2b217206c8d92cb9f98fa0a8fc115dd74254497d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwNone_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     __m128i          ewitab;
104     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134
135     jq0              = _mm_set1_pd(charge[inr+0]);
136     jq1              = _mm_set1_pd(charge[inr+1]);
137     jq2              = _mm_set1_pd(charge[inr+2]);
138     qq00             = _mm_mul_pd(iq0,jq0);
139     qq01             = _mm_mul_pd(iq0,jq1);
140     qq02             = _mm_mul_pd(iq0,jq2);
141     qq10             = _mm_mul_pd(iq1,jq0);
142     qq11             = _mm_mul_pd(iq1,jq1);
143     qq12             = _mm_mul_pd(iq1,jq2);
144     qq20             = _mm_mul_pd(iq2,jq0);
145     qq21             = _mm_mul_pd(iq2,jq1);
146     qq22             = _mm_mul_pd(iq2,jq2);
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_pd();
180         fiy0             = _mm_setzero_pd();
181         fiz0             = _mm_setzero_pd();
182         fix1             = _mm_setzero_pd();
183         fiy1             = _mm_setzero_pd();
184         fiz1             = _mm_setzero_pd();
185         fix2             = _mm_setzero_pd();
186         fiy2             = _mm_setzero_pd();
187         fiz2             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201
202             /* load j atom coordinates */
203             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_pd(ix0,jx0);
208             dy00             = _mm_sub_pd(iy0,jy0);
209             dz00             = _mm_sub_pd(iz0,jz0);
210             dx01             = _mm_sub_pd(ix0,jx1);
211             dy01             = _mm_sub_pd(iy0,jy1);
212             dz01             = _mm_sub_pd(iz0,jz1);
213             dx02             = _mm_sub_pd(ix0,jx2);
214             dy02             = _mm_sub_pd(iy0,jy2);
215             dz02             = _mm_sub_pd(iz0,jz2);
216             dx10             = _mm_sub_pd(ix1,jx0);
217             dy10             = _mm_sub_pd(iy1,jy0);
218             dz10             = _mm_sub_pd(iz1,jz0);
219             dx11             = _mm_sub_pd(ix1,jx1);
220             dy11             = _mm_sub_pd(iy1,jy1);
221             dz11             = _mm_sub_pd(iz1,jz1);
222             dx12             = _mm_sub_pd(ix1,jx2);
223             dy12             = _mm_sub_pd(iy1,jy2);
224             dz12             = _mm_sub_pd(iz1,jz2);
225             dx20             = _mm_sub_pd(ix2,jx0);
226             dy20             = _mm_sub_pd(iy2,jy0);
227             dz20             = _mm_sub_pd(iz2,jz0);
228             dx21             = _mm_sub_pd(ix2,jx1);
229             dy21             = _mm_sub_pd(iy2,jy1);
230             dz21             = _mm_sub_pd(iz2,jz1);
231             dx22             = _mm_sub_pd(ix2,jx2);
232             dy22             = _mm_sub_pd(iy2,jy2);
233             dz22             = _mm_sub_pd(iz2,jz2);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
237             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
238             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
239             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
240             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
241             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
242             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
243             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
244             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
245
246             rinv00           = gmx_mm_invsqrt_pd(rsq00);
247             rinv01           = gmx_mm_invsqrt_pd(rsq01);
248             rinv02           = gmx_mm_invsqrt_pd(rsq02);
249             rinv10           = gmx_mm_invsqrt_pd(rsq10);
250             rinv11           = gmx_mm_invsqrt_pd(rsq11);
251             rinv12           = gmx_mm_invsqrt_pd(rsq12);
252             rinv20           = gmx_mm_invsqrt_pd(rsq20);
253             rinv21           = gmx_mm_invsqrt_pd(rsq21);
254             rinv22           = gmx_mm_invsqrt_pd(rsq22);
255
256             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
257             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
258             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
259             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
260             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
261             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
262             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
263             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
264             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
265
266             fjx0             = _mm_setzero_pd();
267             fjy0             = _mm_setzero_pd();
268             fjz0             = _mm_setzero_pd();
269             fjx1             = _mm_setzero_pd();
270             fjy1             = _mm_setzero_pd();
271             fjz1             = _mm_setzero_pd();
272             fjx2             = _mm_setzero_pd();
273             fjy2             = _mm_setzero_pd();
274             fjz2             = _mm_setzero_pd();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm_any_lt(rsq00,rcutoff2))
281             {
282
283             r00              = _mm_mul_pd(rsq00,rinv00);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm_mul_pd(r00,ewtabscale);
289             ewitab           = _mm_cvttpd_epi32(ewrt);
290             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
291             ewitab           = _mm_slli_epi32(ewitab,2);
292             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
293             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
294             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
295             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
296             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
297             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
298             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
299             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
300             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
301             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
302
303             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm_and_pd(velec,cutoff_mask);
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             fscal            = _mm_and_pd(fscal,cutoff_mask);
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_pd(fscal,dx00);
315             ty               = _mm_mul_pd(fscal,dy00);
316             tz               = _mm_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm_add_pd(fix0,tx);
320             fiy0             = _mm_add_pd(fiy0,ty);
321             fiz0             = _mm_add_pd(fiz0,tz);
322
323             fjx0             = _mm_add_pd(fjx0,tx);
324             fjy0             = _mm_add_pd(fjy0,ty);
325             fjz0             = _mm_add_pd(fjz0,tz);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq01,rcutoff2))
334             {
335
336             r01              = _mm_mul_pd(rsq01,rinv01);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_pd(r01,ewtabscale);
342             ewitab           = _mm_cvttpd_epi32(ewrt);
343             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
347             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
348             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
349             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
350             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
351             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
352             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
353             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
354             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
355
356             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm_and_pd(velec,cutoff_mask);
360             velecsum         = _mm_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             fscal            = _mm_and_pd(fscal,cutoff_mask);
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_pd(fscal,dx01);
368             ty               = _mm_mul_pd(fscal,dy01);
369             tz               = _mm_mul_pd(fscal,dz01);
370
371             /* Update vectorial force */
372             fix0             = _mm_add_pd(fix0,tx);
373             fiy0             = _mm_add_pd(fiy0,ty);
374             fiz0             = _mm_add_pd(fiz0,tz);
375
376             fjx1             = _mm_add_pd(fjx1,tx);
377             fjy1             = _mm_add_pd(fjy1,ty);
378             fjz1             = _mm_add_pd(fjz1,tz);
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (gmx_mm_any_lt(rsq02,rcutoff2))
387             {
388
389             r02              = _mm_mul_pd(rsq02,rinv02);
390
391             /* EWALD ELECTROSTATICS */
392
393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
394             ewrt             = _mm_mul_pd(r02,ewtabscale);
395             ewitab           = _mm_cvttpd_epi32(ewrt);
396             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
397             ewitab           = _mm_slli_epi32(ewitab,2);
398             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
399             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
400             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
401             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
402             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
403             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
404             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
405             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
406             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
407             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
408
409             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm_and_pd(velec,cutoff_mask);
413             velecsum         = _mm_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm_and_pd(fscal,cutoff_mask);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm_mul_pd(fscal,dx02);
421             ty               = _mm_mul_pd(fscal,dy02);
422             tz               = _mm_mul_pd(fscal,dz02);
423
424             /* Update vectorial force */
425             fix0             = _mm_add_pd(fix0,tx);
426             fiy0             = _mm_add_pd(fiy0,ty);
427             fiz0             = _mm_add_pd(fiz0,tz);
428
429             fjx2             = _mm_add_pd(fjx2,tx);
430             fjy2             = _mm_add_pd(fjy2,ty);
431             fjz2             = _mm_add_pd(fjz2,tz);
432
433             }
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             if (gmx_mm_any_lt(rsq10,rcutoff2))
440             {
441
442             r10              = _mm_mul_pd(rsq10,rinv10);
443
444             /* EWALD ELECTROSTATICS */
445
446             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
447             ewrt             = _mm_mul_pd(r10,ewtabscale);
448             ewitab           = _mm_cvttpd_epi32(ewrt);
449             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
450             ewitab           = _mm_slli_epi32(ewitab,2);
451             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
452             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
453             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
454             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
455             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
456             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
457             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
458             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
459             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
460             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
461
462             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             velec            = _mm_and_pd(velec,cutoff_mask);
466             velecsum         = _mm_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm_and_pd(fscal,cutoff_mask);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm_mul_pd(fscal,dx10);
474             ty               = _mm_mul_pd(fscal,dy10);
475             tz               = _mm_mul_pd(fscal,dz10);
476
477             /* Update vectorial force */
478             fix1             = _mm_add_pd(fix1,tx);
479             fiy1             = _mm_add_pd(fiy1,ty);
480             fiz1             = _mm_add_pd(fiz1,tz);
