Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm_set1_pd(rcutoff_scalar);
141     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
144     rvdw             = _mm_set1_pd(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181         fix3             = _mm_setzero_pd();
182         fiy3             = _mm_setzero_pd();
183         fiz3             = _mm_setzero_pd();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_pd();
187         vvdwsum          = _mm_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_pd(ix0,jx0);
205             dy00             = _mm_sub_pd(iy0,jy0);
206             dz00             = _mm_sub_pd(iz0,jz0);
207             dx10             = _mm_sub_pd(ix1,jx0);
208             dy10             = _mm_sub_pd(iy1,jy0);
209             dz10             = _mm_sub_pd(iz1,jz0);
210             dx20             = _mm_sub_pd(ix2,jx0);
211             dy20             = _mm_sub_pd(iy2,jy0);
212             dz20             = _mm_sub_pd(iz2,jz0);
213             dx30             = _mm_sub_pd(ix3,jx0);
214             dy30             = _mm_sub_pd(iy3,jy0);
215             dz30             = _mm_sub_pd(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
222
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq00         = gmx_mm_inv_pd(rsq00);
228             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
230             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _mm_setzero_pd();
238             fjy0             = _mm_setzero_pd();
239             fjz0             = _mm_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
258                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
259             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
260
261             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = fvdw;
268
269             fscal            = _mm_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_pd(fscal,dx00);
273             ty               = _mm_mul_pd(fscal,dy00);
274             tz               = _mm_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_pd(fix0,tx);
278             fiy0             = _mm_add_pd(fiy0,ty);
279             fiz0             = _mm_add_pd(fiz0,tz);
280
281             fjx0             = _mm_add_pd(fjx0,tx);
282             fjy0             = _mm_add_pd(fjy0,ty);
283             fjz0             = _mm_add_pd(fjz0,tz);
284
285             }
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             if (gmx_mm_any_lt(rsq10,rcutoff2))
292             {
293
294             r10              = _mm_mul_pd(rsq10,rinv10);
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq10             = _mm_mul_pd(iq1,jq0);
298
299             /* EWALD ELECTROSTATICS */
300
301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302             ewrt             = _mm_mul_pd(r10,ewtabscale);
303             ewitab           = _mm_cvttpd_epi32(ewrt);
304             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
305             ewitab           = _mm_slli_epi32(ewitab,2);
306             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
307             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
308             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
309             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
310             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
311             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
312             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
313             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
314             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
315             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
316
317             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_and_pd(velec,cutoff_mask);
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm_and_pd(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm_mul_pd(fscal,dx10);
329             ty               = _mm_mul_pd(fscal,dy10);
330             tz               = _mm_mul_pd(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm_add_pd(fix1,tx);
334             fiy1             = _mm_add_pd(fiy1,ty);
335             fiz1             = _mm_add_pd(fiz1,tz);
336
337             fjx0             = _mm_add_pd(fjx0,tx);
338             fjy0             = _mm_add_pd(fjy0,ty);
339             fjz0             = _mm_add_pd(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm_any_lt(rsq20,rcutoff2))
348             {
349
350             r20              = _mm_mul_pd(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_pd(r20,ewtabscale);
359             ewitab           = _mm_cvttpd_epi32(ewrt);
360             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
366             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
367             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
369             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
370             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
371             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
372
373             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm_and_pd(velec,cutoff_mask);
377             velecsum         = _mm_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             fscal            = _mm_and_pd(fscal,cutoff_mask);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm_mul_pd(fscal,dx20);
