Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           c6grid_30;
105     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128d           one_half = _mm_set1_pd(0.5);
108     __m128d           minus_one = _mm_set1_pd(-1.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->ic->rcoulomb;
151     rcutoff          = _mm_set1_pd(rcutoff_scalar);
152     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
153
154     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
155     rvdw             = _mm_set1_pd(fr->ic->rvdw);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_pd();
184         fiy0             = _mm_setzero_pd();
185         fiz0             = _mm_setzero_pd();
186         fix1             = _mm_setzero_pd();
187         fiy1             = _mm_setzero_pd();
188         fiz1             = _mm_setzero_pd();
189         fix2             = _mm_setzero_pd();
190         fiy2             = _mm_setzero_pd();
191         fiz2             = _mm_setzero_pd();
192         fix3             = _mm_setzero_pd();
193         fiy3             = _mm_setzero_pd();
194         fiz3             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx20             = _mm_sub_pd(ix2,jx0);
222             dy20             = _mm_sub_pd(iy2,jy0);
223             dz20             = _mm_sub_pd(iz2,jz0);
224             dx30             = _mm_sub_pd(ix3,jx0);
225             dy30             = _mm_sub_pd(iy3,jy0);
226             dz30             = _mm_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = sse2_invsqrt_d(rsq00);
235             rinv10           = sse2_invsqrt_d(rsq10);
236             rinv20           = sse2_invsqrt_d(rsq20);
237             rinv30           = sse2_invsqrt_d(rsq30);
238
239             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248
249             fjx0             = _mm_setzero_pd();
250             fjy0             = _mm_setzero_pd();
251             fjz0             = _mm_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
265
266             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
268
269             /* Analytical LJ-PME */
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
272             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273             exponent         = sse2_exp_d(ewcljrsq);
274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
276             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
280                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
281             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
282             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
283
284             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             fscal            = _mm_and_pd(fscal,cutoff_mask);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_pd(fscal,dx00);
296             ty               = _mm_mul_pd(fscal,dy00);
297             tz               = _mm_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm_add_pd(fix0,tx);
301             fiy0             = _mm_add_pd(fiy0,ty);
302             fiz0             = _mm_add_pd(fiz0,tz);
303
304             fjx0             = _mm_add_pd(fjx0,tx);
305             fjy0             = _mm_add_pd(fjy0,ty);
306             fjz0             = _mm_add_pd(fjz0,tz);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq10,rcutoff2))
315             {
316
317             r10              = _mm_mul_pd(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_pd(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r10,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
339
340             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_and_pd(velec,cutoff_mask);
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             fscal            = _mm_and_pd(fscal,cutoff_mask);
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_pd(fscal,dx10);
352             ty               = _mm_mul_pd(fscal,dy10);
353             tz               = _mm_mul_pd(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm_add_pd(fix1,tx);
357             fiy1             = _mm_add_pd(fiy1,ty);
358             fiz1             = _mm_add_pd(fiz1,tz);
359
360             fjx0             = _mm_add_pd(fjx0,tx);
361             fjy0             = _mm_add_pd(fjy0,ty);
362             fjz0             = _mm_add_pd(fjz0,tz);
363
364             }
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (gmx_mm_any_lt(rsq20,rcutoff2))
371             {
372
373             r20              = _mm_mul_pd(rsq20,rinv20);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm_mul_pd(iq2,jq0);
377
378             /* EWALD ELECTROSTATICS */
379
380             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
381             ewrt             = _mm_mul_pd(r20,ewtabscale);
382             ewitab           = _mm_cvttpd_epi32(ewrt);
383             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
384             ewitab           = _mm_slli_epi32(ewitab,2);
385             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
386             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
387             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
388             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
389             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
390             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
391             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
392             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
393             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
394             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
395
396             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm_and_pd(velec,cutoff_mask);
400             velecsum         = _mm_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _mm_and_pd(fscal,cutoff_mask);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm_mul_pd(fscal,dx20);
