f5de2e356e9eb4a2f40cbb423de985999b0d3196
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     real             *vdwgridparam;
108     __m128d           one_half = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
156     rvdw             = _mm_set1_pd(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm_setzero_pd();
185         fiy0             = _mm_setzero_pd();
186         fiz0             = _mm_setzero_pd();
187         fix1             = _mm_setzero_pd();
188         fiy1             = _mm_setzero_pd();
189         fiz1             = _mm_setzero_pd();
190         fix2             = _mm_setzero_pd();
191         fiy2             = _mm_setzero_pd();
192         fiz2             = _mm_setzero_pd();
193         fix3             = _mm_setzero_pd();
194         fiy3             = _mm_setzero_pd();
195         fiz3             = _mm_setzero_pd();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_pd();
199         vvdwsum          = _mm_setzero_pd();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_pd(ix0,jx0);
217             dy00             = _mm_sub_pd(iy0,jy0);
218             dz00             = _mm_sub_pd(iz0,jz0);
219             dx10             = _mm_sub_pd(ix1,jx0);
220             dy10             = _mm_sub_pd(iy1,jy0);
221             dz10             = _mm_sub_pd(iz1,jz0);
222             dx20             = _mm_sub_pd(ix2,jx0);
223             dy20             = _mm_sub_pd(iy2,jy0);
224             dz20             = _mm_sub_pd(iz2,jz0);
225             dx30             = _mm_sub_pd(ix3,jx0);
226             dy30             = _mm_sub_pd(iy3,jy0);
227             dz30             = _mm_sub_pd(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
233             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
234
235             rinv00           = gmx_mm_invsqrt_pd(rsq00);
236             rinv10           = gmx_mm_invsqrt_pd(rsq10);
237             rinv20           = gmx_mm_invsqrt_pd(rsq20);
238             rinv30           = gmx_mm_invsqrt_pd(rsq30);
239
240             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
241             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
243             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249
250             fjx0             = _mm_setzero_pd();
251             fjy0             = _mm_setzero_pd();
252             fjz0             = _mm_setzero_pd();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
266
267             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
268                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
269
270             /* Analytical LJ-PME */
271             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
272             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
273             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
274             exponent         = gmx_simd_exp_d(ewcljrsq);
275             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
276             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
277             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
278             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
279             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
280             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
281                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
282             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
283             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
284
285             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
289             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             fscal            = _mm_and_pd(fscal,cutoff_mask);
294
295             /* Calculate temporary vectorial force */
296             tx               = _mm_mul_pd(fscal,dx00);
297             ty               = _mm_mul_pd(fscal,dy00);
298             tz               = _mm_mul_pd(fscal,dz00);
299
300             /* Update vectorial force */
301             fix0             = _mm_add_pd(fix0,tx);
302             fiy0             = _mm_add_pd(fiy0,ty);
303             fiz0             = _mm_add_pd(fiz0,tz);
304
305             fjx0             = _mm_add_pd(fjx0,tx);
306             fjy0             = _mm_add_pd(fjy0,ty);
307             fjz0             = _mm_add_pd(fjz0,tz);
308
309             }
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             if (gmx_mm_any_lt(rsq10,rcutoff2))
316             {
317
318             r10              = _mm_mul_pd(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_pd(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_pd(r10,ewtabscale);
327             ewitab           = _mm_cvttpd_epi32(ewrt);
328             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
337             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
338             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
340
341             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_and_pd(velec,cutoff_mask);
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_pd(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_pd(fscal,dx10);
353             ty               = _mm_mul_pd(fscal,dy10);
354             tz               = _mm_mul_pd(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm_add_pd(fix1,tx);
358             fiy1             = _mm_add_pd(fiy1,ty);
359             fiz1             = _mm_add_pd(fiz1,tz);
360
361             fjx0             = _mm_add_pd(fjx0,tx);
362             fjy0             = _mm_add_pd(fjy0,ty);
363             fjz0             = _mm_add_pd(fjz0,tz);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm_any_lt(rsq20,rcutoff2))
372             {
373
374             r20              = _mm_mul_pd(rsq20,rinv20);