481
482             fjx0             = _mm_add_pd(fjx0,tx);
483             fjy0             = _mm_add_pd(fjy0,ty);
484             fjz0             = _mm_add_pd(fjz0,tz);
485
486             }
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq11,rcutoff2))
493             {
494
495             r11              = _mm_mul_pd(rsq11,rinv11);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_pd(r11,ewtabscale);
501             ewitab           = _mm_cvttpd_epi32(ewrt);
502             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
503             ewitab           = _mm_slli_epi32(ewitab,2);
504             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
505             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
506             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
507             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
508             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
509             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
510             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
511             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
512             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
513             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
514
515             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _mm_and_pd(velec,cutoff_mask);
519             velecsum         = _mm_add_pd(velecsum,velec);
520
521             fscal            = felec;
522
523             fscal            = _mm_and_pd(fscal,cutoff_mask);
524
525             /* Calculate temporary vectorial force */
526             tx               = _mm_mul_pd(fscal,dx11);
527             ty               = _mm_mul_pd(fscal,dy11);
528             tz               = _mm_mul_pd(fscal,dz11);
529
530             /* Update vectorial force */
531             fix1             = _mm_add_pd(fix1,tx);
532             fiy1             = _mm_add_pd(fiy1,ty);
533             fiz1             = _mm_add_pd(fiz1,tz);
534
535             fjx1             = _mm_add_pd(fjx1,tx);
536             fjy1             = _mm_add_pd(fjy1,ty);
537             fjz1             = _mm_add_pd(fjz1,tz);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq12,rcutoff2))
546             {
547
548             r12              = _mm_mul_pd(rsq12,rinv12);
549
550             /* EWALD ELECTROSTATICS */
551
552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
553             ewrt             = _mm_mul_pd(r12,ewtabscale);
554             ewitab           = _mm_cvttpd_epi32(ewrt);
555             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
556             ewitab           = _mm_slli_epi32(ewitab,2);
557             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
558             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
559             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
560             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
561             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
562             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
563             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
564             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
565             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
566             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
567
568             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_and_pd(velec,cutoff_mask);
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_and_pd(fscal,cutoff_mask);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_pd(fscal,dx12);
580             ty               = _mm_mul_pd(fscal,dy12);
581             tz               = _mm_mul_pd(fscal,dz12);
582
583             /* Update vectorial force */
584             fix1             = _mm_add_pd(fix1,tx);
585             fiy1             = _mm_add_pd(fiy1,ty);
586             fiz1             = _mm_add_pd(fiz1,tz);
587
588             fjx2             = _mm_add_pd(fjx2,tx);
589             fjy2             = _mm_add_pd(fjy2,ty);
590             fjz2             = _mm_add_pd(fjz2,tz);
591
592             }
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             if (gmx_mm_any_lt(rsq20,rcutoff2))
599             {
600
601             r20              = _mm_mul_pd(rsq20,rinv20);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r20,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
612             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
613             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
614             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
615             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
616             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
617             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
618             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
619             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
620
621             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm_and_pd(velec,cutoff_mask);
625             velecsum         = _mm_add_pd(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm_and_pd(fscal,cutoff_mask);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm_mul_pd(fscal,dx20);
633             ty               = _mm_mul_pd(fscal,dy20);
634             tz               = _mm_mul_pd(fscal,dz20);
635
636             /* Update vectorial force */
637             fix2             = _mm_add_pd(fix2,tx);
638             fiy2             = _mm_add_pd(fiy2,ty);
639             fiz2             = _mm_add_pd(fiz2,tz);
640
641             fjx0             = _mm_add_pd(fjx0,tx);
642             fjy0             = _mm_add_pd(fjy0,ty);
643             fjz0             = _mm_add_pd(fjz0,tz);
644
645             }
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq21,rcutoff2))
652             {
653
654             r21              = _mm_mul_pd(rsq21,rinv21);
655
656             /* EWALD ELECTROSTATICS */
657
658             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
659             ewrt             = _mm_mul_pd(r21,ewtabscale);
660             ewitab           = _mm_cvttpd_epi32(ewrt);
661             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
662             ewitab           = _mm_slli_epi32(ewitab,2);
663             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
664             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
665             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
666             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
667             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
668             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
669             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
670             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
671             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
672             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
673
674             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_and_pd(velec,cutoff_mask);
678             velecsum         = _mm_add_pd(velecsum,velec);
679
680             fscal            = felec;
681
682             fscal            = _mm_and_pd(fscal,cutoff_mask);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_pd(fscal,dx21);
686             ty               = _mm_mul_pd(fscal,dy21);
687             tz               = _mm_mul_pd(fscal,dz21);
688
689             /* Update vectorial force */
690             fix2             = _mm_add_pd(fix2,tx);
691             fiy2             = _mm_add_pd(fiy2,ty);
692             fiz2             = _mm_add_pd(fiz2,tz);
693
694             fjx1             = _mm_add_pd(fjx1,tx);
695             fjy1             = _mm_add_pd(fjy1,ty);
696             fjz1             = _mm_add_pd(fjz1,tz);
697
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm_any_lt(rsq22,rcutoff2))
705             {
706
707             r22              = _mm_mul_pd(rsq22,rinv22);
708
709             /* EWALD ELECTROSTATICS */
710
711             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712             ewrt             = _mm_mul_pd(r22,ewtabscale);
713             ewitab           = _mm_cvttpd_epi32(ewrt);
714             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
715             ewitab           = _mm_slli_epi32(ewitab,2);
716             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
717             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
718             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
719             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
720             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
721             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
722             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
723             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
724             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
725             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
726
727             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
728
729             /* Update potential sum for this i atom from the interaction with this j atom. */
730             velec            = _mm_and_pd(velec,cutoff_mask);
731             velecsum         = _mm_add_pd(velecsum,velec);
732
733             fscal            = felec;
734
735             fscal            = _mm_and_pd(fscal,cutoff_mask);
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm_mul_pd(fscal,dx22);
739             ty               = _mm_mul_pd(fscal,dy22);
740             tz               = _mm_mul_pd(fscal,dz22);
741
742             /* Update vectorial force */
743             fix2             = _mm_add_pd(fix2,tx);
744             fiy2             = _mm_add_pd(fiy2,ty);
745             fiz2             = _mm_add_pd(fiz2,tz);
746
747             fjx2             = _mm_add_pd(fjx2,tx);
748             fjy2             = _mm_add_pd(fjy2,ty);
749             fjz2             = _mm_add_pd(fjz2,tz);
750
751             }
752
753             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
754
755             /* Inner loop uses 414 flops */
756         }
757
758         if(jidx<j_index_end)
759         {
760
761             jnrA             = jjnr[jidx];
762             j_coord_offsetA  = DIM*jnrA;
763
764             /* load j atom coordinates */
765             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
766                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
767
768             /* Calculate displacement vector */
769             dx00             = _mm_sub_pd(ix0,jx0);
770             dy00             = _mm_sub_pd(iy0,jy0);
771             dz00             = _mm_sub_pd(iz0,jz0);
772             dx01             = _mm_sub_pd(ix0,jx1);
773             dy01             = _mm_sub_pd(iy0,jy1);
774             dz01             = _mm_sub_pd(iz0,jz1);
775             dx02             = _mm_sub_pd(ix0,jx2);
776             dy02             = _mm_sub_pd(iy0,jy2);
777             dz02             = _mm_sub_pd(iz0,jz2);
778             dx10             = _mm_sub_pd(ix1,jx0);
779             dy10             = _mm_sub_pd(iy1,jy0);
780             dz10             = _mm_sub_pd(iz1,jz0);
781             dx11             = _mm_sub_pd(ix1,jx1);
782             dy11             = _mm_sub_pd(iy1,jy1);
783             dz11             = _mm_sub_pd(iz1,jz1);
784             dx12             = _mm_sub_pd(ix1,jx2);
785             dy12             = _mm_sub_pd(iy1,jy2);
786             dz12             = _mm_sub_pd(iz1,jz2);
787             dx20             = _mm_sub_pd(ix2,jx0);
788             dy20             = _mm_sub_pd(iy2,jy0);
789             dz20             = _mm_sub_pd(iz2,jz0);
790             dx21             = _mm_sub_pd(ix2,jx1);
791             dy21             = _mm_sub_pd(iy2,jy1);
792             dz21             = _mm_sub_pd(iz2,jz1);
793             dx22             = _mm_sub_pd(ix2,jx2);
794             dy22             = _mm_sub_pd(iy2,jy2);
795             dz22             = _mm_sub_pd(iz2,jz2);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
799             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
800             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
801             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
802             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
803             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
804             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