408             ty               = _mm_mul_pd(fscal,dy20);
409             tz               = _mm_mul_pd(fscal,dz20);
410
411             /* Update vectorial force */
412             fix2             = _mm_add_pd(fix2,tx);
413             fiy2             = _mm_add_pd(fiy2,ty);
414             fiz2             = _mm_add_pd(fiz2,tz);
415
416             fjx0             = _mm_add_pd(fjx0,tx);
417             fjy0             = _mm_add_pd(fjy0,ty);
418             fjz0             = _mm_add_pd(fjz0,tz);
419
420             }
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             if (gmx_mm_any_lt(rsq30,rcutoff2))
427             {
428
429             r30              = _mm_mul_pd(rsq30,rinv30);
430
431             /* Compute parameters for interactions between i and j atoms */
432             qq30             = _mm_mul_pd(iq3,jq0);
433
434             /* EWALD ELECTROSTATICS */
435
436             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437             ewrt             = _mm_mul_pd(r30,ewtabscale);
438             ewitab           = _mm_cvttpd_epi32(ewrt);
439             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
440             ewitab           = _mm_slli_epi32(ewitab,2);
441             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
442             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
443             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
444             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
445             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
446             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
447             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
448             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
449             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
450             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
451
452             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _mm_and_pd(velec,cutoff_mask);
456             velecsum         = _mm_add_pd(velecsum,velec);
457
458             fscal            = felec;
459
460             fscal            = _mm_and_pd(fscal,cutoff_mask);
461
462             /* Calculate temporary vectorial force */
463             tx               = _mm_mul_pd(fscal,dx30);
464             ty               = _mm_mul_pd(fscal,dy30);
465             tz               = _mm_mul_pd(fscal,dz30);
466
467             /* Update vectorial force */
468             fix3             = _mm_add_pd(fix3,tx);
469             fiy3             = _mm_add_pd(fiy3,ty);
470             fiz3             = _mm_add_pd(fiz3,tz);
471
472             fjx0             = _mm_add_pd(fjx0,tx);
473             fjy0             = _mm_add_pd(fjy0,ty);
474             fjz0             = _mm_add_pd(fjz0,tz);
475
476             }
477
478             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
479
480             /* Inner loop uses 203 flops */
481         }
482
483         if(jidx<j_index_end)
484         {
485
486             jnrA             = jjnr[jidx];
487             j_coord_offsetA  = DIM*jnrA;
488
489             /* load j atom coordinates */
490             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
491                                               &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm_sub_pd(ix0,jx0);
495             dy00             = _mm_sub_pd(iy0,jy0);
496             dz00             = _mm_sub_pd(iz0,jz0);
497             dx10             = _mm_sub_pd(ix1,jx0);
498             dy10             = _mm_sub_pd(iy1,jy0);
499             dz10             = _mm_sub_pd(iz1,jz0);
500             dx20             = _mm_sub_pd(ix2,jx0);
501             dy20             = _mm_sub_pd(iy2,jy0);
502             dz20             = _mm_sub_pd(iz2,jz0);
503             dx30             = _mm_sub_pd(ix3,jx0);
504             dy30             = _mm_sub_pd(iy3,jy0);
505             dz30             = _mm_sub_pd(iz3,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
509             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
510             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
511             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
512
513             rinv00           = sse2_invsqrt_d(rsq00);
514             rinv10           = sse2_invsqrt_d(rsq10);
515             rinv20           = sse2_invsqrt_d(rsq20);
516             rinv30           = sse2_invsqrt_d(rsq30);
517
518             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
519             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
520             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
521             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
522
523             /* Load parameters for j particles */
524             jq0              = _mm_load_sd(charge+jnrA+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526
527             fjx0             = _mm_setzero_pd();
528             fjy0             = _mm_setzero_pd();
529             fjz0             = _mm_setzero_pd();
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq00,rcutoff2))
536             {
537
538             r00              = _mm_mul_pd(rsq00,rinv00);
539
540             /* Compute parameters for interactions between i and j atoms */
541             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
542
543             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
544
545             /* Analytical LJ-PME */
546             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
547             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
548             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
549             exponent         = sse2_exp_d(ewcljrsq);
