Increment number of inner iterations */
763         inneriter                  += j_index_end - j_index_start;
764
765         /* Outer loop uses 7 flops */
766     }
767
768     /* Increment number of outer iterations */
769     outeriter        += nri;
770
771     /* Update outer/inner flops */
772
773     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*77);
774 }