805             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
806             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
807
808             rinv00           = gmx_mm_invsqrt_pd(rsq00);
809             rinv01           = gmx_mm_invsqrt_pd(rsq01);
810             rinv02           = gmx_mm_invsqrt_pd(rsq02);
811             rinv10           = gmx_mm_invsqrt_pd(rsq10);
812             rinv11           = gmx_mm_invsqrt_pd(rsq11);
813             rinv12           = gmx_mm_invsqrt_pd(rsq12);
814             rinv20           = gmx_mm_invsqrt_pd(rsq20);
815             rinv21           = gmx_mm_invsqrt_pd(rsq21);
816             rinv22           = gmx_mm_invsqrt_pd(rsq22);
817
818             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
819             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
820             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
821             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
822             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
823             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
824             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
825             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
826             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
827
828             fjx0             = _mm_setzero_pd();
829             fjy0             = _mm_setzero_pd();
830             fjz0             = _mm_setzero_pd();
831             fjx1             = _mm_setzero_pd();
832             fjy1             = _mm_setzero_pd();
833             fjz1             = _mm_setzero_pd();
834             fjx2             = _mm_setzero_pd();
835             fjy2             = _mm_setzero_pd();
836             fjz2             = _mm_setzero_pd();
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             if (gmx_mm_any_lt(rsq00,rcutoff2))
843             {
844
845             r00              = _mm_mul_pd(rsq00,rinv00);
846
847             /* EWALD ELECTROSTATICS */
848
849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
850             ewrt             = _mm_mul_pd(r00,ewtabscale);
851             ewitab           = _mm_cvttpd_epi32(ewrt);
852             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
853             ewitab           = _mm_slli_epi32(ewitab,2);
854             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
855             ewtabD           = _mm_setzero_pd();
856             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
857             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
858             ewtabFn          = _mm_setzero_pd();
859             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
860             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
861             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
862             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
863             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
864
865             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
866
867             /* Update potential sum for this i atom from the interaction with this j atom. */
868             velec            = _mm_and_pd(velec,cutoff_mask);
869             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
870             velecsum         = _mm_add_pd(velecsum,velec);
871
872             fscal            = felec;
873
874             fscal            = _mm_and_pd(fscal,cutoff_mask);
875
876             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
877
878             /* Calculate temporary vectorial force */
879             tx               = _mm_mul_pd(fscal,dx00);
880             ty               = _mm_mul_pd(fscal,dy00);
881             tz               = _mm_mul_pd(fscal,dz00);
882
883             /* Update vectorial force */
884             fix0             = _mm_add_pd(fix0,tx);
885             fiy0             = _mm_add_pd(fiy0,ty);
886             fiz0             = _mm_add_pd(fiz0,tz);
887
888             fjx0             = _mm_add_pd(fjx0,tx);
889             fjy0             = _mm_add_pd(fjy0,ty);
890             fjz0             = _mm_add_pd(fjz0,tz);
891
892             }
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             if (gmx_mm_any_lt(rsq01,rcutoff2))
899             {
900
901             r01              = _mm_mul_pd(rsq01,rinv01);
902
903             /* EWALD ELECTROSTATICS */
904
905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906             ewrt             = _mm_mul_pd(r01,ewtabscale);
907             ewitab           = _mm_cvttpd_epi32(ewrt);
908             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
909             ewitab           = _mm_slli_epi32(ewitab,2);
910             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
911             ewtabD           = _mm_setzero_pd();
912             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
913             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
914             ewtabFn          = _mm_setzero_pd();
915             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
916             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
917             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
918             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
919             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
920
921             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
922
923             /* Update potential sum for this i atom from the interaction with this j atom. */
924             velec            = _mm_and_pd(velec,cutoff_mask);
925             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
926             velecsum         = _mm_add_pd(velecsum,velec);
927
928             fscal            = felec;
929
930             fscal            = _mm_and_pd(fscal,cutoff_mask);
931
932             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm_mul_pd(fscal,dx01);
936             ty               = _mm_mul_pd(fscal,dy01);
937             tz               = _mm_mul_pd(fscal,dz01);
938
939             /* Update vectorial force */
940             fix0             = _mm_add_pd(fix0,tx);
941             fiy0             = _mm_add_pd(fiy0,ty);
942             fiz0             = _mm_add_pd(fiz0,tz);
943
944             fjx1             = _mm_add_pd(fjx1,tx);
945             fjy1             = _mm_add_pd(fjy1,ty);
946             fjz1             = _mm_add_pd(fjz1,tz);
947
948             }
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             if (gmx_mm_any_lt(rsq02,rcutoff2))
955             {
956
957             r02              = _mm_mul_pd(rsq02,rinv02);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_pd(r02,ewtabscale);
963             ewitab           = _mm_cvttpd_epi32(ewrt);
964             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
965             ewitab           = _mm_slli_epi32(ewitab,2);
966             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
967             ewtabD           = _mm_setzero_pd();
968             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
969             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
970             ewtabFn          = _mm_setzero_pd();
971             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
972             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
973             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
974             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
975             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
976
977             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
978
979             /* Update potential sum for this i atom from the interaction with this j atom. */
980             velec            = _mm_and_pd(velec,cutoff_mask);
981             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
982             velecsum         = _mm_add_pd(velecsum,velec);
983
984             fscal            = felec;
985
986             fscal            = _mm_and_pd(fscal,cutoff_mask);
987
988             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
989
990             /* Calculate temporary vectorial force */
991             tx               = _mm_mul_pd(fscal,dx02);
992             ty               = _mm_mul_pd(fscal,dy02);
993             tz               = _mm_mul_pd(fscal,dz02);
994
995             /* Update vectorial force */
996             fix0             = _mm_add_pd(fix0,tx);
997             fiy0             = _mm_add_pd(fiy0,ty);
998             fiz0             = _mm_add_pd(fiz0,tz);
999
1000             fjx2             = _mm_add_pd(fjx2,tx);
1001             fjy2             = _mm_add_pd(fjy2,ty);
1002             fjz2             = _mm_add_pd(fjz2,tz);
1003
1004             }
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (gmx_mm_any_lt(rsq10,rcutoff2))
1011             {
1012
1013             r10              = _mm_mul_pd(rsq10,rinv10);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = _mm_mul_pd(r10,ewtabscale);
1019             ewitab           = _mm_cvttpd_epi32(ewrt);
1020             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1021             ewitab           = _mm_slli_epi32(ewitab,2);
1022             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1023             ewtabD           = _mm_setzero_pd();
1024             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1025             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1026             ewtabFn          = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1028             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1029             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1030             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1031             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1032
1033             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1034
1035             /* Update potential sum for this i atom from the interaction with this j atom. */
1036             velec            = _mm_and_pd(velec,cutoff_mask);
1037             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1038             velecsum         = _mm_add_pd(velecsum,velec);
1039
1040             fscal            = felec;
1041
1042             fscal            = _mm_and_pd(fscal,cutoff_mask);
1043
1044             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1045
1046             /* Calculate temporary vectorial force */
1047             tx               = _mm_mul_pd(fscal,dx10);
1048             ty               = _mm_mul_pd(fscal,dy10);
1049             tz               = _mm_mul_pd(fscal,dz10);
1050
1051             /* Update vectorial force */
1052             fix1             = _mm_add_pd(fix1,tx);
1053             fiy1             = _mm_add_pd(fiy1,ty);
1054             fiz1             = _mm_add_pd(fiz1,tz);
1055
1056             fjx0             = _mm_add_pd(fjx0,tx);
1057             fjy0             = _mm_add_pd(fjy0,ty);
1058             fjz0             = _mm_add_pd(fjz0,tz);
1059
1060             }
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_mm_any_lt(rsq11,rcutoff2))
1067             {
1068
1069             r11              = _mm_mul_pd(rsq11,rinv11);
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = _mm_mul_pd(r11,ewtabscale);
1075             ewitab           = _mm_cvttpd_epi32(ewrt);
1076             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1077             ewitab           = _mm_slli_epi32(ewitab,2);
1078             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1079             ewtabD           = _mm_setzero_pd();
1080             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1081             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1082             ewtabFn          = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1084             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1085             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1086             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1087             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1088
1089             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1090
1091             /* Update potential sum for this i atom from the interaction with this j atom. */
1092             velec            = _mm_and_pd(velec,cutoff_mask);
1093             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1094             velecsum         = _mm_add_pd(velecsum,velec);
1095
1096             fscal            = felec;
1097
1098             fscal            = _mm_and_pd(fscal,cutoff_mask);