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm_mul_pd(iq2,jq0);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _mm_mul_pd(r20,ewtabscale);
383             ewitab           = _mm_cvttpd_epi32(ewrt);
384             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
388             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
389             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
390             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
391             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
392             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
393             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
394             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
395             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
396
397             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velec            = _mm_and_pd(velec,cutoff_mask);
401             velecsum         = _mm_add_pd(velecsum,velec);
402
403             fscal            = felec;
404
405             fscal            = _mm_and_pd(fscal,cutoff_mask);
406
407             /* Calculate temporary vectorial force */
408             tx               = _mm_mul_pd(fscal,dx20);
409             ty               = _mm_mul_pd(fscal,dy20);
410             tz               = _mm_mul_pd(fscal,dz20);
411
412             /* Update vectorial force */
413             fix2             = _mm_add_pd(fix2,tx);
414             fiy2             = _mm_add_pd(fiy2,ty);
415             fiz2             = _mm_add_pd(fiz2,tz);
416
417             fjx0             = _mm_add_pd(fjx0,tx);
418             fjy0             = _mm_add_pd(fjy0,ty);
419             fjz0             = _mm_add_pd(fjz0,tz);
420
421             }
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             if (gmx_mm_any_lt(rsq30,rcutoff2))
428             {
429
430             r30              = _mm_mul_pd(rsq30,rinv30);
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq30             = _mm_mul_pd(iq3,jq0);
434
435             /* EWALD ELECTROSTATICS */
436
437             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
438             ewrt             = _mm_mul_pd(r30,ewtabscale);
439             ewitab           = _mm_cvttpd_epi32(ewrt);
440             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
441             ewitab           = _mm_slli_epi32(ewitab,2);
442             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
443             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
444             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
445             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
446             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
447             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
448             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
449             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
450             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
451             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
452
453             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_and_pd(velec,cutoff_mask);
457             velecsum         = _mm_add_pd(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_and_pd(fscal,cutoff_mask);
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_pd(fscal,dx30);
465             ty               = _mm_mul_pd(fscal,dy30);
466             tz               = _mm_mul_pd(fscal,dz30);
467
468             /* Update vectorial force */
469             fix3             = _mm_add_pd(fix3,tx);
470             fiy3             = _mm_add_pd(fiy3,ty);
471             fiz3             = _mm_add_pd(fiz3,tz);
472
473             fjx0             = _mm_add_pd(fjx0,tx);
474             fjy0             = _mm_add_pd(fjy0,ty);
475             fjz0             = _mm_add_pd(fjz0,tz);
476
477             }
478
479             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
480
481             /* Inner loop uses 203 flops */
482         }
483
484         if(jidx<j_index_end)
485         {
486
487             jnrA             = jjnr[jidx];
488             j_coord_offsetA  = DIM*jnrA;
489
490             /* load j atom coordinates */
491             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
492                                               &jx0,&jy0,&jz0);
493
494             /* Calculate displacement vector */
495             dx00             = _mm_sub_pd(ix0,jx0);
496             dy00             = _mm_sub_pd(iy0,jy0);
497             dz00             = _mm_sub_pd(iz0,jz0);
498             dx10             = _mm_sub_pd(ix1,jx0);
499             dy10             = _mm_sub_pd(iy1,jy0);
500             dz10             = _mm_sub_pd(iz1,jz0);
501             dx20             = _mm_sub_pd(ix2,jx0);
502             dy20             = _mm_sub_pd(iy2,jy0);
503             dz20             = _mm_sub_pd(iz2,jz0);
504             dx30             = _mm_sub_pd(ix3,jx0);
505             dy30             = _mm_sub_pd(iy3,jy0);
506             dz30             = _mm_sub_pd(iz3,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
510             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
511             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
512             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
513
514             rinv00           = gmx_mm_invsqrt_pd(rsq00);
515             rinv10           = gmx_mm_invsqrt_pd(rsq10);
516             rinv20           = gmx_mm_invsqrt_pd(rsq20);
517             rinv30           = gmx_mm_invsqrt_pd(rsq30);
518
519             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
520             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
521             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
522             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
