Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
146     rvdw             = _mm_set1_pd(fr->rvdw);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183         fix3             = _mm_setzero_pd();
184         fiy3             = _mm_setzero_pd();
185         fiz3             = _mm_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_pd();
189         vvdwsum          = _mm_setzero_pd();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_pd(ix0,jx0);
207             dy00             = _mm_sub_pd(iy0,jy0);
208             dz00             = _mm_sub_pd(iz0,jz0);
209             dx10             = _mm_sub_pd(ix1,jx0);
210             dy10             = _mm_sub_pd(iy1,jy0);
211             dz10             = _mm_sub_pd(iz1,jz0);
212             dx20             = _mm_sub_pd(ix2,jx0);
213             dy20             = _mm_sub_pd(iy2,jy0);
214             dz20             = _mm_sub_pd(iz2,jz0);
215             dx30             = _mm_sub_pd(ix3,jx0);
216             dy30             = _mm_sub_pd(iy3,jy0);
217             dz30             = _mm_sub_pd(iz3,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
223             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
224
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227             rinv30           = gmx_mm_invsqrt_pd(rsq30);
228
229             rinvsq00         = gmx_mm_inv_pd(rsq00);
230             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
231             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
232             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
258             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
259             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
260                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
261             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
262
263             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
267             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271             fscal            = _mm_and_pd(fscal,cutoff_mask);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_pd(fscal,dx00);
275             ty               = _mm_mul_pd(fscal,dy00);
276             tz               = _mm_mul_pd(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm_add_pd(fix0,tx);
280             fiy0             = _mm_add_pd(fiy0,ty);
281             fiz0             = _mm_add_pd(fiz0,tz);
282
283             fjx0             = _mm_add_pd(fjx0,tx);
284             fjy0             = _mm_add_pd(fjy0,ty);
285             fjz0             = _mm_add_pd(fjz0,tz);
286
287             }
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             if (gmx_mm_any_lt(rsq10,rcutoff2))
294             {
295
296             r10              = _mm_mul_pd(rsq10,rinv10);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm_mul_pd(iq1,jq0);
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = _mm_mul_pd(r10,ewtabscale);
305             ewitab           = _mm_cvttpd_epi32(ewrt);
306             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
310             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
312             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
313             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
315             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
316             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
317             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
318
319             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_and_pd(velec,cutoff_mask);
323             velecsum         = _mm_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm_and_pd(fscal,cutoff_mask);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_pd(fscal,dx10);
331             ty               = _mm_mul_pd(fscal,dy10);
332             tz               = _mm_mul_pd(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_pd(fix1,tx);
336             fiy1             = _mm_add_pd(fiy1,ty);
337             fiz1             = _mm_add_pd(fiz1,tz);
338
339             fjx0             = _mm_add_pd(fjx0,tx);
340             fjy0             = _mm_add_pd(fjy0,ty);
341             fjz0             = _mm_add_pd(fjz0,tz);
342
343             }
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm_any_lt(rsq20,rcutoff2))
350             {
351
352             r20              = _mm_mul_pd(rsq20,rinv20);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq20             = _mm_mul_pd(iq2,jq0);
356
357             /* EWALD ELECTROSTATICS */
358
359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360             ewrt             = _mm_mul_pd(r20,ewtabscale);
361             ewitab           = _mm_cvttpd_epi32(ewrt);
362             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
363             ewitab           = _mm_slli_epi32(ewitab,2);
364             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
365             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
366             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
367             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
368             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
369             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
370             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