550             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
551             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
552             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
553             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
554             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
555             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
556                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
557             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
558             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
559
560             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
564             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
565             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
566
567             fscal            = fvdw;
568
569             fscal            = _mm_and_pd(fscal,cutoff_mask);
570
571             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm_mul_pd(fscal,dx00);
575             ty               = _mm_mul_pd(fscal,dy00);
576             tz               = _mm_mul_pd(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm_add_pd(fix0,tx);
580             fiy0             = _mm_add_pd(fiy0,ty);
581             fiz0             = _mm_add_pd(fiz0,tz);
582
583             fjx0             = _mm_add_pd(fjx0,tx);
584             fjy0             = _mm_add_pd(fjy0,ty);
585             fjz0             = _mm_add_pd(fjz0,tz);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq10,rcutoff2))
594             {
595
596             r10              = _mm_mul_pd(rsq10,rinv10);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq10             = _mm_mul_pd(iq1,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r10,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612             ewtabFn          = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
617             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
618
619             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_and_pd(velec,cutoff_mask);
623             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
624             velecsum         = _mm_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_and_pd(fscal,cutoff_mask);
629
630             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_pd(fscal,dx10);
634             ty               = _mm_mul_pd(fscal,dy10);
635             tz               = _mm_mul_pd(fscal,dz10);
636
637             /* Update vectorial force */
638             fix1             = _mm_add_pd(fix1,tx);
639             fiy1             = _mm_add_pd(fiy1,ty);
640             fiz1             = _mm_add_pd(fiz1,tz);
641
642             fjx0             = _mm_add_pd(fjx0,tx);
643             fjy0             = _mm_add_pd(fjy0,ty);
644             fjz0             = _mm_add_pd(fjz0,tz);
645
646             }
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             if (gmx_mm_any_lt(rsq20,rcutoff2))
653             {
654
655             r20              = _mm_mul_pd(rsq20,rinv20);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq20             = _mm_mul_pd(iq2,jq0);
659
660             /* EWALD ELECTROSTATICS */
661
662             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
663             ewrt             = _mm_mul_pd(r20,ewtabscale);
664             ewitab           = _mm_cvttpd_epi32(ewrt);
665             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
666             ewitab           = _mm_slli_epi32(ewitab,2);
667             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
668             ewtabD           = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
670             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
671             ewtabFn          = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
673             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
674             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
675             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
676             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
677
678             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
679
680             /* Update potential sum for this i atom from the interaction with this j atom. */
681             velec            = _mm_and_pd(velec,cutoff_mask);
682             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
683             velecsum         = _mm_add_pd(velecsum,velec);
684
685             fscal            = felec;
686
687             fscal            = _mm_and_pd(fscal,cutoff_mask);
688
689             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_pd(fscal,dx20);
693             ty               = _mm_mul_pd(fscal,dy20);
694             tz               = _mm_mul_pd(fscal,dz20);
695
696             /* Update vectorial force */
697             fix2             = _mm_add_pd(fix2,tx);
698             fiy2             = _mm_add_pd(fiy2,ty);
699             fiz2             = _mm_add_pd(fiz2,tz);
700
701             fjx0             = _mm_add_pd(fjx0,tx);
702             fjy0             = _mm_add_pd(fjy0,ty);
703             fjz0             = _mm_add_pd(fjz0,tz);
704
705             }
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             if (gmx_mm_any_lt(rsq30,rcutoff2))
712             {
713
714             r30              = _mm_mul_pd(rsq30,rinv30);
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq30             = _mm_mul_pd(iq3,jq0);
718
719             /* EWALD ELECTROSTATICS */
720
721             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
722             ewrt             = _mm_mul_pd(r30,ewtabscale);
723             ewitab           = _mm_cvttpd_epi32(ewrt);
724             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