385             ty               = _mm_mul_pd(fscal,dy20);
386             tz               = _mm_mul_pd(fscal,dz20);
387
388             /* Update vectorial force */
389             fix2             = _mm_add_pd(fix2,tx);
390             fiy2             = _mm_add_pd(fiy2,ty);
391             fiz2             = _mm_add_pd(fiz2,tz);
392
393             fjx0             = _mm_add_pd(fjx0,tx);
394             fjy0             = _mm_add_pd(fjy0,ty);
395             fjz0             = _mm_add_pd(fjz0,tz);
396
397             }
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             if (gmx_mm_any_lt(rsq30,rcutoff2))
404             {
405
406             r30              = _mm_mul_pd(rsq30,rinv30);
407
408             /* Compute parameters for interactions between i and j atoms */
409             qq30             = _mm_mul_pd(iq3,jq0);
410
411             /* EWALD ELECTROSTATICS */
412
413             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
414             ewrt             = _mm_mul_pd(r30,ewtabscale);
415             ewitab           = _mm_cvttpd_epi32(ewrt);
416             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
417             ewitab           = _mm_slli_epi32(ewitab,2);
418             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
419             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
420             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
421             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
422             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
423             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
424             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
425             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
426             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
427             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
428
429             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm_and_pd(velec,cutoff_mask);
433             velecsum         = _mm_add_pd(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm_and_pd(fscal,cutoff_mask);
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm_mul_pd(fscal,dx30);
441             ty               = _mm_mul_pd(fscal,dy30);
442             tz               = _mm_mul_pd(fscal,dz30);
443
444             /* Update vectorial force */
445             fix3             = _mm_add_pd(fix3,tx);
446             fiy3             = _mm_add_pd(fiy3,ty);
447             fiz3             = _mm_add_pd(fiz3,tz);
448
449             fjx0             = _mm_add_pd(fjx0,tx);
450             fjy0             = _mm_add_pd(fjy0,ty);
451             fjz0             = _mm_add_pd(fjz0,tz);
452
453             }
454
455             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 182 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             jnrA             = jjnr[jidx];
464             j_coord_offsetA  = DIM*jnrA;
465
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
468                                               &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_pd(ix0,jx0);
472             dy00             = _mm_sub_pd(iy0,jy0);
473             dz00             = _mm_sub_pd(iz0,jz0);
474             dx10             = _mm_sub_pd(ix1,jx0);
475             dy10             = _mm_sub_pd(iy1,jy0);
476             dz10             = _mm_sub_pd(iz1,jz0);
477             dx20             = _mm_sub_pd(ix2,jx0);
478             dy20             = _mm_sub_pd(iy2,jy0);
479             dz20             = _mm_sub_pd(iz2,jz0);
480             dx30             = _mm_sub_pd(ix3,jx0);
481             dy30             = _mm_sub_pd(iy3,jy0);
482             dz30             = _mm_sub_pd(iz3,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
486             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
487             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
488             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
489
490             rinv10           = gmx_mm_invsqrt_pd(rsq10);
491             rinv20           = gmx_mm_invsqrt_pd(rsq20);
492             rinv30           = gmx_mm_invsqrt_pd(rsq30);
493
494             rinvsq00         = gmx_mm_inv_pd(rsq00);
495             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
496             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
497             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
498
499             /* Load parameters for j particles */
500             jq0              = _mm_load_sd(charge+jnrA+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502
503             fjx0             = _mm_setzero_pd();
504             fjy0             = _mm_setzero_pd();
505             fjz0             = _mm_setzero_pd();
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             if (gmx_mm_any_lt(rsq00,rcutoff2))
512             {
513
514             /* Compute parameters for interactions between i and j atoms */
515             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
516
517             /* LENNARD-JONES DISPERSION/REPULSION */
518
519             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
520             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
521             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
522             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