523
524             /* Load parameters for j particles */
525             jq0              = _mm_load_sd(charge+jnrA+0);
526             vdwjidx0A        = 2*vdwtype[jnrA+0];
527
528             fjx0             = _mm_setzero_pd();
529             fjy0             = _mm_setzero_pd();
530             fjz0             = _mm_setzero_pd();
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq00,rcutoff2))
537             {
538
539             r00              = _mm_mul_pd(rsq00,rinv00);
540
541             /* Compute parameters for interactions between i and j atoms */
542             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
543
544             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
545
546             /* Analytical LJ-PME */
547             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
548             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
549             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
550             exponent         = gmx_simd_exp_d(ewcljrsq);
551             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
552             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
553             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
554             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
555             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
556             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
557                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
558             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
559             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
560
561             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
565             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
566             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
567
568             fscal            = fvdw;
569
570             fscal            = _mm_and_pd(fscal,cutoff_mask);
571
572             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_pd(fscal,dx00);
576             ty               = _mm_mul_pd(fscal,dy00);
577             tz               = _mm_mul_pd(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm_add_pd(fix0,tx);
581             fiy0             = _mm_add_pd(fiy0,ty);
582             fiz0             = _mm_add_pd(fiz0,tz);
583
584             fjx0             = _mm_add_pd(fjx0,tx);
585             fjy0             = _mm_add_pd(fjy0,ty);
586             fjz0             = _mm_add_pd(fjz0,tz);
587
588             }
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             if (gmx_mm_any_lt(rsq10,rcutoff2))
595             {
596
597             r10              = _mm_mul_pd(rsq10,rinv10);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq10             = _mm_mul_pd(iq1,jq0);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r10,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
608             ewitab           = _mm_slli_epi32(ewitab,2);
609             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
610             ewtabD           = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
612             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
613             ewtabFn          = _mm_setzero_pd();
614             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
615             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
616             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
617             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
618             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
619
620             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm_and_pd(velec,cutoff_mask);
624             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
625             velecsum         = _mm_add_pd(velecsum,velec);
626
627             fscal            = felec;
628
629             fscal            = _mm_and_pd(fscal,cutoff_mask);
630
631             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm_mul_pd(fscal,dx10);
635             ty               = _mm_mul_pd(fscal,dy10);
636             tz               = _mm_mul_pd(fscal,dz10);
637
638             /* Update vectorial force */
639             fix1             = _mm_add_pd(fix1,tx);
640             fiy1             = _mm_add_pd(fiy1,ty);
641             fiz1             = _mm_add_pd(fiz1,tz);
642
643             fjx0             = _mm_add_pd(fjx0,tx);
644             fjy0             = _mm_add_pd(fjy0,ty);
645             fjz0             = _mm_add_pd(fjz0,tz);
646
647             }
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             if (gmx_mm_any_lt(rsq20,rcutoff2))
654             {
655
656             r20              = _mm_mul_pd(rsq20,rinv20);
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq20             = _mm_mul_pd(iq2,jq0);
660
661             /* EWALD ELECTROSTATICS */
662
663             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664             ewrt             = _mm_mul_pd(r20,ewtabscale);
665             ewitab           = _mm_cvttpd_epi32(ewrt);
666             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
667             ewitab           = _mm_slli_epi32(ewitab,2);
668             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
669             ewtabD           = _mm_setzero_pd();
670             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
671             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
672             ewtabFn          = _mm_setzero_pd();
673             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
674             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
675             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
676             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