725             ewitab           = _mm_slli_epi32(ewitab,2);
726             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
727             ewtabD           = _mm_setzero_pd();
728             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
729             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
730             ewtabFn          = _mm_setzero_pd();
731             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
732             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
733             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
734             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
735             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
736
737             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
738
739             /* Update potential sum for this i atom from the interaction with this j atom. */
740             velec            = _mm_and_pd(velec,cutoff_mask);
741             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
742             velecsum         = _mm_add_pd(velecsum,velec);
743
744             fscal            = felec;
745
746             fscal            = _mm_and_pd(fscal,cutoff_mask);
747
748             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm_mul_pd(fscal,dx30);
752             ty               = _mm_mul_pd(fscal,dy30);
753             tz               = _mm_mul_pd(fscal,dz30);
754
755             /* Update vectorial force */
756             fix3             = _mm_add_pd(fix3,tx);
757             fiy3             = _mm_add_pd(fiy3,ty);
758             fiz3             = _mm_add_pd(fiz3,tz);
759
760             fjx0             = _mm_add_pd(fjx0,tx);
761             fjy0             = _mm_add_pd(fjy0,ty);
762             fjz0             = _mm_add_pd(fjz0,tz);
763
764             }
765
766             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
767
768             /* Inner loop uses 203 flops */
769         }
770
771         /* End of innermost loop */
772
773         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
774                                               f+i_coord_offset,fshift+i_shift_offset);
775
776         ggid                        = gid[iidx];
777         /* Update potential energies */
778         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
779         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
780
781         /* Increment number of inner iterations */
782         inneriter                  += j_index_end - j_index_start;
783
784         /* Outer loop uses 26 flops */
785     }
786
787     /* Increment number of outer iterations */
788     outeriter        += nri;
789
790     /* Update outer/inner flops */
791
792     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*203);
793 }
794 /*
795  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
796  * Electrostatics interaction: Ewald
797  * VdW interaction:            LJEwald
798  * Geometry:                   Water4-Particle
799  * Calculate force/pot:        Force
800  */
801 void
802 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
803                     (t_nblist                    * gmx_restrict       nlist,
804                      rvec                        * gmx_restrict          xx,
805                      rvec                        * gmx_restrict          ff,
806                      struct t_forcerec           * gmx_restrict          fr,
807                      t_mdatoms                   * gmx_restrict     mdatoms,
808                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
809                      t_nrnb                      * gmx_restrict        nrnb)
810 {
811     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
812      * just 0 for non-waters.
813      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
814      * jnr indices corresponding to data put in the four positions in the SIMD register.
815      */
816     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
817     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
818     int              jnrA,jnrB;
819     int              j_coord_offsetA,j_coord_offsetB;
820     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
821     real             rcutoff_scalar;
822     real             *shiftvec,*fshift,*x,*f;
823     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
824     int              vdwioffset0;
825     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
826     int              vdwioffset1;
827     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
828     int              vdwioffset2;
829     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
830     int              vdwioffset3;
831     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
832     int              vdwjidx0A,vdwjidx0B;
833     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
834     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
835     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
836     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
837     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
838     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
839     real             *charge;
840     int              nvdwtype;
841     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
842     int              *vdwtype;
843     real             *vdwparam;
844     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
845     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
846     __m128d           c6grid_00;
847     __m128d           c6grid_10;
848     __m128d           c6grid_20;
849     __m128d           c6grid_30;
850     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
851     real             *vdwgridparam;
852     __m128d           one_half = _mm_set1_pd(0.5);
853     __m128d           minus_one = _mm_set1_pd(-1.0);
854     __m128i          ewitab;