1099
1100             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1101
1102             /* Calculate temporary vectorial force */
1103             tx               = _mm_mul_pd(fscal,dx11);
1104             ty               = _mm_mul_pd(fscal,dy11);
1105             tz               = _mm_mul_pd(fscal,dz11);
1106
1107             /* Update vectorial force */
1108             fix1             = _mm_add_pd(fix1,tx);
1109             fiy1             = _mm_add_pd(fiy1,ty);
1110             fiz1             = _mm_add_pd(fiz1,tz);
1111
1112             fjx1             = _mm_add_pd(fjx1,tx);
1113             fjy1             = _mm_add_pd(fjy1,ty);
1114             fjz1             = _mm_add_pd(fjz1,tz);
1115
1116             }
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             if (gmx_mm_any_lt(rsq12,rcutoff2))
1123             {
1124
1125             r12              = _mm_mul_pd(rsq12,rinv12);
1126
1127             /* EWALD ELECTROSTATICS */
1128
1129             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1130             ewrt             = _mm_mul_pd(r12,ewtabscale);
1131             ewitab           = _mm_cvttpd_epi32(ewrt);
1132             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1133             ewitab           = _mm_slli_epi32(ewitab,2);
1134             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1135             ewtabD           = _mm_setzero_pd();
1136             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1137             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1138             ewtabFn          = _mm_setzero_pd();
1139             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1140             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1141             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1142             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1143             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1144
1145             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1146
1147             /* Update potential sum for this i atom from the interaction with this j atom. */
1148             velec            = _mm_and_pd(velec,cutoff_mask);
1149             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1150             velecsum         = _mm_add_pd(velecsum,velec);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm_and_pd(fscal,cutoff_mask);
1155
1156             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1157
1158             /* Calculate temporary vectorial force */
1159             tx               = _mm_mul_pd(fscal,dx12);
1160             ty               = _mm_mul_pd(fscal,dy12);
1161             tz               = _mm_mul_pd(fscal,dz12);
1162
1163             /* Update vectorial force */
1164             fix1             = _mm_add_pd(fix1,tx);
1165             fiy1             = _mm_add_pd(fiy1,ty);
1166             fiz1             = _mm_add_pd(fiz1,tz);
1167
1168             fjx2             = _mm_add_pd(fjx2,tx);
1169             fjy2             = _mm_add_pd(fjy2,ty);
1170             fjz2             = _mm_add_pd(fjz2,tz);
1171
1172             }
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (gmx_mm_any_lt(rsq20,rcutoff2))
1179             {
1180
1181             r20              = _mm_mul_pd(rsq20,rinv20);
1182
1183             /* EWALD ELECTROSTATICS */
1184
1185             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186             ewrt             = _mm_mul_pd(r20,ewtabscale);
1187             ewitab           = _mm_cvttpd_epi32(ewrt);
1188             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1189             ewitab           = _mm_slli_epi32(ewitab,2);
1190             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1191             ewtabD           = _mm_setzero_pd();
1192             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1193             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1194             ewtabFn          = _mm_setzero_pd();
1195             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1196             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1197             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1198             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1199             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1200
1201             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1202
1203             /* Update potential sum for this i atom from the interaction with this j atom. */
1204             velec            = _mm_and_pd(velec,cutoff_mask);
1205             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1206             velecsum         = _mm_add_pd(velecsum,velec);
1207
1208             fscal            = felec;
1209
1210             fscal            = _mm_and_pd(fscal,cutoff_mask);
1211
1212             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1213
1214             /* Calculate temporary vectorial force */
1215             tx               = _mm_mul_pd(fscal,dx20);
1216             ty               = _mm_mul_pd(fscal,dy20);
1217             tz               = _mm_mul_pd(fscal,dz20);
1218
1219             /* Update vectorial force */
1220             fix2             = _mm_add_pd(fix2,tx);
1221             fiy2             = _mm_add_pd(fiy2,ty);
1222             fiz2             = _mm_add_pd(fiz2,tz);
1223
1224             fjx0             = _mm_add_pd(fjx0,tx);
1225             fjy0             = _mm_add_pd(fjy0,ty);
1226             fjz0             = _mm_add_pd(fjz0,tz);
1227
1228             }
1229
1230             /**************************
1231              * CALCULATE INTERACTIONS *
1232              **************************/
1233
1234             if (gmx_mm_any_lt(rsq21,rcutoff2))
1235             {
1236
1237             r21              = _mm_mul_pd(rsq21,rinv21);
1238
1239             /* EWALD ELECTROSTATICS */
1240
1241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1242             ewrt             = _mm_mul_pd(r21,ewtabscale);
1243             ewitab           = _mm_cvttpd_epi32(ewrt);
1244             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1245             ewitab           = _mm_slli_epi32(ewitab,2);
1246             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1247             ewtabD           = _mm_setzero_pd();
1248             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1249             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1250             ewtabFn          = _mm_setzero_pd();
1251             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1252             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1253             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1254             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1255             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1256
1257             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1258
1259             /* Update potential sum for this i atom from the interaction with this j atom. */
1260             velec            = _mm_and_pd(velec,cutoff_mask);
1261             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1262             velecsum         = _mm_add_pd(velecsum,velec);
1263
1264             fscal            = felec;
1265
1266             fscal            = _mm_and_pd(fscal,cutoff_mask);
1267
1268             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1269
1270             /* Calculate temporary vectorial force */
1271             tx               = _mm_mul_pd(fscal,dx21);
1272             ty               = _mm_mul_pd(fscal,dy21);
1273             tz               = _mm_mul_pd(fscal,dz21);
1274
1275             /* Update vectorial force */
1276             fix2             = _mm_add_pd(fix2,tx);
1277             fiy2             = _mm_add_pd(fiy2,ty);
1278             fiz2             = _mm_add_pd(fiz2,tz);
1279
1280             fjx1             = _mm_add_pd(fjx1,tx);
1281             fjy1             = _mm_add_pd(fjy1,ty);
1282             fjz1             = _mm_add_pd(fjz1,tz);
1283
1284             }
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             if (gmx_mm_any_lt(rsq22,rcutoff2))
1291             {
1292
1293             r22              = _mm_mul_pd(rsq22,rinv22);
1294
1295             /* EWALD ELECTROSTATICS */
1296
1297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1298             ewrt             = _mm_mul_pd(r22,ewtabscale);
1299             ewitab           = _mm_cvttpd_epi32(ewrt);
1300             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1301             ewitab           = _mm_slli_epi32(ewitab,2);
1302             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1303             ewtabD           = _mm_setzero_pd();
1304             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1305             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1306             ewtabFn          = _mm_setzero_pd();
1307             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1308             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1309             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1310             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1311             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1312
1313             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1314
1315             /* Update potential sum for this i atom from the interaction with this j atom. */
1316             velec            = _mm_and_pd(velec,cutoff_mask);
1317             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1318             velecsum         = _mm_add_pd(velecsum,velec);
1319
1320             fscal            = felec;
1321
1322             fscal            = _mm_and_pd(fscal,cutoff_mask);
1323
1324             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1325
1326             /* Calculate temporary vectorial force */
1327             tx               = _mm_mul_pd(fscal,dx22);
1328             ty               = _mm_mul_pd(fscal,dy22);
1329             tz               = _mm_mul_pd(fscal,dz22);
1330
1331             /* Update vectorial force */
1332             fix2             = _mm_add_pd(fix2,tx);
1333             fiy2             = _mm_add_pd(fiy2,ty);
1334             fiz2             = _mm_add_pd(fiz2,tz);
1335
1336             fjx2             = _mm_add_pd(fjx2,tx);
1337             fjy2             = _mm_add_pd(fjy2,ty);
1338             fjz2             = _mm_add_pd(fjz2,tz);
1339
1340             }
1341
1342             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1343
1344             /* Inner loop uses 414 flops */
1345         }
1346
1347         /* End of innermost loop */
1348
1349         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1350                                               f+i_coord_offset,fshift+i_shift_offset);
1351
1352         ggid                        = gid[iidx];
1353         /* Update potential energies */
1354         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1355
1356         /* Increment number of inner iterations */
1357         inneriter                  += j_index_end - j_index_start;
1358
1359         /* Outer loop uses 19 flops */
1360     }
1361
1362     /* Increment number of outer iterations */
1363     outeriter        += nri;
1364
1365     /* Update outer/inner flops */
1366
1367     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*414);
1368 }
1369 /*
1370  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_sse2_double
1371  * Electrostatics interaction: Ewald
1372  * VdW interaction:            None
1373  * Geometry:                   Water3-Water3
1374  * Calculate force/pot:        Force
1375  */
1376 void
1377 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_sse2_double
1378                     (t_nblist                    * gmx_restrict       nlist,
1379                      rvec                        * gmx_restrict          xx,
1380                      rvec                        * gmx_restrict          ff,
1381                      t_forcerec                  * gmx_restrict          fr,
1382                      t_mdatoms                   * gmx_restrict     mdatoms,
1383                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1384                      t_nrnb                      * gmx_restrict        nrnb)
1385 {
1386     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1387      * just 0 for non-waters.
1388      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1389      * jnr indices corresponding to data put in the four positions in the SIMD register.