677             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
678
679             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
680
681             /* Update potential sum for this i atom from the interaction with this j atom. */
682             velec            = _mm_and_pd(velec,cutoff_mask);
683             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
684             velecsum         = _mm_add_pd(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm_and_pd(fscal,cutoff_mask);
689
690             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm_mul_pd(fscal,dx20);
694             ty               = _mm_mul_pd(fscal,dy20);
695             tz               = _mm_mul_pd(fscal,dz20);
696
697             /* Update vectorial force */
698             fix2             = _mm_add_pd(fix2,tx);
699             fiy2             = _mm_add_pd(fiy2,ty);
700             fiz2             = _mm_add_pd(fiz2,tz);
701
702             fjx0             = _mm_add_pd(fjx0,tx);
703             fjy0             = _mm_add_pd(fjy0,ty);
704             fjz0             = _mm_add_pd(fjz0,tz);
705
706             }
707
708             /**************************
709              * CALCULATE INTERACTIONS *
710              **************************/
711
712             if (gmx_mm_any_lt(rsq30,rcutoff2))
713             {
714
715             r30              = _mm_mul_pd(rsq30,rinv30);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq30             = _mm_mul_pd(iq3,jq0);
719
720             /* EWALD ELECTROSTATICS */
721
722             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
723             ewrt             = _mm_mul_pd(r30,ewtabscale);
724             ewitab           = _mm_cvttpd_epi32(ewrt);
725             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
726             ewitab           = _mm_slli_epi32(ewitab,2);
727             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
728             ewtabD           = _mm_setzero_pd();
729             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
730             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
731             ewtabFn          = _mm_setzero_pd();
732             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
733             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
734             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
735             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
736             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
737
738             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
739
740             /* Update potential sum for this i atom from the interaction with this j atom. */
741             velec            = _mm_and_pd(velec,cutoff_mask);
742             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
743             velecsum         = _mm_add_pd(velecsum,velec);
744
745             fscal            = felec;
746
747             fscal            = _mm_and_pd(fscal,cutoff_mask);
748
749             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
750
751             /* Calculate temporary vectorial force */
752             tx               = _mm_mul_pd(fscal,dx30);
753             ty               = _mm_mul_pd(fscal,dy30);
754             tz               = _mm_mul_pd(fscal,dz30);
755
756             /* Update vectorial force */
757             fix3             = _mm_add_pd(fix3,tx);
758             fiy3             = _mm_add_pd(fiy3,ty);
759             fiz3             = _mm_add_pd(fiz3,tz);
760
761             fjx0             = _mm_add_pd(fjx0,tx);
762             fjy0             = _mm_add_pd(fjy0,ty);
763             fjz0             = _mm_add_pd(fjz0,tz);
764
765             }
766
767             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
768
769             /* Inner loop uses 203 flops */
770         }
771
772         /* End of innermost loop */
773
774         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
775                                               f+i_coord_offset,fshift+i_shift_offset);
776
777         ggid                        = gid[iidx];
778         /* Update potential energies */
779         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
780         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
781
782         /* Increment number of inner iterations */
783         inneriter                  += j_index_end - j_index_start;
784
785         /* Outer loop uses 26 flops */
786     }
787
788     /* Increment number of outer iterations */
789     outeriter        += nri;
790
791     /* Update outer/inner flops */
792
793     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*203);
794 }
795 /*
796  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
797  * Electrostatics interaction: Ewald
798  * VdW interaction:            LJEwald
799  * Geometry:                   Water4-Particle
800  * Calculate force/pot:        Force
801  */
802 void
803 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
804                     (t_nblist                    * gmx_restrict       nlist,
805                      rvec                        * gmx_restrict          xx,
806                      rvec                        * gmx_restrict          ff,
807                      t_forcerec                  * gmx_restrict          fr,
808                      t_mdatoms                   * gmx_restrict     mdatoms,
809                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
810                      t_nrnb                      * gmx_restrict        nrnb)
811 {
812     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
813      * just 0 for non-waters.
814      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
815      * jnr indices corresponding to data put in the four positions in the SIMD register.