855     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
856     real             *ewtab;
857     __m128d          dummy_mask,cutoff_mask;
858     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
859     __m128d          one     = _mm_set1_pd(1.0);
860     __m128d          two     = _mm_set1_pd(2.0);
861     x                = xx[0];
862     f                = ff[0];
863
864     nri              = nlist->nri;
865     iinr             = nlist->iinr;
866     jindex           = nlist->jindex;
867     jjnr             = nlist->jjnr;
868     shiftidx         = nlist->shift;
869     gid              = nlist->gid;
870     shiftvec         = fr->shift_vec[0];
871     fshift           = fr->fshift[0];
872     facel            = _mm_set1_pd(fr->ic->epsfac);
873     charge           = mdatoms->chargeA;
874     nvdwtype         = fr->ntype;
875     vdwparam         = fr->nbfp;
876     vdwtype          = mdatoms->typeA;
877     vdwgridparam     = fr->ljpme_c6grid;
878     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
879     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
880     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
881
882     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
883     ewtab            = fr->ic->tabq_coul_F;
884     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
885     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
886
887     /* Setup water-specific parameters */
888     inr              = nlist->iinr[0];
889     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
890     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
891     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
892     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
893
894     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
895     rcutoff_scalar   = fr->ic->rcoulomb;
896     rcutoff          = _mm_set1_pd(rcutoff_scalar);
897     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
898
899     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
900     rvdw             = _mm_set1_pd(fr->ic->rvdw);
901
902     /* Avoid stupid compiler warnings */
903     jnrA = jnrB = 0;
904     j_coord_offsetA = 0;
905     j_coord_offsetB = 0;
906
907     outeriter        = 0;
908     inneriter        = 0;
909
910     /* Start outer loop over neighborlists */
911     for(iidx=0; iidx<nri; iidx++)
912     {
913         /* Load shift vector for this list */
914         i_shift_offset   = DIM*shiftidx[iidx];
915
916         /* Load limits for loop over neighbors */
917         j_index_start    = jindex[iidx];
918         j_index_end      = jindex[iidx+1];
919
920         /* Get outer coordinate index */
921         inr              = iinr[iidx];
922         i_coord_offset   = DIM*inr;
923
924         /* Load i particle coords and add shift vector */
925         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
926                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
927
928         fix0             = _mm_setzero_pd();
929         fiy0             = _mm_setzero_pd();
930         fiz0             = _mm_setzero_pd();
931         fix1             = _mm_setzero_pd();
932         fiy1             = _mm_setzero_pd();
933         fiz1             = _mm_setzero_pd();
934         fix2             = _mm_setzero_pd();
935         fiy2             = _mm_setzero_pd();
936         fiz2             = _mm_setzero_pd();
937         fix3             = _mm_setzero_pd();
938         fiy3             = _mm_setzero_pd();
939         fiz3             = _mm_setzero_pd();
940
941         /* Start inner kernel loop */
942         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
943         {
944
945             /* Get j neighbor index, and coordinate index */
946             jnrA             = jjnr[jidx];
947             jnrB             = jjnr[jidx+1];
948             j_coord_offsetA  = DIM*jnrA;
949             j_coord_offsetB  = DIM*jnrB;
950
951             /* load j atom coordinates */
952             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
953                                               &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm_sub_pd(ix0,jx0);
957             dy00             = _mm_sub_pd(iy0,jy0);
958             dz00             = _mm_sub_pd(iz0,jz0);
959             dx10             = _mm_sub_pd(ix1,jx0);
960             dy10             = _mm_sub_pd(iy1,jy0);
961             dz10             = _mm_sub_pd(iz1,jz0);
962             dx20             = _mm_sub_pd(ix2,jx0);
963             dy20             = _mm_sub_pd(iy2,jy0);
964             dz20             = _mm_sub_pd(iz2,jz0);
965             dx30             = _mm_sub_pd(ix3,jx0);
966             dy30             = _mm_sub_pd(iy3,jy0);
967             dz30             = _mm_sub_pd(iz3,jz0);
968
969             /* Calculate squared distance and things based on it */
970             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
971             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
972             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
973             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
974
975             rinv00           = sse2_invsqrt_d(rsq00);
976             rinv10           = sse2_invsqrt_d(rsq10);
977             rinv20           = sse2_invsqrt_d(rsq20);
978             rinv30           = sse2_invsqrt_d(rsq30);
979
980             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
981             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
982             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
983             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
984
985             /* Load parameters for j particles */
986             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
987             vdwjidx0A        = 2*vdwtype[jnrA+0];