523                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
524             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
525
526             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
530             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
531             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
532
533             fscal            = fvdw;
534
535             fscal            = _mm_and_pd(fscal,cutoff_mask);
536
537             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
538
539             /* Calculate temporary vectorial force */
540             tx               = _mm_mul_pd(fscal,dx00);
541             ty               = _mm_mul_pd(fscal,dy00);
542             tz               = _mm_mul_pd(fscal,dz00);
543
544             /* Update vectorial force */
545             fix0             = _mm_add_pd(fix0,tx);
546             fiy0             = _mm_add_pd(fiy0,ty);
547             fiz0             = _mm_add_pd(fiz0,tz);
548
549             fjx0             = _mm_add_pd(fjx0,tx);
550             fjy0             = _mm_add_pd(fjy0,ty);
551             fjz0             = _mm_add_pd(fjz0,tz);
552
553             }
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             if (gmx_mm_any_lt(rsq10,rcutoff2))
560             {
561
562             r10              = _mm_mul_pd(rsq10,rinv10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm_mul_pd(iq1,jq0);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm_mul_pd(r10,ewtabscale);
571             ewitab           = _mm_cvttpd_epi32(ewrt);
572             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
577             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
578             ewtabFn          = _mm_setzero_pd();
579             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
580             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
581             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
582             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
583             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
584
585             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_and_pd(velec,cutoff_mask);
589             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
590             velecsum         = _mm_add_pd(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm_and_pd(fscal,cutoff_mask);
595
596             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm_mul_pd(fscal,dx10);
600             ty               = _mm_mul_pd(fscal,dy10);
601             tz               = _mm_mul_pd(fscal,dz10);
602
603             /* Update vectorial force */
604             fix1             = _mm_add_pd(fix1,tx);
605             fiy1             = _mm_add_pd(fiy1,ty);
606             fiz1             = _mm_add_pd(fiz1,tz);
607
608             fjx0             = _mm_add_pd(fjx0,tx);
609             fjy0             = _mm_add_pd(fjy0,ty);
610             fjz0             = _mm_add_pd(fjz0,tz);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm_any_lt(rsq20,rcutoff2))
619             {
620
621             r20              = _mm_mul_pd(rsq20,rinv20);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq20             = _mm_mul_pd(iq2,jq0);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_pd(r20,ewtabscale);
630             ewitab           = _mm_cvttpd_epi32(ewrt);
631             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
632             ewitab           = _mm_slli_epi32(ewitab,2);
633             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
634             ewtabD           = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
636             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
637             ewtabFn          = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
639             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
640             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
641             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
642             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
643
644             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
645
646             /* Update potential sum for this i atom from the interaction with this j atom. */
647             velec            = _mm_and_pd(velec,cutoff_mask);
648             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
649             velecsum         = _mm_add_pd(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm_and_pd(fscal,cutoff_mask);
654
655             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
656
657             /* Calculate temporary vectorial force */
658             tx               = _mm_mul_pd(fscal,dx20);
659             ty               = _mm_mul_pd(fscal,dy20);
660             tz               = _mm_mul_pd(fscal,dz20);
661
662             /* Update vectorial force */
663             fix2             = _mm_add_pd(fix2,tx);
664             fiy2             = _mm_add_pd(fiy2,ty);
665             fiz2             = _mm_add_pd(fiz2,tz);
666
667             fjx0             = _mm_add_pd(fjx0,tx);
668             fjy0             = _mm_add_pd(fjy0,ty);
669             fjz0             = _mm_add_pd(fjz0,tz);
670
671             }
672
673             /**************************
674              * CALCULATE INTERACTIONS *
675              **************************/
676