816      */
817     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
818     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
819     int              jnrA,jnrB;
820     int              j_coord_offsetA,j_coord_offsetB;
821     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
822     real             rcutoff_scalar;
823     real             *shiftvec,*fshift,*x,*f;
824     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
825     int              vdwioffset0;
826     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
827     int              vdwioffset1;
828     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
829     int              vdwioffset2;
830     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
831     int              vdwioffset3;
832     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
833     int              vdwjidx0A,vdwjidx0B;
834     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
835     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
836     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
837     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
838     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
839     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
840     real             *charge;
841     int              nvdwtype;
842     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
843     int              *vdwtype;
844     real             *vdwparam;
845     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
846     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
847     __m128d           c6grid_00;
848     __m128d           c6grid_10;
849     __m128d           c6grid_20;
850     __m128d           c6grid_30;
851     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
852     real             *vdwgridparam;
853     __m128d           one_half = _mm_set1_pd(0.5);
854     __m128d           minus_one = _mm_set1_pd(-1.0);
855     __m128i          ewitab;
856     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
857     real             *ewtab;
858     __m128d          dummy_mask,cutoff_mask;
859     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
860     __m128d          one     = _mm_set1_pd(1.0);
861     __m128d          two     = _mm_set1_pd(2.0);
862     x                = xx[0];
863     f                = ff[0];
864
865     nri              = nlist->nri;
866     iinr             = nlist->iinr;
867     jindex           = nlist->jindex;
868     jjnr             = nlist->jjnr;
869     shiftidx         = nlist->shift;
870     gid              = nlist->gid;
871     shiftvec         = fr->shift_vec[0];
872     fshift           = fr->fshift[0];
873     facel            = _mm_set1_pd(fr->epsfac);
874     charge           = mdatoms->chargeA;
875     nvdwtype         = fr->ntype;
876     vdwparam         = fr->nbfp;
877     vdwtype          = mdatoms->typeA;
878     vdwgridparam     = fr->ljpme_c6grid;
879     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
880     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
881     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
882
883     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
884     ewtab            = fr->ic->tabq_coul_F;
885     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
886     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
887
888     /* Setup water-specific parameters */
889     inr              = nlist->iinr[0];
890     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
891     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
892     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
893     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
894
895     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
896     rcutoff_scalar   = fr->rcoulomb;
897     rcutoff          = _mm_set1_pd(rcutoff_scalar);
898     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
899
900     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
901     rvdw             = _mm_set1_pd(fr->rvdw);
902
903     /* Avoid stupid compiler warnings */
904     jnrA = jnrB = 0;
905     j_coord_offsetA = 0;
906     j_coord_offsetB = 0;
907
908     outeriter        = 0;
909     inneriter        = 0;
910
911     /* Start outer loop over neighborlists */
912     for(iidx=0; iidx<nri; iidx++)
913     {
914         /* Load shift vector for this list */
915         i_shift_offset   = DIM*shiftidx[iidx];
916
917         /* Load limits for loop over neighbors */
918         j_index_start    = jindex[iidx];
919         j_index_end      = jindex[iidx+1];
920
921         /* Get outer coordinate index */
922         inr              = iinr[iidx];
923         i_coord_offset   = DIM*inr;
924
925         /* Load i particle coords and add shift vector */
926         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
927                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
928
929         fix0             = _mm_setzero_pd();
930         fiy0             = _mm_setzero_pd();
931         fiz0             = _mm_setzero_pd();
932         fix1             = _mm_setzero_pd();
933         fiy1             = _mm_setzero_pd();
934         fiz1             = _mm_setzero_pd();
935         fix2             = _mm_setzero_pd();