371             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
372             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
373             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
374
375             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm_and_pd(velec,cutoff_mask);
379             velecsum         = _mm_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm_and_pd(fscal,cutoff_mask);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_pd(fscal,dx20);
387             ty               = _mm_mul_pd(fscal,dy20);
388             tz               = _mm_mul_pd(fscal,dz20);
389
390             /* Update vectorial force */
391             fix2             = _mm_add_pd(fix2,tx);
392             fiy2             = _mm_add_pd(fiy2,ty);
393             fiz2             = _mm_add_pd(fiz2,tz);
394
395             fjx0             = _mm_add_pd(fjx0,tx);
396             fjy0             = _mm_add_pd(fjy0,ty);
397             fjz0             = _mm_add_pd(fjz0,tz);
398
399             }
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             if (gmx_mm_any_lt(rsq30,rcutoff2))
406             {
407
408             r30              = _mm_mul_pd(rsq30,rinv30);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq30             = _mm_mul_pd(iq3,jq0);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
416             ewrt             = _mm_mul_pd(r30,ewtabscale);
417             ewitab           = _mm_cvttpd_epi32(ewrt);
418             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
422             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
423             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
424             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
425             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
426             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
427             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
428             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
429             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
430
431             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_and_pd(velec,cutoff_mask);
435             velecsum         = _mm_add_pd(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm_and_pd(fscal,cutoff_mask);
440
441             /* Calculate temporary vectorial force */
442             tx               = _mm_mul_pd(fscal,dx30);
443             ty               = _mm_mul_pd(fscal,dy30);
444             tz               = _mm_mul_pd(fscal,dz30);
445
446             /* Update vectorial force */
447             fix3             = _mm_add_pd(fix3,tx);
448             fiy3             = _mm_add_pd(fiy3,ty);
449             fiz3             = _mm_add_pd(fiz3,tz);
450
451             fjx0             = _mm_add_pd(fjx0,tx);
452             fjy0             = _mm_add_pd(fjy0,ty);
453             fjz0             = _mm_add_pd(fjz0,tz);
454
455             }
456
457             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
458
459             /* Inner loop uses 182 flops */
460         }
461
462         if(jidx<j_index_end)
463         {
464
465             jnrA             = jjnr[jidx];
466             j_coord_offsetA  = DIM*jnrA;
467
468             /* load j atom coordinates */
469             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
470                                               &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _mm_sub_pd(ix0,jx0);
474             dy00             = _mm_sub_pd(iy0,jy0);
475             dz00             = _mm_sub_pd(iz0,jz0);
476             dx10             = _mm_sub_pd(ix1,jx0);
477             dy10             = _mm_sub_pd(iy1,jy0);
478             dz10             = _mm_sub_pd(iz1,jz0);
479             dx20             = _mm_sub_pd(ix2,jx0);
480             dy20             = _mm_sub_pd(iy2,jy0);
481             dz20             = _mm_sub_pd(iz2,jz0);
482             dx30             = _mm_sub_pd(ix3,jx0);
483             dy30             = _mm_sub_pd(iy3,jy0);
484             dz30             = _mm_sub_pd(iz3,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
488             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
489             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
490             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
491
492             rinv10           = gmx_mm_invsqrt_pd(rsq10);
493             rinv20           = gmx_mm_invsqrt_pd(rsq20);
494             rinv30           = gmx_mm_invsqrt_pd(rsq30);
495
496             rinvsq00         = gmx_mm_inv_pd(rsq00);
497             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
498             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
499             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
500
501             /* Load parameters for j particles */
502             jq0              = _mm_load_sd(charge+jnrA+0);
503             vdwjidx0A        = 2*vdwtype[jnrA+0];
504
505             fjx0             = _mm_setzero_pd();
506             fjy0             = _mm_setzero_pd();
507             fjz0             = _mm_setzero_pd();
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             if (gmx_mm_any_lt(rsq00,rcutoff2))
514             {
515
516             /* Compute parameters for interactions between i and j atoms */