677             if (gmx_mm_any_lt(rsq30,rcutoff2))
678             {
679
680             r30              = _mm_mul_pd(rsq30,rinv30);
681
682             /* Compute parameters for interactions between i and j atoms */
683             qq30             = _mm_mul_pd(iq3,jq0);
684
685             /* EWALD ELECTROSTATICS */
686
687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688             ewrt             = _mm_mul_pd(r30,ewtabscale);
689             ewitab           = _mm_cvttpd_epi32(ewrt);
690             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
691             ewitab           = _mm_slli_epi32(ewitab,2);
692             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
693             ewtabD           = _mm_setzero_pd();
694             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
695             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
696             ewtabFn          = _mm_setzero_pd();
697             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
698             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
699             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
700             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
701             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
702
703             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
704
705             /* Update potential sum for this i atom from the interaction with this j atom. */
706             velec            = _mm_and_pd(velec,cutoff_mask);
707             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
708             velecsum         = _mm_add_pd(velecsum,velec);
709
710             fscal            = felec;
711
712             fscal            = _mm_and_pd(fscal,cutoff_mask);
713
714             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
715
716             /* Calculate temporary vectorial force */
717             tx               = _mm_mul_pd(fscal,dx30);
718             ty               = _mm_mul_pd(fscal,dy30);
719             tz               = _mm_mul_pd(fscal,dz30);
720
721             /* Update vectorial force */
722             fix3             = _mm_add_pd(fix3,tx);
723             fiy3             = _mm_add_pd(fiy3,ty);
724             fiz3             = _mm_add_pd(fiz3,tz);
725
726             fjx0             = _mm_add_pd(fjx0,tx);
727             fjy0             = _mm_add_pd(fjy0,ty);
728             fjz0             = _mm_add_pd(fjz0,tz);
729
730             }
731
732             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
733
734             /* Inner loop uses 182 flops */
735         }
736
737         /* End of innermost loop */
738
739         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
740                                               f+i_coord_offset,fshift+i_shift_offset);
741
742         ggid                        = gid[iidx];
743         /* Update potential energies */
744         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
745         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 26 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
759 }
760 /*
761  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_double
762  * Electrostatics interaction: Ewald
763  * VdW interaction:            LennardJones
764  * Geometry:                   Water4-Particle
765  * Calculate force/pot:        Force
766  */
767 void
768 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_double
769                     (t_nblist                    * gmx_restrict       nlist,
770                      rvec                        * gmx_restrict          xx,
771                      rvec                        * gmx_restrict          ff,
772                      t_forcerec                  * gmx_restrict          fr,
773                      t_mdatoms                   * gmx_restrict     mdatoms,
774                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
775                      t_nrnb                      * gmx_restrict        nrnb)
776 {
777     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
778      * just 0 for non-waters.
779      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
780      * jnr indices corresponding to data put in the four positions in the SIMD register.
781      */
782     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
783     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
784     int              jnrA,jnrB;
785     int              j_coord_offsetA,j_coord_offsetB;
786     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
787     real             rcutoff_scalar;
788     real             *shiftvec,*fshift,*x,*f;
789     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
790     int              vdwioffset0;
791     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
792     int              vdwioffset1;
793     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
794     int              vdwioffset2;
795     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
796     int              vdwioffset3;
797     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
798     int              vdwjidx0A,vdwjidx0B;
799     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
800     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
801     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
802     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