1390      */
1391     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1392     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1393     int              jnrA,jnrB;
1394     int              j_coord_offsetA,j_coord_offsetB;
1395     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1396     real             rcutoff_scalar;
1397     real             *shiftvec,*fshift,*x,*f;
1398     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1399     int              vdwioffset0;
1400     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1401     int              vdwioffset1;
1402     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1403     int              vdwioffset2;
1404     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1405     int              vdwjidx0A,vdwjidx0B;
1406     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1407     int              vdwjidx1A,vdwjidx1B;
1408     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1409     int              vdwjidx2A,vdwjidx2B;
1410     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1411     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1412     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1413     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1414     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1415     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1416     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1417     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1418     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1419     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1420     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1421     real             *charge;
1422     __m128i          ewitab;
1423     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1424     real             *ewtab;
1425     __m128d          dummy_mask,cutoff_mask;
1426     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1427     __m128d          one     = _mm_set1_pd(1.0);
1428     __m128d          two     = _mm_set1_pd(2.0);
1429     x                = xx[0];
1430     f                = ff[0];
1431
1432     nri              = nlist->nri;
1433     iinr             = nlist->iinr;
1434     jindex           = nlist->jindex;
1435     jjnr             = nlist->jjnr;
1436     shiftidx         = nlist->shift;
1437     gid              = nlist->gid;
1438     shiftvec         = fr->shift_vec[0];
1439     fshift           = fr->fshift[0];
1440     facel            = _mm_set1_pd(fr->epsfac);
1441     charge           = mdatoms->chargeA;
1442
1443     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1444     ewtab            = fr->ic->tabq_coul_F;
1445     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1446     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1447
1448     /* Setup water-specific parameters */
1449     inr              = nlist->iinr[0];
1450     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1451     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1452     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1453
1454     jq0              = _mm_set1_pd(charge[inr+0]);
1455     jq1              = _mm_set1_pd(charge[inr+1]);
1456     jq2              = _mm_set1_pd(charge[inr+2]);
1457     qq00             = _mm_mul_pd(iq0,jq0);
1458     qq01             = _mm_mul_pd(iq0,jq1);
1459     qq02             = _mm_mul_pd(iq0,jq2);
1460     qq10             = _mm_mul_pd(iq1,jq0);
1461     qq11             = _mm_mul_pd(iq1,jq1);
1462     qq12             = _mm_mul_pd(iq1,jq2);
1463     qq20             = _mm_mul_pd(iq2,jq0);
1464     qq21             = _mm_mul_pd(iq2,jq1);
1465     qq22             = _mm_mul_pd(iq2,jq2);
1466
1467     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1468     rcutoff_scalar   = fr->rcoulomb;
1469     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1470     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1471
1472     /* Avoid stupid compiler warnings */
1473     jnrA = jnrB = 0;
1474     j_coord_offsetA = 0;
1475     j_coord_offsetB = 0;
1476
1477     outeriter        = 0;
1478     inneriter        = 0;
1479
1480     /* Start outer loop over neighborlists */
1481     for(iidx=0; iidx<nri; iidx++)
1482     {
1483         /* Load shift vector for this list */
1484         i_shift_offset   = DIM*shiftidx[iidx];
1485
1486         /* Load limits for loop over neighbors */
1487         j_index_start    = jindex[iidx];
1488         j_index_end      = jindex[iidx+1];
1489
1490         /* Get outer coordinate index */
1491         inr              = iinr[iidx];
1492         i_coord_offset   = DIM*inr;
1493
1494         /* Load i particle coords and add shift vector */
1495         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1496                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1497
1498         fix0             = _mm_setzero_pd();
1499         fiy0             = _mm_setzero_pd();
1500         fiz0             = _mm_setzero_pd();
1501         fix1             = _mm_setzero_pd();
1502         fiy1             = _mm_setzero_pd();
1503         fiz1             = _mm_setzero_pd();
1504         fix2             = _mm_setzero_pd();
1505         fiy2             = _mm_setzero_pd();
1506         fiz2             = _mm_setzero_pd();
1507
1508         /* Start inner kernel loop */
1509         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1510         {
1511
1512             /* Get j neighbor index, and coordinate index */
1513             jnrA             = jjnr[jidx];
1514             jnrB             = jjnr[jidx+1];
1515             j_coord_offsetA  = DIM*jnrA;
1516             j_coord_offsetB  = DIM*jnrB;
1517
1518             /* load j atom coordinates */
1519             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1520                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1521
1522             /* Calculate displacement vector */
1523             dx00             = _mm_sub_pd(ix0,jx0);
1524             dy00             = _mm_sub_pd(iy0,jy0);
1525             dz00             = _mm_sub_pd(iz0,jz0);
1526             dx01             = _mm_sub_pd(ix0,jx1);
1527             dy01             = _mm_sub_pd(iy0,jy1);
1528             dz01             = _mm_sub_pd(iz0,jz1);
1529             dx02             = _mm_sub_pd(ix0,jx2);
1530             dy02             = _mm_sub_pd(iy0,jy2);
1531             dz02             = _mm_sub_pd(iz0,jz2);
1532             dx10             = _mm_sub_pd(ix1,jx0);
1533             dy10             = _mm_sub_pd(iy1,jy0);
1534             dz10             = _mm_sub_pd(iz1,jz0);
1535             dx11             = _mm_sub_pd(ix1,jx1);
1536             dy11             = _mm_sub_pd(iy1,jy1);
1537             dz11             = _mm_sub_pd(iz1,jz1);
1538             dx12             = _mm_sub_pd(ix1,jx2);
1539             dy12             = _mm_sub_pd(iy1,jy2);
1540             dz12             = _mm_sub_pd(iz1,jz2);
1541             dx20             = _mm_sub_pd(ix2,jx0);
1542             dy20             = _mm_sub_pd(iy2,jy0);
1543             dz20             = _mm_sub_pd(iz2,jz0);
1544             dx21             = _mm_sub_pd(ix2,jx1);
1545             dy21             = _mm_sub_pd(iy2,jy1);
1546             dz21             = _mm_sub_pd(iz2,jz1);
1547             dx22             = _mm_sub_pd(ix2,jx2);
1548             dy22             = _mm_sub_pd(iy2,jy2);
1549             dz22             = _mm_sub_pd(iz2,jz2);
1550
1551             /* Calculate squared distance and things based on it */
1552             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1553             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1554             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1555             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1556             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1557             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1558             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1559             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1560             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1561
1562             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1563             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1564             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1565             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1566             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1567             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1568             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1569             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1570             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1571
1572             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1573             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1574             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1575             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1576             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1577             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1578             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1579             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1580             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1581
1582             fjx0             = _mm_setzero_pd();
1583             fjy0             = _mm_setzero_pd();
1584             fjz0             = _mm_setzero_pd();
1585             fjx1             = _mm_setzero_pd();
1586             fjy1             = _mm_setzero_pd();
1587             fjz1             = _mm_setzero_pd();
1588             fjx2             = _mm_setzero_pd();
1589             fjy2             = _mm_setzero_pd();
1590             fjz2             = _mm_setzero_pd();
1591
1592             /**************************
1593              * CALCULATE INTERACTIONS *
1594              **************************/
1595
1596             if (gmx_mm_any_lt(rsq00,rcutoff2))
1597             {
1598
1599             r00              = _mm_mul_pd(rsq00,rinv00);
1600
1601             /* EWALD ELECTROSTATICS */
1602
1603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1604             ewrt             = _mm_mul_pd(r00,ewtabscale);
1605             ewitab           = _mm_cvttpd_epi32(ewrt);
1606             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1607             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1608                                          &ewtabF,&ewtabFn);
1609             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1610             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1611
1612             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1613
1614             fscal            = felec;
1615
1616             fscal            = _mm_and_pd(fscal,cutoff_mask);
1617
1618             /* Calculate temporary vectorial force */
1619             tx               = _mm_mul_pd(fscal,dx00);
1620             ty               = _mm_mul_pd(fscal,dy00);
1621             tz               = _mm_mul_pd(fscal,dz00);
1622
1623             /* Update vectorial force */
1624             fix0             = _mm_add_pd(fix0,tx);
1625             fiy0             = _mm_add_pd(fiy0,ty);
1626             fiz0             = _mm_add_pd(fiz0,tz);
1627
1628             fjx0             = _mm_add_pd(fjx0,tx);
1629             fjy0             = _mm_add_pd(fjy0,ty);