517             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
518
519             /* LENNARD-JONES DISPERSION/REPULSION */
520
521             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
522             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
523             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
524             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
525                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
526             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
527
528             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
532             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
533             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
534
535             fscal            = fvdw;
536
537             fscal            = _mm_and_pd(fscal,cutoff_mask);
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx00);
543             ty               = _mm_mul_pd(fscal,dy00);
544             tz               = _mm_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_pd(fix0,tx);
548             fiy0             = _mm_add_pd(fiy0,ty);
549             fiz0             = _mm_add_pd(fiz0,tz);
550
551             fjx0             = _mm_add_pd(fjx0,tx);
552             fjy0             = _mm_add_pd(fjy0,ty);
553             fjz0             = _mm_add_pd(fjz0,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq10,rcutoff2))
562             {
563
564             r10              = _mm_mul_pd(rsq10,rinv10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_pd(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r10,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
579             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
580             ewtabFn          = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
582             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
583             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
584             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
585             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
586
587             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
588
589             /* Update potential sum for this i atom from the interaction with this j atom. */
590             velec            = _mm_and_pd(velec,cutoff_mask);
591             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
592             velecsum         = _mm_add_pd(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_and_pd(fscal,cutoff_mask);
597
598             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_pd(fscal,dx10);
602             ty               = _mm_mul_pd(fscal,dy10);
603             tz               = _mm_mul_pd(fscal,dz10);
604
605             /* Update vectorial force */
606             fix1             = _mm_add_pd(fix1,tx);
607             fiy1             = _mm_add_pd(fiy1,ty);
608             fiz1             = _mm_add_pd(fiz1,tz);
609
610             fjx0             = _mm_add_pd(fjx0,tx);
611             fjy0             = _mm_add_pd(fjy0,ty);
612             fjz0             = _mm_add_pd(fjz0,tz);
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (gmx_mm_any_lt(rsq20,rcutoff2))
621             {
622
623             r20              = _mm_mul_pd(rsq20,rinv20);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq20             = _mm_mul_pd(iq2,jq0);
627
628             /* EWALD ELECTROSTATICS */
629
630             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
631             ewrt             = _mm_mul_pd(r20,ewtabscale);
632             ewitab           = _mm_cvttpd_epi32(ewrt);
633             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
634             ewitab           = _mm_slli_epi32(ewitab,2);
635             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
636             ewtabD           = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
638             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
639             ewtabFn          = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
641             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
642             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
643             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
644             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
645
646             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_and_pd(velec,cutoff_mask);
650             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
651             velecsum         = _mm_add_pd(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm_and_pd(fscal,cutoff_mask);
656
657             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_pd(fscal,dx20);
661             ty               = _mm_mul_pd(fscal,dy20);
662             tz               = _mm_mul_pd(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm_add_pd(fix2,tx);
666             fiy2             = _mm_add_pd(fiy2,ty);
667             fiz2             = _mm_add_pd(fiz2,tz);
668
669             fjx0             = _mm_add_pd(fjx0,tx);
670             fjy0             = _mm_add_pd(fjy0,ty);
671             fjz0             = _mm_add_pd(fjz0,tz);
672
673             }
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm_any_lt(rsq30,rcutoff2))
680             {