803     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
804     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
805     real             *charge;
806     int              nvdwtype;
807     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
808     int              *vdwtype;
809     real             *vdwparam;
810     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
811     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
812     __m128i          ewitab;
813     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
814     real             *ewtab;
815     __m128d          dummy_mask,cutoff_mask;
816     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
817     __m128d          one     = _mm_set1_pd(1.0);
818     __m128d          two     = _mm_set1_pd(2.0);
819     x                = xx[0];
820     f                = ff[0];
821
822     nri              = nlist->nri;
823     iinr             = nlist->iinr;
824     jindex           = nlist->jindex;
825     jjnr             = nlist->jjnr;
826     shiftidx         = nlist->shift;
827     gid              = nlist->gid;
828     shiftvec         = fr->shift_vec[0];
829     fshift           = fr->fshift[0];
830     facel            = _mm_set1_pd(fr->epsfac);
831     charge           = mdatoms->chargeA;
832     nvdwtype         = fr->ntype;
833     vdwparam         = fr->nbfp;
834     vdwtype          = mdatoms->typeA;
835
836     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
837     ewtab            = fr->ic->tabq_coul_F;
838     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
839     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
840
841     /* Setup water-specific parameters */
842     inr              = nlist->iinr[0];
843     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
844     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
845     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
846     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
847
848     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
849     rcutoff_scalar   = fr->rcoulomb;
850     rcutoff          = _mm_set1_pd(rcutoff_scalar);
851     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
852
853     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
854     rvdw             = _mm_set1_pd(fr->rvdw);
855
856     /* Avoid stupid compiler warnings */
857     jnrA = jnrB = 0;
858     j_coord_offsetA = 0;
859     j_coord_offsetB = 0;
860
861     outeriter        = 0;
862     inneriter        = 0;
863
864     /* Start outer loop over neighborlists */
865     for(iidx=0; iidx<nri; iidx++)
866     {
867         /* Load shift vector for this list */
868         i_shift_offset   = DIM*shiftidx[iidx];
869
870         /* Load limits for loop over neighbors */
871         j_index_start    = jindex[iidx];
872         j_index_end      = jindex[iidx+1];
873
874         /* Get outer coordinate index */
875         inr              = iinr[iidx];
876         i_coord_offset   = DIM*inr;
877
878         /* Load i particle coords and add shift vector */
879         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
880                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
881
882         fix0             = _mm_setzero_pd();
883         fiy0             = _mm_setzero_pd();
884         fiz0             = _mm_setzero_pd();
885         fix1             = _mm_setzero_pd();
886         fiy1             = _mm_setzero_pd();
887         fiz1             = _mm_setzero_pd();
888         fix2             = _mm_setzero_pd();
889         fiy2             = _mm_setzero_pd();
890         fiz2             = _mm_setzero_pd();
891         fix3             = _mm_setzero_pd();
892         fiy3             = _mm_setzero_pd();
893         fiz3             = _mm_setzero_pd();
894
895         /* Start inner kernel loop */
896         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
897         {
898
899             /* Get j neighbor index, and coordinate index */
900             jnrA             = jjnr[jidx];
901             jnrB             = jjnr[jidx+1];
902             j_coord_offsetA  = DIM*jnrA;
903             j_coord_offsetB  = DIM*jnrB;
904
905             /* load j atom coordinates */
906             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
907                                               &jx0,&jy0,&jz0);
908
909             /* Calculate displacement vector */
910             dx00             = _mm_sub_pd(ix0,jx0);
911             dy00             = _mm_sub_pd(iy0,jy0);
912             dz00             = _mm_sub_pd(iz0,jz0);
913             dx10             = _mm_sub_pd(ix1,jx0);
914             dy10             = _mm_sub_pd(iy1,jy0);
915             dz10             = _mm_sub_pd(iz1,jz0);
916             dx20             = _mm_sub_pd(ix2,jx0);
917             dy20             = _mm_sub_pd(iy2,jy0);
918             dz20             = _mm_sub_pd(iz2,jz0);
919             dx30             = _mm_sub_pd(ix3,jx0);
920             dy30             = _mm_sub_pd(iy3,jy0);
921             dz30             = _mm_sub_pd(iz3,jz0);
922
923             /* Calculate squared distance and things based on it */
924             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
925             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
926             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
927             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