1630             fjz0             = _mm_add_pd(fjz0,tz);
1631
1632             }
1633
1634             /**************************
1635              * CALCULATE INTERACTIONS *
1636              **************************/
1637
1638             if (gmx_mm_any_lt(rsq01,rcutoff2))
1639             {
1640
1641             r01              = _mm_mul_pd(rsq01,rinv01);
1642
1643             /* EWALD ELECTROSTATICS */
1644
1645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1646             ewrt             = _mm_mul_pd(r01,ewtabscale);
1647             ewitab           = _mm_cvttpd_epi32(ewrt);
1648             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1649             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1650                                          &ewtabF,&ewtabFn);
1651             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1652             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1653
1654             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1655
1656             fscal            = felec;
1657
1658             fscal            = _mm_and_pd(fscal,cutoff_mask);
1659
1660             /* Calculate temporary vectorial force */
1661             tx               = _mm_mul_pd(fscal,dx01);
1662             ty               = _mm_mul_pd(fscal,dy01);
1663             tz               = _mm_mul_pd(fscal,dz01);
1664
1665             /* Update vectorial force */
1666             fix0             = _mm_add_pd(fix0,tx);
1667             fiy0             = _mm_add_pd(fiy0,ty);
1668             fiz0             = _mm_add_pd(fiz0,tz);
1669
1670             fjx1             = _mm_add_pd(fjx1,tx);
1671             fjy1             = _mm_add_pd(fjy1,ty);
1672             fjz1             = _mm_add_pd(fjz1,tz);
1673
1674             }
1675
1676             /**************************
1677              * CALCULATE INTERACTIONS *
1678              **************************/
1679
1680             if (gmx_mm_any_lt(rsq02,rcutoff2))
1681             {
1682
1683             r02              = _mm_mul_pd(rsq02,rinv02);
1684
1685             /* EWALD ELECTROSTATICS */
1686
1687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1688             ewrt             = _mm_mul_pd(r02,ewtabscale);
1689             ewitab           = _mm_cvttpd_epi32(ewrt);
1690             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1691             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1692                                          &ewtabF,&ewtabFn);
1693             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1694             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1695
1696             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1697
1698             fscal            = felec;
1699
1700             fscal            = _mm_and_pd(fscal,cutoff_mask);
1701
1702             /* Calculate temporary vectorial force */
1703             tx               = _mm_mul_pd(fscal,dx02);
1704             ty               = _mm_mul_pd(fscal,dy02);
1705             tz               = _mm_mul_pd(fscal,dz02);
1706
1707             /* Update vectorial force */
1708             fix0             = _mm_add_pd(fix0,tx);
1709             fiy0             = _mm_add_pd(fiy0,ty);
1710             fiz0             = _mm_add_pd(fiz0,tz);
1711
1712             fjx2             = _mm_add_pd(fjx2,tx);
1713             fjy2             = _mm_add_pd(fjy2,ty);
1714             fjz2             = _mm_add_pd(fjz2,tz);
1715
1716             }
1717
1718             /**************************
1719              * CALCULATE INTERACTIONS *
1720              **************************/
1721
1722             if (gmx_mm_any_lt(rsq10,rcutoff2))
1723             {
1724
1725             r10              = _mm_mul_pd(rsq10,rinv10);
1726
1727             /* EWALD ELECTROSTATICS */
1728
1729             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1730             ewrt             = _mm_mul_pd(r10,ewtabscale);
1731             ewitab           = _mm_cvttpd_epi32(ewrt);
1732             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1733             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1734                                          &ewtabF,&ewtabFn);
1735             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1736             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1737
1738             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1739
1740             fscal            = felec;
1741
1742             fscal            = _mm_and_pd(fscal,cutoff_mask);
1743
1744             /* Calculate temporary vectorial force */
1745             tx               = _mm_mul_pd(fscal,dx10);
1746             ty               = _mm_mul_pd(fscal,dy10);
1747             tz               = _mm_mul_pd(fscal,dz10);
1748
1749             /* Update vectorial force */
1750             fix1             = _mm_add_pd(fix1,tx);
1751             fiy1             = _mm_add_pd(fiy1,ty);
1752             fiz1             = _mm_add_pd(fiz1,tz);
1753
1754             fjx0             = _mm_add_pd(fjx0,tx);
1755             fjy0             = _mm_add_pd(fjy0,ty);
1756             fjz0             = _mm_add_pd(fjz0,tz);
1757
1758             }
1759
1760             /**************************
1761              * CALCULATE INTERACTIONS *
1762              **************************/
1763
1764             if (gmx_mm_any_lt(rsq11,rcutoff2))
1765             {
1766
1767             r11              = _mm_mul_pd(rsq11,rinv11);
1768
1769             /* EWALD ELECTROSTATICS */
1770
1771             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1772             ewrt             = _mm_mul_pd(r11,ewtabscale);
1773             ewitab           = _mm_cvttpd_epi32(ewrt);
1774             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1775             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1776                                          &ewtabF,&ewtabFn);
1777             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1778             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1779
1780             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1781
1782             fscal            = felec;
1783
1784             fscal            = _mm_and_pd(fscal,cutoff_mask);
1785
1786             /* Calculate temporary vectorial force */
1787             tx               = _mm_mul_pd(fscal,dx11);
1788             ty               = _mm_mul_pd(fscal,dy11);
1789             tz               = _mm_mul_pd(fscal,dz11);
1790
1791             /* Update vectorial force */
1792             fix1             = _mm_add_pd(fix1,tx);
1793             fiy1             = _mm_add_pd(fiy1,ty);
1794             fiz1             = _mm_add_pd(fiz1,tz);
1795
1796             fjx1             = _mm_add_pd(fjx1,tx);
1797             fjy1             = _mm_add_pd(fjy1,ty);
1798             fjz1             = _mm_add_pd(fjz1,tz);
1799
1800             }
1801
1802             /**************************
1803              * CALCULATE INTERACTIONS *
1804              **************************/
1805
1806             if (gmx_mm_any_lt(rsq12,rcutoff2))
1807             {
1808
1809             r12              = _mm_mul_pd(rsq12,rinv12);
1810
1811             /* EWALD ELECTROSTATICS */
1812
1813             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1814             ewrt             = _mm_mul_pd(r12,ewtabscale);
1815             ewitab           = _mm_cvttpd_epi32(ewrt);
1816             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1817             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1818                                          &ewtabF,&ewtabFn);
1819             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1820             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1821
1822             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1823
1824             fscal            = felec;
1825
1826             fscal            = _mm_and_pd(fscal,cutoff_mask);
1827
1828             /* Calculate temporary vectorial force */
1829             tx               = _mm_mul_pd(fscal,dx12);
1830             ty               = _mm_mul_pd(fscal,dy12);
1831             tz               = _mm_mul_pd(fscal,dz12);
1832
1833             /* Update vectorial force */
1834             fix1             = _mm_add_pd(fix1,tx);
1835             fiy1             = _mm_add_pd(fiy1,ty);
1836             fiz1             = _mm_add_pd(fiz1,tz);
1837
1838             fjx2             = _mm_add_pd(fjx2,tx);
1839             fjy2             = _mm_add_pd(fjy2,ty);
1840             fjz2             = _mm_add_pd(fjz2,tz);
1841
1842             }
1843
1844             /**************************
1845              * CALCULATE INTERACTIONS *
1846              **************************/
1847
1848             if (gmx_mm_any_lt(rsq20,rcutoff2))
1849             {
1850
1851             r20              = _mm_mul_pd(rsq20,rinv20);
1852
1853             /* EWALD ELECTROSTATICS */
1854
1855             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1856             ewrt             = _mm_mul_pd(r20,ewtabscale);
1857             ewitab           = _mm_cvttpd_epi32(ewrt);
1858             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1859             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1860                                          &ewtabF,&ewtabFn);
1861             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1862             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1863
1864             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1865
1866             fscal            = felec;
1867
1868             fscal            = _mm_and_pd(fscal,cutoff_mask);
1869
1870             /* Calculate temporary vectorial force */
1871             tx               = _mm_mul_pd(fscal,dx20);
1872             ty               = _mm_mul_pd(fscal,dy20);
1873             tz               = _mm_mul_pd(fscal,dz20);
1874
1875             /* Update vectorial force */
1876             fix2             = _mm_add_pd(fix2,tx);
1877             fiy2             = _mm_add_pd(fiy2,ty);
1878             fiz2             = _mm_add_pd(fiz2,tz);
1879
1880             fjx0             = _mm_add_pd(fjx0,tx);
1881             fjy0             = _mm_add_pd(fjy0,ty);
1882             fjz0             = _mm_add_pd(fjz0,tz);
1883
1884             }
1885
1886             /**************************
1887              * CALCULATE INTERACTIONS *
1888              **************************/
1889
1890             if (gmx_mm_any_lt(rsq21,rcutoff2))
1891             {
1892
1893             r21              = _mm_mul_pd(rsq21,rinv21);
1894
1895             /* EWALD ELECTROSTATICS */
1896
1897             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1898             ewrt             = _mm_mul_pd(r21,ewtabscale);
1899             ewitab           = _mm_cvttpd_epi32(ewrt);
1900             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1901             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1902                                          &ewtabF,&ewtabFn);
1903             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1904             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1905
1906             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1907
1908             fscal            = felec;
1909
1910             fscal            = _mm_and_pd(fscal,cutoff_mask);
1911
1912             /* Calculate temporary vectorial force */