681
682             r30              = _mm_mul_pd(rsq30,rinv30);
683
684             /* Compute parameters for interactions between i and j atoms */
685             qq30             = _mm_mul_pd(iq3,jq0);
686
687             /* EWALD ELECTROSTATICS */
688
689             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
690             ewrt             = _mm_mul_pd(r30,ewtabscale);
691             ewitab           = _mm_cvttpd_epi32(ewrt);
692             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
693             ewitab           = _mm_slli_epi32(ewitab,2);
694             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
695             ewtabD           = _mm_setzero_pd();
696             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
697             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
698             ewtabFn          = _mm_setzero_pd();
699             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
700             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
701             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
702             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
703             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
704
705             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
706
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm_and_pd(velec,cutoff_mask);
709             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
710             velecsum         = _mm_add_pd(velecsum,velec);
711
712             fscal            = felec;
713
714             fscal            = _mm_and_pd(fscal,cutoff_mask);
715
716             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
717
718             /* Calculate temporary vectorial force */
719             tx               = _mm_mul_pd(fscal,dx30);
720             ty               = _mm_mul_pd(fscal,dy30);
721             tz               = _mm_mul_pd(fscal,dz30);
722
723             /* Update vectorial force */
724             fix3             = _mm_add_pd(fix3,tx);
725             fiy3             = _mm_add_pd(fiy3,ty);
726             fiz3             = _mm_add_pd(fiz3,tz);
727
728             fjx0             = _mm_add_pd(fjx0,tx);
729             fjy0             = _mm_add_pd(fjy0,ty);
730             fjz0             = _mm_add_pd(fjz0,tz);
731
732             }
733
734             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 182 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
742                                               f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 26 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_double
764  * Electrostatics interaction: Ewald
765  * VdW interaction:            LennardJones
766  * Geometry:                   Water4-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_double
771                     (t_nblist                    * gmx_restrict       nlist,
772                      rvec                        * gmx_restrict          xx,
773                      rvec                        * gmx_restrict          ff,
774                      t_forcerec                  * gmx_restrict          fr,
775                      t_mdatoms                   * gmx_restrict     mdatoms,
776                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
777                      t_nrnb                      * gmx_restrict        nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
780      * just 0 for non-waters.
781      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB;
787     int              j_coord_offsetA,j_coord_offsetB;
788     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
789     real             rcutoff_scalar;
790     real             *shiftvec,*fshift,*x,*f;
791     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
792     int              vdwioffset0;
793     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
794     int              vdwioffset1;
795     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
796     int              vdwioffset2;
797     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
798     int              vdwioffset3;
799     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
800     int              vdwjidx0A,vdwjidx0B;
801     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
802     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
803     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
804     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
805     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
806     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
807     real             *charge;
808     int              nvdwtype;
809     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
810     int              *vdwtype;
811     real             *vdwparam;
812     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
813     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
814     __m128i          ewitab;
815     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
816     real             *ewtab;
817     __m128d          dummy_mask,cutoff_mask;
818     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
819     __m128d          one     = _mm_set1_pd(1.0);
820     __m128d          two     = _mm_set1_pd(2.0);
821     x                = xx[0];