988             vdwjidx0B        = 2*vdwtype[jnrB+0];
989
990             fjx0             = _mm_setzero_pd();
991             fjy0             = _mm_setzero_pd();
992             fjz0             = _mm_setzero_pd();
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm_any_lt(rsq00,rcutoff2))
999             {
1000
1001             r00              = _mm_mul_pd(rsq00,rinv00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1005                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1006
1007             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1008                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1009
1010             /* Analytical LJ-PME */
1011             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1012             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1013             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1014             exponent         = sse2_exp_d(ewcljrsq);
1015             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1016             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1017             /* f6A = 6 * C6grid * (1 - poly) */
1018             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1019             /* f6B = C6grid * exponent * beta^6 */
1020             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1021             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1022             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1023
1024             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1025
1026             fscal            = fvdw;
1027
1028             fscal            = _mm_and_pd(fscal,cutoff_mask);
1029
1030             /* Calculate temporary vectorial force */
1031             tx               = _mm_mul_pd(fscal,dx00);
1032             ty               = _mm_mul_pd(fscal,dy00);
1033             tz               = _mm_mul_pd(fscal,dz00);
1034
1035             /* Update vectorial force */
1036             fix0             = _mm_add_pd(fix0,tx);
1037             fiy0             = _mm_add_pd(fiy0,ty);
1038             fiz0             = _mm_add_pd(fiz0,tz);
1039
1040             fjx0             = _mm_add_pd(fjx0,tx);
1041             fjy0             = _mm_add_pd(fjy0,ty);
1042             fjz0             = _mm_add_pd(fjz0,tz);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm_any_lt(rsq10,rcutoff2))
1051             {
1052
1053             r10              = _mm_mul_pd(rsq10,rinv10);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq10             = _mm_mul_pd(iq1,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059
1060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061             ewrt             = _mm_mul_pd(r10,ewtabscale);
1062             ewitab           = _mm_cvttpd_epi32(ewrt);
1063             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1064             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1065                                          &ewtabF,&ewtabFn);
1066             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1067             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1068
1069             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1070
1071             fscal            = felec;
1072
1073             fscal            = _mm_and_pd(fscal,cutoff_mask);
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_pd(fscal,dx10);
1077             ty               = _mm_mul_pd(fscal,dy10);
1078             tz               = _mm_mul_pd(fscal,dz10);
1079
1080             /* Update vectorial force */
1081             fix1             = _mm_add_pd(fix1,tx);
1082             fiy1             = _mm_add_pd(fiy1,ty);
1083             fiz1             = _mm_add_pd(fiz1,tz);
1084
1085             fjx0             = _mm_add_pd(fjx0,tx);
1086             fjy0             = _mm_add_pd(fjy0,ty);
1087             fjz0             = _mm_add_pd(fjz0,tz);
1088
1089             }
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq20,rcutoff2))
1096             {
1097
1098             r20              = _mm_mul_pd(rsq20,rinv20);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq20             = _mm_mul_pd(iq2,jq0);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm_mul_pd(r20,ewtabscale);
1107             ewitab           = _mm_cvttpd_epi32(ewrt);
1108             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1109             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1110                                          &ewtabF,&ewtabFn);
1111             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1112             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1113
1114             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1115
1116             fscal            = felec;
1117
1118             fscal            = _mm_and_pd(fscal,cutoff_mask);
1119
1120             /* Calculate temporary vectorial force */
1121             tx               = _mm_mul_pd(fscal,dx20);
1122             ty               = _mm_mul_pd(fscal,dy20);
1123             tz               = _mm_mul_pd(fscal,dz20);
1124
1125             /* Update vectorial force */
1126             fix2             = _mm_add_pd(fix2,tx);
1127             fiy2             = _mm_add_pd(fiy2,ty);
1128             fiz2             = _mm_add_pd(fiz2,tz);
1129
1130             fjx0             = _mm_add_pd(fjx0,tx);
1131             fjy0             = _mm_add_pd(fjy0,ty);
1132             fjz0             = _mm_add_pd(fjz0,tz);
1133
1134             }
1135
1136             /**************************
1137              * CALCULATE INTERACTIONS *
1138              **************************/
1139
1140             if (gmx_mm_any_lt(rsq30,rcutoff2))
1141             {
1142
1143             r30              = _mm_mul_pd(rsq30,rinv30);
1144
1145             /* Compute parameters for interactions between i and j atoms */