928
929             rinv10           = gmx_mm_invsqrt_pd(rsq10);
930             rinv20           = gmx_mm_invsqrt_pd(rsq20);
931             rinv30           = gmx_mm_invsqrt_pd(rsq30);
932
933             rinvsq00         = gmx_mm_inv_pd(rsq00);
934             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
935             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
936             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
937
938             /* Load parameters for j particles */
939             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
940             vdwjidx0A        = 2*vdwtype[jnrA+0];
941             vdwjidx0B        = 2*vdwtype[jnrB+0];
942
943             fjx0             = _mm_setzero_pd();
944             fjy0             = _mm_setzero_pd();
945             fjz0             = _mm_setzero_pd();
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm_any_lt(rsq00,rcutoff2))
952             {
953
954             /* Compute parameters for interactions between i and j atoms */
955             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
956                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
957
958             /* LENNARD-JONES DISPERSION/REPULSION */
959
960             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
961             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
962
963             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
964
965             fscal            = fvdw;
966
967             fscal            = _mm_and_pd(fscal,cutoff_mask);
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_pd(fscal,dx00);
971             ty               = _mm_mul_pd(fscal,dy00);
972             tz               = _mm_mul_pd(fscal,dz00);
973
974             /* Update vectorial force */
975             fix0             = _mm_add_pd(fix0,tx);
976             fiy0             = _mm_add_pd(fiy0,ty);
977             fiz0             = _mm_add_pd(fiz0,tz);
978
979             fjx0             = _mm_add_pd(fjx0,tx);
980             fjy0             = _mm_add_pd(fjy0,ty);
981             fjz0             = _mm_add_pd(fjz0,tz);
982
983             }
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (gmx_mm_any_lt(rsq10,rcutoff2))
990             {
991
992             r10              = _mm_mul_pd(rsq10,rinv10);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq10             = _mm_mul_pd(iq1,jq0);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm_mul_pd(r10,ewtabscale);
1001             ewitab           = _mm_cvttpd_epi32(ewrt);
1002             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1003             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1004                                          &ewtabF,&ewtabFn);
1005             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1006             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1007
1008             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm_and_pd(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm_mul_pd(fscal,dx10);
1016             ty               = _mm_mul_pd(fscal,dy10);
1017             tz               = _mm_mul_pd(fscal,dz10);
1018
1019             /* Update vectorial force */
1020             fix1             = _mm_add_pd(fix1,tx);
1021             fiy1             = _mm_add_pd(fiy1,ty);
1022             fiz1             = _mm_add_pd(fiz1,tz);
1023
1024             fjx0             = _mm_add_pd(fjx0,tx);
1025             fjy0             = _mm_add_pd(fjy0,ty);
1026             fjz0             = _mm_add_pd(fjz0,tz);
1027
1028             }
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm_any_lt(rsq20,rcutoff2))
1035             {
1036
1037             r20              = _mm_mul_pd(rsq20,rinv20);
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq20             = _mm_mul_pd(iq2,jq0);
1041
1042             /* EWALD ELECTROSTATICS */
1043
1044             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1045             ewrt             = _mm_mul_pd(r20,ewtabscale);
1046             ewitab           = _mm_cvttpd_epi32(ewrt);
1047             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1048             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1049                                          &ewtabF,&ewtabFn);
1050             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1051             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1052
1053             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_and_pd(fscal,cutoff_mask);
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_pd(fscal,dx20);
1061             ty               = _mm_mul_pd(fscal,dy20);
1062             tz               = _mm_mul_pd(fscal,dz20);
1063
1064             /* Update vectorial force */
1065             fix2             = _mm_add_pd(fix2,tx);
1066             fiy2             = _mm_add_pd(fiy2,ty);
1067             fiz2             = _mm_add_pd(fiz2,tz);
1068
1069             fjx0             = _mm_add_pd(fjx0,tx);
1070             fjy0             = _mm_add_pd(fjy0,ty);
1071             fjz0             = _mm_add_pd(fjz0,tz);
1072
1073             }
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             if (gmx_mm_any_lt(rsq30,rcutoff2))
1080             {
1081
1082             r30              = _mm_mul_pd(rsq30,rinv30);
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq30             = _mm_mul_pd(iq3,jq0);