822     f                = ff[0];
823
824     nri              = nlist->nri;
825     iinr             = nlist->iinr;
826     jindex           = nlist->jindex;
827     jjnr             = nlist->jjnr;
828     shiftidx         = nlist->shift;
829     gid              = nlist->gid;
830     shiftvec         = fr->shift_vec[0];
831     fshift           = fr->fshift[0];
832     facel            = _mm_set1_pd(fr->epsfac);
833     charge           = mdatoms->chargeA;
834     nvdwtype         = fr->ntype;
835     vdwparam         = fr->nbfp;
836     vdwtype          = mdatoms->typeA;
837
838     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
839     ewtab            = fr->ic->tabq_coul_F;
840     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
841     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
842
843     /* Setup water-specific parameters */
844     inr              = nlist->iinr[0];
845     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
846     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
847     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
848     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
849
850     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
851     rcutoff_scalar   = fr->rcoulomb;
852     rcutoff          = _mm_set1_pd(rcutoff_scalar);
853     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
854
855     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
856     rvdw             = _mm_set1_pd(fr->rvdw);
857
858     /* Avoid stupid compiler warnings */
859     jnrA = jnrB = 0;
860     j_coord_offsetA = 0;
861     j_coord_offsetB = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     /* Start outer loop over neighborlists */
867     for(iidx=0; iidx<nri; iidx++)
868     {
869         /* Load shift vector for this list */
870         i_shift_offset   = DIM*shiftidx[iidx];
871
872         /* Load limits for loop over neighbors */
873         j_index_start    = jindex[iidx];
874         j_index_end      = jindex[iidx+1];
875
876         /* Get outer coordinate index */
877         inr              = iinr[iidx];
878         i_coord_offset   = DIM*inr;
879
880         /* Load i particle coords and add shift vector */
881         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
882                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
883
884         fix0             = _mm_setzero_pd();
885         fiy0             = _mm_setzero_pd();
886         fiz0             = _mm_setzero_pd();
887         fix1             = _mm_setzero_pd();
888         fiy1             = _mm_setzero_pd();
889         fiz1             = _mm_setzero_pd();
890         fix2             = _mm_setzero_pd();
891         fiy2             = _mm_setzero_pd();
892         fiz2             = _mm_setzero_pd();
893         fix3             = _mm_setzero_pd();
894         fiy3             = _mm_setzero_pd();
895         fiz3             = _mm_setzero_pd();
896
897         /* Start inner kernel loop */
898         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
899         {
900
901             /* Get j neighbor index, and coordinate index */
902             jnrA             = jjnr[jidx];
903             jnrB             = jjnr[jidx+1];
904             j_coord_offsetA  = DIM*jnrA;
905             j_coord_offsetB  = DIM*jnrB;
906
907             /* load j atom coordinates */
908             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
909                                               &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm_sub_pd(ix0,jx0);
913             dy00             = _mm_sub_pd(iy0,jy0);
914             dz00             = _mm_sub_pd(iz0,jz0);
915             dx10             = _mm_sub_pd(ix1,jx0);
916             dy10             = _mm_sub_pd(iy1,jy0);
917             dz10             = _mm_sub_pd(iz1,jz0);
918             dx20             = _mm_sub_pd(ix2,jx0);
919             dy20             = _mm_sub_pd(iy2,jy0);
920             dz20             = _mm_sub_pd(iz2,jz0);
921             dx30             = _mm_sub_pd(ix3,jx0);
922             dy30             = _mm_sub_pd(iy3,jy0);
923             dz30             = _mm_sub_pd(iz3,jz0);
924
925             /* Calculate squared distance and things based on it */
926             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
927             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
928             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
929             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
930
931             rinv10           = gmx_mm_invsqrt_pd(rsq10);
932             rinv20           = gmx_mm_invsqrt_pd(rsq20);
933             rinv30           = gmx_mm_invsqrt_pd(rsq30);
934
935             rinvsq00         = gmx_mm_inv_pd(rsq00);
936             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
937             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
938             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
939
940             /* Load parameters for j particles */
941             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
942             vdwjidx0A        = 2*vdwtype[jnrA+0];
943             vdwjidx0B        = 2*vdwtype[jnrB+0];
944
945             fjx0             = _mm_setzero_pd();
946             fjy0             = _mm_setzero_pd();
947             fjz0             = _mm_setzero_pd();