1146             qq30             = _mm_mul_pd(iq3,jq0);
1147
1148             /* EWALD ELECTROSTATICS */
1149
1150             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1151             ewrt             = _mm_mul_pd(r30,ewtabscale);
1152             ewitab           = _mm_cvttpd_epi32(ewrt);
1153             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1154             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1155                                          &ewtabF,&ewtabFn);
1156             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1157             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1158
1159             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_and_pd(fscal,cutoff_mask);
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_pd(fscal,dx30);
1167             ty               = _mm_mul_pd(fscal,dy30);
1168             tz               = _mm_mul_pd(fscal,dz30);
1169
1170             /* Update vectorial force */
1171             fix3             = _mm_add_pd(fix3,tx);
1172             fiy3             = _mm_add_pd(fiy3,ty);
1173             fiz3             = _mm_add_pd(fiz3,tz);
1174
1175             fjx0             = _mm_add_pd(fjx0,tx);
1176             fjy0             = _mm_add_pd(fjy0,ty);
1177             fjz0             = _mm_add_pd(fjz0,tz);
1178
1179             }
1180
1181             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1182
1183             /* Inner loop uses 169 flops */
1184         }
1185
1186         if(jidx<j_index_end)
1187         {
1188
1189             jnrA             = jjnr[jidx];
1190             j_coord_offsetA  = DIM*jnrA;
1191
1192             /* load j atom coordinates */
1193             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1194                                               &jx0,&jy0,&jz0);
1195
1196             /* Calculate displacement vector */
1197             dx00             = _mm_sub_pd(ix0,jx0);
1198             dy00             = _mm_sub_pd(iy0,jy0);
1199             dz00             = _mm_sub_pd(iz0,jz0);
1200             dx10             = _mm_sub_pd(ix1,jx0);
1201             dy10             = _mm_sub_pd(iy1,jy0);
1202             dz10             = _mm_sub_pd(iz1,jz0);
1203             dx20             = _mm_sub_pd(ix2,jx0);
1204             dy20             = _mm_sub_pd(iy2,jy0);
1205             dz20             = _mm_sub_pd(iz2,jz0);
1206             dx30             = _mm_sub_pd(ix3,jx0);
1207             dy30             = _mm_sub_pd(iy3,jy0);
1208             dz30             = _mm_sub_pd(iz3,jz0);
1209
1210             /* Calculate squared distance and things based on it */
1211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1215
1216             rinv00           = sse2_invsqrt_d(rsq00);
1217             rinv10           = sse2_invsqrt_d(rsq10);
1218             rinv20           = sse2_invsqrt_d(rsq20);
1219             rinv30           = sse2_invsqrt_d(rsq30);
1220
1221             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1225
1226             /* Load parameters for j particles */
1227             jq0              = _mm_load_sd(charge+jnrA+0);
1228             vdwjidx0A        = 2*vdwtype[jnrA+0];
1229
1230             fjx0             = _mm_setzero_pd();
1231             fjy0             = _mm_setzero_pd();
1232             fjz0             = _mm_setzero_pd();
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             if (gmx_mm_any_lt(rsq00,rcutoff2))
1239             {
1240
1241             r00              = _mm_mul_pd(rsq00,rinv00);
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1245
1246             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1247
1248             /* Analytical LJ-PME */
1249             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1250             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1251             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1252             exponent         = sse2_exp_d(ewcljrsq);
1253             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1254             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1255             /* f6A = 6 * C6grid * (1 - poly) */
1256             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1257             /* f6B = C6grid * exponent * beta^6 */
1258             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1259             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1260             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1261
1262             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1263
1264             fscal            = fvdw;
1265
1266             fscal            = _mm_and_pd(fscal,cutoff_mask);
1267
1268             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1269
1270             /* Calculate temporary vectorial force */
1271             tx               = _mm_mul_pd(fscal,dx00);
1272             ty               = _mm_mul_pd(fscal,dy00);
1273             tz               = _mm_mul_pd(fscal,dz00);
1274
1275             /* Update vectorial force */
1276             fix0             = _mm_add_pd(fix0,tx);
1277             fiy0             = _mm_add_pd(fiy0,ty);
1278             fiz0             = _mm_add_pd(fiz0,tz);
1279
1280             fjx0             = _mm_add_pd(fjx0,tx);
1281             fjy0             = _mm_add_pd(fjy0,ty);
1282             fjz0             = _mm_add_pd(fjz0,tz);
1283
1284             }
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             if (gmx_mm_any_lt(rsq10,rcutoff2))
1291             {
1292
1293             r10              = _mm_mul_pd(rsq10,rinv10);
1294
1295             /* Compute parameters for interactions between i and j atoms */
1296             qq10             = _mm_mul_pd(iq1,jq0);
1297
1298             /* EWALD ELECTROSTATICS */
1299