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1090             ewrt             = _mm_mul_pd(r30,ewtabscale);
1091             ewitab           = _mm_cvttpd_epi32(ewrt);
1092             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1093             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1094                                          &ewtabF,&ewtabFn);
1095             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1096             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1097
1098             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm_and_pd(fscal,cutoff_mask);
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = _mm_mul_pd(fscal,dx30);
1106             ty               = _mm_mul_pd(fscal,dy30);
1107             tz               = _mm_mul_pd(fscal,dz30);
1108
1109             /* Update vectorial force */
1110             fix3             = _mm_add_pd(fix3,tx);
1111             fiy3             = _mm_add_pd(fiy3,ty);
1112             fiz3             = _mm_add_pd(fiz3,tz);
1113
1114             fjx0             = _mm_add_pd(fjx0,tx);
1115             fjy0             = _mm_add_pd(fjy0,ty);
1116             fjz0             = _mm_add_pd(fjz0,tz);
1117
1118             }
1119
1120             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1121
1122             /* Inner loop uses 150 flops */
1123         }
1124
1125         if(jidx<j_index_end)
1126         {
1127
1128             jnrA             = jjnr[jidx];
1129             j_coord_offsetA  = DIM*jnrA;
1130
1131             /* load j atom coordinates */
1132             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1133                                               &jx0,&jy0,&jz0);
1134
1135             /* Calculate displacement vector */
1136             dx00             = _mm_sub_pd(ix0,jx0);
1137             dy00             = _mm_sub_pd(iy0,jy0);
1138             dz00             = _mm_sub_pd(iz0,jz0);
1139             dx10             = _mm_sub_pd(ix1,jx0);
1140             dy10             = _mm_sub_pd(iy1,jy0);
1141             dz10             = _mm_sub_pd(iz1,jz0);
1142             dx20             = _mm_sub_pd(ix2,jx0);
1143             dy20             = _mm_sub_pd(iy2,jy0);
1144             dz20             = _mm_sub_pd(iz2,jz0);
1145             dx30             = _mm_sub_pd(ix3,jx0);
1146             dy30             = _mm_sub_pd(iy3,jy0);
1147             dz30             = _mm_sub_pd(iz3,jz0);
1148
1149             /* Calculate squared distance and things based on it */
1150             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1151             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1152             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1153             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1154
1155             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1156             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1157             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1158
1159             rinvsq00         = gmx_mm_inv_pd(rsq00);
1160             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1161             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1162             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1163
1164             /* Load parameters for j particles */
1165             jq0              = _mm_load_sd(charge+jnrA+0);
1166             vdwjidx0A        = 2*vdwtype[jnrA+0];
1167
1168             fjx0             = _mm_setzero_pd();
1169             fjy0             = _mm_setzero_pd();
1170             fjz0             = _mm_setzero_pd();
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm_any_lt(rsq00,rcutoff2))
1177             {
1178
1179             /* Compute parameters for interactions between i and j atoms */
1180             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1181
1182             /* LENNARD-JONES DISPERSION/REPULSION */
1183
1184             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1185             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1186
1187             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1188
1189             fscal            = fvdw;
1190
1191             fscal            = _mm_and_pd(fscal,cutoff_mask);
1192
1193             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm_mul_pd(fscal,dx00);
1197             ty               = _mm_mul_pd(fscal,dy00);
1198             tz               = _mm_mul_pd(fscal,dz00);
1199
1200             /* Update vectorial force */
1201             fix0             = _mm_add_pd(fix0,tx);
1202             fiy0             = _mm_add_pd(fiy0,ty);
1203             fiz0             = _mm_add_pd(fiz0,tz);
1204
1205             fjx0             = _mm_add_pd(fjx0,tx);
1206             fjy0             = _mm_add_pd(fjy0,ty);
1207             fjz0             = _mm_add_pd(fjz0,tz);
1208
1209             }
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             if (gmx_mm_any_lt(rsq10,rcutoff2))
1216             {
1217
1218             r10              = _mm_mul_pd(rsq10,rinv10);
1219
1220             /* Compute parameters for interactions between i and j atoms */
1221             qq10             = _mm_mul_pd(iq1,jq0);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1226             ewrt             = _mm_mul_pd(r10,ewtabscale);