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq00,rcutoff2))
954             {
955
956             /* Compute parameters for interactions between i and j atoms */
957             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
958                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
959
960             /* LENNARD-JONES DISPERSION/REPULSION */
961
962             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
963             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
964
965             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
966
967             fscal            = fvdw;
968
969             fscal            = _mm_and_pd(fscal,cutoff_mask);
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_pd(fscal,dx00);
973             ty               = _mm_mul_pd(fscal,dy00);
974             tz               = _mm_mul_pd(fscal,dz00);
975
976             /* Update vectorial force */
977             fix0             = _mm_add_pd(fix0,tx);
978             fiy0             = _mm_add_pd(fiy0,ty);
979             fiz0             = _mm_add_pd(fiz0,tz);
980
981             fjx0             = _mm_add_pd(fjx0,tx);
982             fjy0             = _mm_add_pd(fjy0,ty);
983             fjz0             = _mm_add_pd(fjz0,tz);
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (gmx_mm_any_lt(rsq10,rcutoff2))
992             {
993
994             r10              = _mm_mul_pd(rsq10,rinv10);
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq10             = _mm_mul_pd(iq1,jq0);
998
999             /* EWALD ELECTROSTATICS */
1000
1001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1002             ewrt             = _mm_mul_pd(r10,ewtabscale);
1003             ewitab           = _mm_cvttpd_epi32(ewrt);
1004             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1005             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1006                                          &ewtabF,&ewtabFn);
1007             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1008             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1009
1010             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1011
1012             fscal            = felec;
1013
1014             fscal            = _mm_and_pd(fscal,cutoff_mask);
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm_mul_pd(fscal,dx10);
1018             ty               = _mm_mul_pd(fscal,dy10);
1019             tz               = _mm_mul_pd(fscal,dz10);
1020
1021             /* Update vectorial force */
1022             fix1             = _mm_add_pd(fix1,tx);
1023             fiy1             = _mm_add_pd(fiy1,ty);
1024             fiz1             = _mm_add_pd(fiz1,tz);
1025
1026             fjx0             = _mm_add_pd(fjx0,tx);
1027             fjy0             = _mm_add_pd(fjy0,ty);
1028             fjz0             = _mm_add_pd(fjz0,tz);
1029
1030             }
1031
1032             /**************************
1033              * CALCULATE INTERACTIONS *
1034              **************************/
1035
1036             if (gmx_mm_any_lt(rsq20,rcutoff2))
1037             {
1038
1039             r20              = _mm_mul_pd(rsq20,rinv20);
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq20             = _mm_mul_pd(iq2,jq0);
1043
1044             /* EWALD ELECTROSTATICS */
1045
1046             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1047             ewrt             = _mm_mul_pd(r20,ewtabscale);
1048             ewitab           = _mm_cvttpd_epi32(ewrt);
1049             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1050             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1051                                          &ewtabF,&ewtabFn);
1052             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1053             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1054
1055             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1056
1057             fscal            = felec;
1058
1059             fscal            = _mm_and_pd(fscal,cutoff_mask);
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm_mul_pd(fscal,dx20);
1063             ty               = _mm_mul_pd(fscal,dy20);
1064             tz               = _mm_mul_pd(fscal,dz20);
1065
1066             /* Update vectorial force */
1067             fix2             = _mm_add_pd(fix2,tx);
1068             fiy2             = _mm_add_pd(fiy2,ty);
1069             fiz2             = _mm_add_pd(fiz2,tz);
1070
1071             fjx0             = _mm_add_pd(fjx0,tx);
1072             fjy0             = _mm_add_pd(fjy0,ty);
1073             fjz0             = _mm_add_pd(fjz0,tz);
1074
1075             }
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             if (gmx_mm_any_lt(rsq30,rcutoff2))
1082             {
1083
1084             r30              = _mm_mul_pd(rsq30,rinv30);
1085
1086             /* Compute parameters for interactions between i and j atoms */
1087             qq30             = _mm_mul_pd(iq3,jq0);
1088
1089             /* EWALD ELECTROSTATICS */
1090
1091             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1092             ewrt             = _mm_mul_pd(r30,ewtabscale);
1093             ewitab           = _mm_cvttpd_epi32(ewrt);