936         fiy2             = _mm_setzero_pd();
937         fiz2             = _mm_setzero_pd();
938         fix3             = _mm_setzero_pd();
939         fiy3             = _mm_setzero_pd();
940         fiz3             = _mm_setzero_pd();
941
942         /* Start inner kernel loop */
943         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
944         {
945
946             /* Get j neighbor index, and coordinate index */
947             jnrA             = jjnr[jidx];
948             jnrB             = jjnr[jidx+1];
949             j_coord_offsetA  = DIM*jnrA;
950             j_coord_offsetB  = DIM*jnrB;
951
952             /* load j atom coordinates */
953             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
954                                               &jx0,&jy0,&jz0);
955
956             /* Calculate displacement vector */
957             dx00             = _mm_sub_pd(ix0,jx0);
958             dy00             = _mm_sub_pd(iy0,jy0);
959             dz00             = _mm_sub_pd(iz0,jz0);
960             dx10             = _mm_sub_pd(ix1,jx0);
961             dy10             = _mm_sub_pd(iy1,jy0);
962             dz10             = _mm_sub_pd(iz1,jz0);
963             dx20             = _mm_sub_pd(ix2,jx0);
964             dy20             = _mm_sub_pd(iy2,jy0);
965             dz20             = _mm_sub_pd(iz2,jz0);
966             dx30             = _mm_sub_pd(ix3,jx0);
967             dy30             = _mm_sub_pd(iy3,jy0);
968             dz30             = _mm_sub_pd(iz3,jz0);
969
970             /* Calculate squared distance and things based on it */
971             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
972             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
973             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
974             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
975
976             rinv00           = gmx_mm_invsqrt_pd(rsq00);
977             rinv10           = gmx_mm_invsqrt_pd(rsq10);
978             rinv20           = gmx_mm_invsqrt_pd(rsq20);
979             rinv30           = gmx_mm_invsqrt_pd(rsq30);
980
981             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
982             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
983             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
984             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
988             vdwjidx0A        = 2*vdwtype[jnrA+0];
989             vdwjidx0B        = 2*vdwtype[jnrB+0];
990
991             fjx0             = _mm_setzero_pd();
992             fjy0             = _mm_setzero_pd();
993             fjz0             = _mm_setzero_pd();
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             if (gmx_mm_any_lt(rsq00,rcutoff2))
1000             {
1001
1002             r00              = _mm_mul_pd(rsq00,rinv00);
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1006                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1007
1008             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1009                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1010
1011             /* Analytical LJ-PME */
1012             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1013             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1014             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1015             exponent         = gmx_simd_exp_d(ewcljrsq);
1016             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1017             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1018             /* f6A = 6 * C6grid * (1 - poly) */
1019             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1020             /* f6B = C6grid * exponent * beta^6 */
1021             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1022             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1023             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1024
1025             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1026
1027             fscal            = fvdw;
1028
1029             fscal            = _mm_and_pd(fscal,cutoff_mask);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_pd(fscal,dx00);
1033             ty               = _mm_mul_pd(fscal,dy00);
1034             tz               = _mm_mul_pd(fscal,dz00);
1035
1036             /* Update vectorial force */
1037             fix0             = _mm_add_pd(fix0,tx);
1038             fiy0             = _mm_add_pd(fiy0,ty);
1039             fiz0             = _mm_add_pd(fiz0,tz);
1040
1041             fjx0             = _mm_add_pd(fjx0,tx);
1042             fjy0             = _mm_add_pd(fjy0,ty);
1043             fjz0             = _mm_add_pd(fjz0,tz);
1044
1045             }
1046
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             if (gmx_mm_any_lt(rsq10,rcutoff2))
1052             {
1053
1054             r10              = _mm_mul_pd(rsq10,rinv10);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm_mul_pd(iq1,jq0);
1058
1059             /* EWALD ELECTROSTATICS */
1060
1061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1062             ewrt             = _mm_mul_pd(r10,ewtabscale);
1063             ewitab           = _mm_cvttpd_epi32(ewrt);