1300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1301             ewrt             = _mm_mul_pd(r10,ewtabscale);
1302             ewitab           = _mm_cvttpd_epi32(ewrt);
1303             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1304             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1305             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1306             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1307
1308             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1309
1310             fscal            = felec;
1311
1312             fscal            = _mm_and_pd(fscal,cutoff_mask);
1313
1314             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1315
1316             /* Calculate temporary vectorial force */
1317             tx               = _mm_mul_pd(fscal,dx10);
1318             ty               = _mm_mul_pd(fscal,dy10);
1319             tz               = _mm_mul_pd(fscal,dz10);
1320
1321             /* Update vectorial force */
1322             fix1             = _mm_add_pd(fix1,tx);
1323             fiy1             = _mm_add_pd(fiy1,ty);
1324             fiz1             = _mm_add_pd(fiz1,tz);
1325
1326             fjx0             = _mm_add_pd(fjx0,tx);
1327             fjy0             = _mm_add_pd(fjy0,ty);
1328             fjz0             = _mm_add_pd(fjz0,tz);
1329
1330             }
1331
1332             /**************************
1333              * CALCULATE INTERACTIONS *
1334              **************************/
1335
1336             if (gmx_mm_any_lt(rsq20,rcutoff2))
1337             {
1338
1339             r20              = _mm_mul_pd(rsq20,rinv20);
1340
1341             /* Compute parameters for interactions between i and j atoms */
1342             qq20             = _mm_mul_pd(iq2,jq0);
1343
1344             /* EWALD ELECTROSTATICS */
1345
1346             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1347             ewrt             = _mm_mul_pd(r20,ewtabscale);
1348             ewitab           = _mm_cvttpd_epi32(ewrt);
1349             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1350             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1351             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1352             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1353
1354             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1355
1356             fscal            = felec;
1357
1358             fscal            = _mm_and_pd(fscal,cutoff_mask);
1359
1360             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1361
1362             /* Calculate temporary vectorial force */
1363             tx               = _mm_mul_pd(fscal,dx20);
1364             ty               = _mm_mul_pd(fscal,dy20);
1365             tz               = _mm_mul_pd(fscal,dz20);
1366
1367             /* Update vectorial force */
1368             fix2             = _mm_add_pd(fix2,tx);
1369             fiy2             = _mm_add_pd(fiy2,ty);
1370             fiz2             = _mm_add_pd(fiz2,tz);
1371
1372             fjx0             = _mm_add_pd(fjx0,tx);
1373             fjy0             = _mm_add_pd(fjy0,ty);
1374             fjz0             = _mm_add_pd(fjz0,tz);
1375
1376             }
1377
1378             /**************************
1379              * CALCULATE INTERACTIONS *
1380              **************************/
1381
1382             if (gmx_mm_any_lt(rsq30,rcutoff2))
1383             {
1384
1385             r30              = _mm_mul_pd(rsq30,rinv30);
1386
1387             /* Compute parameters for interactions between i and j atoms */
1388             qq30             = _mm_mul_pd(iq3,jq0);
1389
1390             /* EWALD ELECTROSTATICS */
1391
1392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1393             ewrt             = _mm_mul_pd(r30,ewtabscale);
1394             ewitab           = _mm_cvttpd_epi32(ewrt);
1395             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1396             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1397             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1398             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1399
1400             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1401
1402             fscal            = felec;
1403
1404             fscal            = _mm_and_pd(fscal,cutoff_mask);
1405
1406             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1407
1408             /* Calculate temporary vectorial force */
1409             tx               = _mm_mul_pd(fscal,dx30);
1410             ty               = _mm_mul_pd(fscal,dy30);
1411             tz               = _mm_mul_pd(fscal,dz30);
1412
1413             /* Update vectorial force */
1414             fix3             = _mm_add_pd(fix3,tx);
1415             fiy3             = _mm_add_pd(fiy3,ty);
1416             fiz3             = _mm_add_pd(fiz3,tz);
1417
1418             fjx0             = _mm_add_pd(fjx0,tx);
1419             fjy0             = _mm_add_pd(fjy0,ty);
1420             fjz0             = _mm_add_pd(fjz0,tz);
1421
1422             }
1423
1424             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1425
1426             /* Inner loop uses 169 flops */
1427         }
1428
1429         /* End of innermost loop */
1430
1431         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1432                                               f+i_coord_offset,fshift+i_shift_offset);
1433
1434         /* Increment number of inner iterations */
1435         inneriter                  += j_index_end - j_index_start;
1436
1437         /* Outer loop uses 24 flops */
1438     }
1439
1440     /* Increment number of outer iterations */
1441     outeriter        += nri;
1442
1443     /* Update outer/inner flops */
1444
1445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1446 }