1913             tx               = _mm_mul_pd(fscal,dx21);
1914             ty               = _mm_mul_pd(fscal,dy21);
1915             tz               = _mm_mul_pd(fscal,dz21);
1916
1917             /* Update vectorial force */
1918             fix2             = _mm_add_pd(fix2,tx);
1919             fiy2             = _mm_add_pd(fiy2,ty);
1920             fiz2             = _mm_add_pd(fiz2,tz);
1921
1922             fjx1             = _mm_add_pd(fjx1,tx);
1923             fjy1             = _mm_add_pd(fjy1,ty);
1924             fjz1             = _mm_add_pd(fjz1,tz);
1925
1926             }
1927
1928             /**************************
1929              * CALCULATE INTERACTIONS *
1930              **************************/
1931
1932             if (gmx_mm_any_lt(rsq22,rcutoff2))
1933             {
1934
1935             r22              = _mm_mul_pd(rsq22,rinv22);
1936
1937             /* EWALD ELECTROSTATICS */
1938
1939             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1940             ewrt             = _mm_mul_pd(r22,ewtabscale);
1941             ewitab           = _mm_cvttpd_epi32(ewrt);
1942             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1943             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1944                                          &ewtabF,&ewtabFn);
1945             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1946             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1947
1948             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1949
1950             fscal            = felec;
1951
1952             fscal            = _mm_and_pd(fscal,cutoff_mask);
1953
1954             /* Calculate temporary vectorial force */
1955             tx               = _mm_mul_pd(fscal,dx22);
1956             ty               = _mm_mul_pd(fscal,dy22);
1957             tz               = _mm_mul_pd(fscal,dz22);
1958
1959             /* Update vectorial force */
1960             fix2             = _mm_add_pd(fix2,tx);
1961             fiy2             = _mm_add_pd(fiy2,ty);
1962             fiz2             = _mm_add_pd(fiz2,tz);
1963
1964             fjx2             = _mm_add_pd(fjx2,tx);
1965             fjy2             = _mm_add_pd(fjy2,ty);
1966             fjz2             = _mm_add_pd(fjz2,tz);
1967
1968             }
1969
1970             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1971
1972             /* Inner loop uses 351 flops */
1973         }
1974
1975         if(jidx<j_index_end)
1976         {
1977
1978             jnrA             = jjnr[jidx];
1979             j_coord_offsetA  = DIM*jnrA;
1980
1981             /* load j atom coordinates */
1982             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1983                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1984
1985             /* Calculate displacement vector */
1986             dx00             = _mm_sub_pd(ix0,jx0);
1987             dy00             = _mm_sub_pd(iy0,jy0);
1988             dz00             = _mm_sub_pd(iz0,jz0);
1989             dx01             = _mm_sub_pd(ix0,jx1);
1990             dy01             = _mm_sub_pd(iy0,jy1);
1991             dz01             = _mm_sub_pd(iz0,jz1);
1992             dx02             = _mm_sub_pd(ix0,jx2);
1993             dy02             = _mm_sub_pd(iy0,jy2);
1994             dz02             = _mm_sub_pd(iz0,jz2);
1995             dx10             = _mm_sub_pd(ix1,jx0);
1996             dy10             = _mm_sub_pd(iy1,jy0);
1997             dz10             = _mm_sub_pd(iz1,jz0);
1998             dx11             = _mm_sub_pd(ix1,jx1);
1999             dy11             = _mm_sub_pd(iy1,jy1);
2000             dz11             = _mm_sub_pd(iz1,jz1);
2001             dx12             = _mm_sub_pd(ix1,jx2);
2002             dy12             = _mm_sub_pd(iy1,jy2);
2003             dz12             = _mm_sub_pd(iz1,jz2);
2004             dx20             = _mm_sub_pd(ix2,jx0);
2005             dy20             = _mm_sub_pd(iy2,jy0);
2006             dz20             = _mm_sub_pd(iz2,jz0);
2007             dx21             = _mm_sub_pd(ix2,jx1);
2008             dy21             = _mm_sub_pd(iy2,jy1);
2009             dz21             = _mm_sub_pd(iz2,jz1);
2010             dx22             = _mm_sub_pd(ix2,jx2);
2011             dy22             = _mm_sub_pd(iy2,jy2);
2012             dz22             = _mm_sub_pd(iz2,jz2);
2013
2014             /* Calculate squared distance and things based on it */
2015             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2016             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2017             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2018             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2019             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2020             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2021             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2022             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2023             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2024
2025             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2026             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2027             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2028             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2029             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2030             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2031             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2032             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2033             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2034
2035             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2036             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2037             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2038             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2039             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2040             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2041             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2042             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2043             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2044
2045             fjx0             = _mm_setzero_pd();
2046             fjy0             = _mm_setzero_pd();
2047             fjz0             = _mm_setzero_pd();
2048             fjx1             = _mm_setzero_pd();
2049             fjy1             = _mm_setzero_pd();
2050             fjz1             = _mm_setzero_pd();
2051             fjx2             = _mm_setzero_pd();
2052             fjy2             = _mm_setzero_pd();
2053             fjz2             = _mm_setzero_pd();
2054
2055             /**************************
2056              * CALCULATE INTERACTIONS *
2057              **************************/
2058
2059             if (gmx_mm_any_lt(rsq00,rcutoff2))
2060             {
2061
2062             r00              = _mm_mul_pd(rsq00,rinv00);
2063
2064             /* EWALD ELECTROSTATICS */
2065
2066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2067             ewrt             = _mm_mul_pd(r00,ewtabscale);
2068             ewitab           = _mm_cvttpd_epi32(ewrt);
2069             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2070             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2071             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2072             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2073
2074             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2075
2076             fscal            = felec;
2077
2078             fscal            = _mm_and_pd(fscal,cutoff_mask);
2079
2080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2081
2082             /* Calculate temporary vectorial force */
2083             tx               = _mm_mul_pd(fscal,dx00);
2084             ty               = _mm_mul_pd(fscal,dy00);
2085             tz               = _mm_mul_pd(fscal,dz00);
2086
2087             /* Update vectorial force */
2088             fix0             = _mm_add_pd(fix0,tx);
2089             fiy0             = _mm_add_pd(fiy0,ty);
2090             fiz0             = _mm_add_pd(fiz0,tz);
2091
2092             fjx0             = _mm_add_pd(fjx0,tx);
2093             fjy0             = _mm_add_pd(fjy0,ty);
2094             fjz0             = _mm_add_pd(fjz0,tz);
2095
2096             }
2097
2098             /**************************
2099              * CALCULATE INTERACTIONS *
2100              **************************/
2101
2102             if (gmx_mm_any_lt(rsq01,rcutoff2))
2103             {
2104
2105             r01              = _mm_mul_pd(rsq01,rinv01);
2106
2107             /* EWALD ELECTROSTATICS */
2108
2109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2110             ewrt             = _mm_mul_pd(r01,ewtabscale);
2111             ewitab           = _mm_cvttpd_epi32(ewrt);
2112             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2113             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2114             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2115             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2116
2117             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2118
2119             fscal            = felec;
2120
2121             fscal            = _mm_and_pd(fscal,cutoff_mask);
2122
2123             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2124
2125             /* Calculate temporary vectorial force */
2126             tx               = _mm_mul_pd(fscal,dx01);
2127             ty               = _mm_mul_pd(fscal,dy01);
2128             tz               = _mm_mul_pd(fscal,dz01);
2129
2130             /* Update vectorial force */
2131             fix0             = _mm_add_pd(fix0,tx);
2132             fiy0             = _mm_add_pd(fiy0,ty);
2133             fiz0             = _mm_add_pd(fiz0,tz);
2134
2135             fjx1             = _mm_add_pd(fjx1,tx);
2136             fjy1             = _mm_add_pd(fjy1,ty);
2137             fjz1             = _mm_add_pd(fjz1,tz);
2138
2139             }
2140
2141             /**************************
2142              * CALCULATE INTERACTIONS *
2143              **************************/
2144
2145             if (gmx_mm_any_lt(rsq02,rcutoff2))
2146             {
2147
2148             r02              = _mm_mul_pd(rsq02,rinv02);
2149
2150             /* EWALD ELECTROSTATICS */
2151
2152             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2153             ewrt             = _mm_mul_pd(r02,ewtabscale);
2154             ewitab           = _mm_cvttpd_epi32(ewrt);
2155             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2156             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2157             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2158             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2159
2160             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2161
2162             fscal            = felec;
2163
2164             fscal            = _mm_and_pd(fscal,cutoff_mask);
2165
2166             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2167
2168             /* Calculate temporary vectorial force */
2169             tx               = _mm_mul_pd(fscal,dx02);
2170             ty               = _mm_mul_pd(fscal,dy02);