1094             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1095             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1096                                          &ewtabF,&ewtabFn);
1097             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1098             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1099
1100             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1101
1102             fscal            = felec;
1103
1104             fscal            = _mm_and_pd(fscal,cutoff_mask);
1105
1106             /* Calculate temporary vectorial force */
1107             tx               = _mm_mul_pd(fscal,dx30);
1108             ty               = _mm_mul_pd(fscal,dy30);
1109             tz               = _mm_mul_pd(fscal,dz30);
1110
1111             /* Update vectorial force */
1112             fix3             = _mm_add_pd(fix3,tx);
1113             fiy3             = _mm_add_pd(fiy3,ty);
1114             fiz3             = _mm_add_pd(fiz3,tz);
1115
1116             fjx0             = _mm_add_pd(fjx0,tx);
1117             fjy0             = _mm_add_pd(fjy0,ty);
1118             fjz0             = _mm_add_pd(fjz0,tz);
1119
1120             }
1121
1122             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1123
1124             /* Inner loop uses 150 flops */
1125         }
1126
1127         if(jidx<j_index_end)
1128         {
1129
1130             jnrA             = jjnr[jidx];
1131             j_coord_offsetA  = DIM*jnrA;
1132
1133             /* load j atom coordinates */
1134             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1135                                               &jx0,&jy0,&jz0);
1136
1137             /* Calculate displacement vector */
1138             dx00             = _mm_sub_pd(ix0,jx0);
1139             dy00             = _mm_sub_pd(iy0,jy0);
1140             dz00             = _mm_sub_pd(iz0,jz0);
1141             dx10             = _mm_sub_pd(ix1,jx0);
1142             dy10             = _mm_sub_pd(iy1,jy0);
1143             dz10             = _mm_sub_pd(iz1,jz0);
1144             dx20             = _mm_sub_pd(ix2,jx0);
1145             dy20             = _mm_sub_pd(iy2,jy0);
1146             dz20             = _mm_sub_pd(iz2,jz0);
1147             dx30             = _mm_sub_pd(ix3,jx0);
1148             dy30             = _mm_sub_pd(iy3,jy0);
1149             dz30             = _mm_sub_pd(iz3,jz0);
1150
1151             /* Calculate squared distance and things based on it */
1152             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1153             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1154             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1155             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1156
1157             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1158             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1159             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1160
1161             rinvsq00         = gmx_mm_inv_pd(rsq00);
1162             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1163             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1164             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1165
1166             /* Load parameters for j particles */
1167             jq0              = _mm_load_sd(charge+jnrA+0);
1168             vdwjidx0A        = 2*vdwtype[jnrA+0];
1169
1170             fjx0             = _mm_setzero_pd();
1171             fjy0             = _mm_setzero_pd();
1172             fjz0             = _mm_setzero_pd();
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (gmx_mm_any_lt(rsq00,rcutoff2))
1179             {
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1183
1184             /* LENNARD-JONES DISPERSION/REPULSION */
1185
1186             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1187             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1188
1189             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1190
1191             fscal            = fvdw;
1192
1193             fscal            = _mm_and_pd(fscal,cutoff_mask);
1194
1195             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm_mul_pd(fscal,dx00);
1199             ty               = _mm_mul_pd(fscal,dy00);
1200             tz               = _mm_mul_pd(fscal,dz00);
1201
1202             /* Update vectorial force */
1203             fix0             = _mm_add_pd(fix0,tx);
1204             fiy0             = _mm_add_pd(fiy0,ty);
1205             fiz0             = _mm_add_pd(fiz0,tz);
1206
1207             fjx0             = _mm_add_pd(fjx0,tx);
1208             fjy0             = _mm_add_pd(fjy0,ty);
1209             fjz0             = _mm_add_pd(fjz0,tz);
1210
1211             }
1212
1213             /**************************
1214              * CALCULATE INTERACTIONS *
1215              **************************/
1216
1217             if (gmx_mm_any_lt(rsq10,rcutoff2))
1218             {
1219
1220             r10              = _mm_mul_pd(rsq10,rinv10);
1221
1222             /* Compute parameters for interactions between i and j atoms */
1223             qq10             = _mm_mul_pd(iq1,jq0);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm_mul_pd(r10,ewtabscale);
1229             ewitab           = _mm_cvttpd_epi32(ewrt);