1227             ewitab           = _mm_cvttpd_epi32(ewrt);
1228             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1229             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1230             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1231             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1232
1233             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1234
1235             fscal            = felec;
1236
1237             fscal            = _mm_and_pd(fscal,cutoff_mask);
1238
1239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_pd(fscal,dx10);
1243             ty               = _mm_mul_pd(fscal,dy10);
1244             tz               = _mm_mul_pd(fscal,dz10);
1245
1246             /* Update vectorial force */
1247             fix1             = _mm_add_pd(fix1,tx);
1248             fiy1             = _mm_add_pd(fiy1,ty);
1249             fiz1             = _mm_add_pd(fiz1,tz);
1250
1251             fjx0             = _mm_add_pd(fjx0,tx);
1252             fjy0             = _mm_add_pd(fjy0,ty);
1253             fjz0             = _mm_add_pd(fjz0,tz);
1254
1255             }
1256
1257             /**************************
1258              * CALCULATE INTERACTIONS *
1259              **************************/
1260
1261             if (gmx_mm_any_lt(rsq20,rcutoff2))
1262             {
1263
1264             r20              = _mm_mul_pd(rsq20,rinv20);
1265
1266             /* Compute parameters for interactions between i and j atoms */
1267             qq20             = _mm_mul_pd(iq2,jq0);
1268
1269             /* EWALD ELECTROSTATICS */
1270
1271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1272             ewrt             = _mm_mul_pd(r20,ewtabscale);
1273             ewitab           = _mm_cvttpd_epi32(ewrt);
1274             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1275             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1276             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1277             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1278
1279             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_and_pd(fscal,cutoff_mask);
1284
1285             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_pd(fscal,dx20);
1289             ty               = _mm_mul_pd(fscal,dy20);
1290             tz               = _mm_mul_pd(fscal,dz20);
1291
1292             /* Update vectorial force */
1293             fix2             = _mm_add_pd(fix2,tx);
1294             fiy2             = _mm_add_pd(fiy2,ty);
1295             fiz2             = _mm_add_pd(fiz2,tz);
1296
1297             fjx0             = _mm_add_pd(fjx0,tx);
1298             fjy0             = _mm_add_pd(fjy0,ty);
1299             fjz0             = _mm_add_pd(fjz0,tz);
1300
1301             }
1302
1303             /**************************
1304              * CALCULATE INTERACTIONS *
1305              **************************/
1306
1307             if (gmx_mm_any_lt(rsq30,rcutoff2))
1308             {
1309
1310             r30              = _mm_mul_pd(rsq30,rinv30);
1311
1312             /* Compute parameters for interactions between i and j atoms */
1313             qq30             = _mm_mul_pd(iq3,jq0);
1314
1315             /* EWALD ELECTROSTATICS */
1316
1317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1318             ewrt             = _mm_mul_pd(r30,ewtabscale);
1319             ewitab           = _mm_cvttpd_epi32(ewrt);
1320             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1321             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1322             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1323             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1324
1325             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1326
1327             fscal            = felec;
1328
1329             fscal            = _mm_and_pd(fscal,cutoff_mask);
1330
1331             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1332
1333             /* Calculate temporary vectorial force */
1334             tx               = _mm_mul_pd(fscal,dx30);
1335             ty               = _mm_mul_pd(fscal,dy30);
1336             tz               = _mm_mul_pd(fscal,dz30);
1337
1338             /* Update vectorial force */
1339             fix3             = _mm_add_pd(fix3,tx);
1340             fiy3             = _mm_add_pd(fiy3,ty);
1341             fiz3             = _mm_add_pd(fiz3,tz);
1342
1343             fjx0             = _mm_add_pd(fjx0,tx);
1344             fjy0             = _mm_add_pd(fjy0,ty);
1345             fjz0             = _mm_add_pd(fjz0,tz);
1346
1347             }
1348
1349             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1350
1351             /* Inner loop uses 150 flops */
1352         }
1353
1354         /* End of innermost loop */
1355
1356         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1357                                               f+i_coord_offset,fshift+i_shift_offset);
1358
1359         /* Increment number of inner iterations */
1360         inneriter                  += j_index_end - j_index_start;
1361
1362         /* Outer loop uses 24 flops */
1363     }
1364
1365     /* Increment number of outer iterations */
1366     outeriter        += nri;
1367
1368     /* Update outer/inner flops */
1369
1370     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1371 }