2171             tz               = _mm_mul_pd(fscal,dz02);
2172
2173             /* Update vectorial force */
2174             fix0             = _mm_add_pd(fix0,tx);
2175             fiy0             = _mm_add_pd(fiy0,ty);
2176             fiz0             = _mm_add_pd(fiz0,tz);
2177
2178             fjx2             = _mm_add_pd(fjx2,tx);
2179             fjy2             = _mm_add_pd(fjy2,ty);
2180             fjz2             = _mm_add_pd(fjz2,tz);
2181
2182             }
2183
2184             /**************************
2185              * CALCULATE INTERACTIONS *
2186              **************************/
2187
2188             if (gmx_mm_any_lt(rsq10,rcutoff2))
2189             {
2190
2191             r10              = _mm_mul_pd(rsq10,rinv10);
2192
2193             /* EWALD ELECTROSTATICS */
2194
2195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2196             ewrt             = _mm_mul_pd(r10,ewtabscale);
2197             ewitab           = _mm_cvttpd_epi32(ewrt);
2198             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2199             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2200             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2201             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2202
2203             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2204
2205             fscal            = felec;
2206
2207             fscal            = _mm_and_pd(fscal,cutoff_mask);
2208
2209             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2210
2211             /* Calculate temporary vectorial force */
2212             tx               = _mm_mul_pd(fscal,dx10);
2213             ty               = _mm_mul_pd(fscal,dy10);
2214             tz               = _mm_mul_pd(fscal,dz10);
2215
2216             /* Update vectorial force */
2217             fix1             = _mm_add_pd(fix1,tx);
2218             fiy1             = _mm_add_pd(fiy1,ty);
2219             fiz1             = _mm_add_pd(fiz1,tz);
2220
2221             fjx0             = _mm_add_pd(fjx0,tx);
2222             fjy0             = _mm_add_pd(fjy0,ty);
2223             fjz0             = _mm_add_pd(fjz0,tz);
2224
2225             }
2226
2227             /**************************
2228              * CALCULATE INTERACTIONS *
2229              **************************/
2230
2231             if (gmx_mm_any_lt(rsq11,rcutoff2))
2232             {
2233
2234             r11              = _mm_mul_pd(rsq11,rinv11);
2235
2236             /* EWALD ELECTROSTATICS */
2237
2238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2239             ewrt             = _mm_mul_pd(r11,ewtabscale);
2240             ewitab           = _mm_cvttpd_epi32(ewrt);
2241             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2242             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2243             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2244             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2245
2246             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2247
2248             fscal            = felec;
2249
2250             fscal            = _mm_and_pd(fscal,cutoff_mask);
2251
2252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2253
2254             /* Calculate temporary vectorial force */
2255             tx               = _mm_mul_pd(fscal,dx11);
2256             ty               = _mm_mul_pd(fscal,dy11);
2257             tz               = _mm_mul_pd(fscal,dz11);
2258
2259             /* Update vectorial force */
2260             fix1             = _mm_add_pd(fix1,tx);
2261             fiy1             = _mm_add_pd(fiy1,ty);
2262             fiz1             = _mm_add_pd(fiz1,tz);
2263
2264             fjx1             = _mm_add_pd(fjx1,tx);
2265             fjy1             = _mm_add_pd(fjy1,ty);
2266             fjz1             = _mm_add_pd(fjz1,tz);
2267
2268             }
2269
2270             /**************************
2271              * CALCULATE INTERACTIONS *
2272              **************************/
2273
2274             if (gmx_mm_any_lt(rsq12,rcutoff2))
2275             {
2276
2277             r12              = _mm_mul_pd(rsq12,rinv12);
2278
2279             /* EWALD ELECTROSTATICS */
2280
2281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2282             ewrt             = _mm_mul_pd(r12,ewtabscale);
2283             ewitab           = _mm_cvttpd_epi32(ewrt);
2284             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2285             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2286             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2287             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2288
2289             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2290
2291             fscal            = felec;
2292
2293             fscal            = _mm_and_pd(fscal,cutoff_mask);
2294
2295             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2296
2297             /* Calculate temporary vectorial force */
2298             tx               = _mm_mul_pd(fscal,dx12);
2299             ty               = _mm_mul_pd(fscal,dy12);
2300             tz               = _mm_mul_pd(fscal,dz12);
2301
2302             /* Update vectorial force */
2303             fix1             = _mm_add_pd(fix1,tx);
2304             fiy1             = _mm_add_pd(fiy1,ty);
2305             fiz1             = _mm_add_pd(fiz1,tz);
2306
2307             fjx2             = _mm_add_pd(fjx2,tx);
2308             fjy2             = _mm_add_pd(fjy2,ty);
2309             fjz2             = _mm_add_pd(fjz2,tz);
2310
2311             }
2312
2313             /**************************
2314              * CALCULATE INTERACTIONS *
2315              **************************/
2316
2317             if (gmx_mm_any_lt(rsq20,rcutoff2))
2318             {
2319
2320             r20              = _mm_mul_pd(rsq20,rinv20);
2321
2322             /* EWALD ELECTROSTATICS */
2323
2324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2325             ewrt             = _mm_mul_pd(r20,ewtabscale);
2326             ewitab           = _mm_cvttpd_epi32(ewrt);
2327             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2328             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2329             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2330             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2331
2332             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2333
2334             fscal            = felec;
2335
2336             fscal            = _mm_and_pd(fscal,cutoff_mask);
2337
2338             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2339
2340             /* Calculate temporary vectorial force */
2341             tx               = _mm_mul_pd(fscal,dx20);
2342             ty               = _mm_mul_pd(fscal,dy20);
2343             tz               = _mm_mul_pd(fscal,dz20);
2344
2345             /* Update vectorial force */
2346             fix2             = _mm_add_pd(fix2,tx);
2347             fiy2             = _mm_add_pd(fiy2,ty);
2348             fiz2             = _mm_add_pd(fiz2,tz);
2349
2350             fjx0             = _mm_add_pd(fjx0,tx);
2351             fjy0             = _mm_add_pd(fjy0,ty);
2352             fjz0             = _mm_add_pd(fjz0,tz);
2353
2354             }
2355
2356             /**************************
2357              * CALCULATE INTERACTIONS *
2358              **************************/
2359
2360             if (gmx_mm_any_lt(rsq21,rcutoff2))
2361             {
2362
2363             r21              = _mm_mul_pd(rsq21,rinv21);
2364
2365             /* EWALD ELECTROSTATICS */
2366
2367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2368             ewrt             = _mm_mul_pd(r21,ewtabscale);
2369             ewitab           = _mm_cvttpd_epi32(ewrt);
2370             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2371             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2372             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2373             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2374
2375             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2376
2377             fscal            = felec;
2378
2379             fscal            = _mm_and_pd(fscal,cutoff_mask);
2380
2381             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2382
2383             /* Calculate temporary vectorial force */
2384             tx               = _mm_mul_pd(fscal,dx21);
2385             ty               = _mm_mul_pd(fscal,dy21);
2386             tz               = _mm_mul_pd(fscal,dz21);
2387
2388             /* Update vectorial force */
2389             fix2             = _mm_add_pd(fix2,tx);
2390             fiy2             = _mm_add_pd(fiy2,ty);
2391             fiz2             = _mm_add_pd(fiz2,tz);
2392
2393             fjx1             = _mm_add_pd(fjx1,tx);
2394             fjy1             = _mm_add_pd(fjy1,ty);
2395             fjz1             = _mm_add_pd(fjz1,tz);
2396
2397             }
2398
2399             /**************************
2400              * CALCULATE INTERACTIONS *
2401              **************************/
2402
2403             if (gmx_mm_any_lt(rsq22,rcutoff2))
2404             {
2405
2406             r22              = _mm_mul_pd(rsq22,rinv22);
2407
2408             /* EWALD ELECTROSTATICS */
2409
2410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2411             ewrt             = _mm_mul_pd(r22,ewtabscale);
2412             ewitab           = _mm_cvttpd_epi32(ewrt);
2413             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2414             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2415             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2416             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2417
2418             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2419
2420             fscal            = felec;
2421
2422             fscal            = _mm_and_pd(fscal,cutoff_mask);
2423
2424             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2425
2426             /* Calculate temporary vectorial force */
2427             tx               = _mm_mul_pd(fscal,dx22);
2428             ty               = _mm_mul_pd(fscal,dy22);
2429             tz               = _mm_mul_pd(fscal,dz22);
2430
2431             /* Update vectorial force */
2432             fix2             = _mm_add_pd(fix2,tx);
2433             fiy2             = _mm_add_pd(fiy2,ty);
2434             fiz2             = _mm_add_pd(fiz2,tz);
2435
2436             fjx2             = _mm_add_pd(fjx2,tx);
2437             fjy2             = _mm_add_pd(fjy2,ty);
2438             fjz2             = _mm_add_pd(fjz2,tz);
2439
2440             }
2441
2442             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2443
2444             /* Inner loop uses 351 flops */
2445         }
2446
2447         /* End of innermost loop */
2448
2449         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2450                                               f+i_coord_offset,fshift+i_shift_offset);
2451
2452         /* Increment number of inner iterations */
2453         inneriter                  += j_index_end - j_index_start;
2454
2455         /* Outer loop uses 18 flops */
2456     }
2457
2458     /* Increment number of outer iterations */
2459     outeriter        += nri;
2460
2461     /* Update outer/inner flops */
2462
2463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*351);
2464 }