1230             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1231             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1232             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1233             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1234
1235             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_and_pd(fscal,cutoff_mask);
1240
1241             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_pd(fscal,dx10);
1245             ty               = _mm_mul_pd(fscal,dy10);
1246             tz               = _mm_mul_pd(fscal,dz10);
1247
1248             /* Update vectorial force */
1249             fix1             = _mm_add_pd(fix1,tx);
1250             fiy1             = _mm_add_pd(fiy1,ty);
1251             fiz1             = _mm_add_pd(fiz1,tz);
1252
1253             fjx0             = _mm_add_pd(fjx0,tx);
1254             fjy0             = _mm_add_pd(fjy0,ty);
1255             fjz0             = _mm_add_pd(fjz0,tz);
1256
1257             }
1258
1259             /**************************
1260              * CALCULATE INTERACTIONS *
1261              **************************/
1262
1263             if (gmx_mm_any_lt(rsq20,rcutoff2))
1264             {
1265
1266             r20              = _mm_mul_pd(rsq20,rinv20);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq20             = _mm_mul_pd(iq2,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272
1273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1274             ewrt             = _mm_mul_pd(r20,ewtabscale);
1275             ewitab           = _mm_cvttpd_epi32(ewrt);
1276             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1277             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1278             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1279             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1280
1281             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1282
1283             fscal            = felec;
1284
1285             fscal            = _mm_and_pd(fscal,cutoff_mask);
1286
1287             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1288
1289             /* Calculate temporary vectorial force */
1290             tx               = _mm_mul_pd(fscal,dx20);
1291             ty               = _mm_mul_pd(fscal,dy20);
1292             tz               = _mm_mul_pd(fscal,dz20);
1293
1294             /* Update vectorial force */
1295             fix2             = _mm_add_pd(fix2,tx);
1296             fiy2             = _mm_add_pd(fiy2,ty);
1297             fiz2             = _mm_add_pd(fiz2,tz);
1298
1299             fjx0             = _mm_add_pd(fjx0,tx);
1300             fjy0             = _mm_add_pd(fjy0,ty);
1301             fjz0             = _mm_add_pd(fjz0,tz);
1302
1303             }
1304
1305             /**************************
1306              * CALCULATE INTERACTIONS *
1307              **************************/
1308
1309             if (gmx_mm_any_lt(rsq30,rcutoff2))
1310             {
1311
1312             r30              = _mm_mul_pd(rsq30,rinv30);
1313
1314             /* Compute parameters for interactions between i and j atoms */
1315             qq30             = _mm_mul_pd(iq3,jq0);
1316
1317             /* EWALD ELECTROSTATICS */
1318
1319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1320             ewrt             = _mm_mul_pd(r30,ewtabscale);
1321             ewitab           = _mm_cvttpd_epi32(ewrt);
1322             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1323             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1324             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1325             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1326
1327             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1328
1329             fscal            = felec;
1330
1331             fscal            = _mm_and_pd(fscal,cutoff_mask);
1332
1333             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1334
1335             /* Calculate temporary vectorial force */
1336             tx               = _mm_mul_pd(fscal,dx30);
1337             ty               = _mm_mul_pd(fscal,dy30);
1338             tz               = _mm_mul_pd(fscal,dz30);
1339
1340             /* Update vectorial force */
1341             fix3             = _mm_add_pd(fix3,tx);
1342             fiy3             = _mm_add_pd(fiy3,ty);
1343             fiz3             = _mm_add_pd(fiz3,tz);
1344
1345             fjx0             = _mm_add_pd(fjx0,tx);
1346             fjy0             = _mm_add_pd(fjy0,ty);
1347             fjz0             = _mm_add_pd(fjz0,tz);
1348
1349             }
1350
1351             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1352
1353             /* Inner loop uses 150 flops */
1354         }
1355
1356         /* End of innermost loop */
1357
1358         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1359                                               f+i_coord_offset,fshift+i_shift_offset);
1360
1361         /* Increment number of inner iterations */
1362         inneriter                  += j_index_end - j_index_start;
1363
1364         /* Outer loop uses 24 flops */
1365     }
1366
1367     /* Increment number of outer iterations */
1368     outeriter        += nri;
1369
1370     /* Update outer/inner flops */
1371
1372     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1373 }