1064             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1065             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1066                                          &ewtabF,&ewtabFn);
1067             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1068             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1069
1070             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm_and_pd(fscal,cutoff_mask);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm_mul_pd(fscal,dx10);
1078             ty               = _mm_mul_pd(fscal,dy10);
1079             tz               = _mm_mul_pd(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm_add_pd(fix1,tx);
1083             fiy1             = _mm_add_pd(fiy1,ty);
1084             fiz1             = _mm_add_pd(fiz1,tz);
1085
1086             fjx0             = _mm_add_pd(fjx0,tx);
1087             fjy0             = _mm_add_pd(fjy0,ty);
1088             fjz0             = _mm_add_pd(fjz0,tz);
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq20,rcutoff2))
1097             {
1098
1099             r20              = _mm_mul_pd(rsq20,rinv20);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq20             = _mm_mul_pd(iq2,jq0);
1103
1104             /* EWALD ELECTROSTATICS */
1105
1106             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1107             ewrt             = _mm_mul_pd(r20,ewtabscale);
1108             ewitab           = _mm_cvttpd_epi32(ewrt);
1109             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1110             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1111                                          &ewtabF,&ewtabFn);
1112             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1113             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1114
1115             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1116
1117             fscal            = felec;
1118
1119             fscal            = _mm_and_pd(fscal,cutoff_mask);
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm_mul_pd(fscal,dx20);
1123             ty               = _mm_mul_pd(fscal,dy20);
1124             tz               = _mm_mul_pd(fscal,dz20);
1125
1126             /* Update vectorial force */
1127             fix2             = _mm_add_pd(fix2,tx);
1128             fiy2             = _mm_add_pd(fiy2,ty);
1129             fiz2             = _mm_add_pd(fiz2,tz);
1130
1131             fjx0             = _mm_add_pd(fjx0,tx);
1132             fjy0             = _mm_add_pd(fjy0,ty);
1133             fjz0             = _mm_add_pd(fjz0,tz);
1134
1135             }
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             if (gmx_mm_any_lt(rsq30,rcutoff2))
1142             {
1143
1144             r30              = _mm_mul_pd(rsq30,rinv30);
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq30             = _mm_mul_pd(iq3,jq0);
1148
1149             /* EWALD ELECTROSTATICS */
1150
1151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1152             ewrt             = _mm_mul_pd(r30,ewtabscale);
1153             ewitab           = _mm_cvttpd_epi32(ewrt);
1154             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1155             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1156                                          &ewtabF,&ewtabFn);
1157             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1158             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1159
1160             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm_and_pd(fscal,cutoff_mask);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm_mul_pd(fscal,dx30);
1168             ty               = _mm_mul_pd(fscal,dy30);
1169             tz               = _mm_mul_pd(fscal,dz30);
1170
1171             /* Update vectorial force */
1172             fix3             = _mm_add_pd(fix3,tx);
1173             fiy3             = _mm_add_pd(fiy3,ty);
1174             fiz3             = _mm_add_pd(fiz3,tz);
1175
1176             fjx0             = _mm_add_pd(fjx0,tx);
1177             fjy0             = _mm_add_pd(fjy0,ty);
1178             fjz0             = _mm_add_pd(fjz0,tz);
1179
1180             }
1181
1182             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1183
1184             /* Inner loop uses 169 flops */
1185         }
1186
1187         if(jidx<j_index_end)
1188         {
1189
1190             jnrA             = jjnr[jidx];
1191             j_coord_offsetA  = DIM*jnrA;
1192
1193             /* load j atom coordinates */
1194             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1195                                               &jx0,&jy0,&jz0);
1196
1197             /* Calculate displacement vector */
1198             dx00             = _mm_sub_pd(ix0,jx0);
1199             dy00             = _mm_sub_pd(iy0,jy0);
1200             dz00             = _mm_sub_pd(iz0,jz0);
1201             dx10             = _mm_sub_pd(ix1,jx0);
1202             dy10             = _mm_sub_pd(iy1,jy0);
1203             dz10             = _mm_sub_pd(iz1,jz0);
1204             dx20             = _mm_sub_pd(ix2,jx0);
1205             dy20             = _mm_sub_pd(iy2,jy0);
1206             dz20             = _mm_sub_pd(iz2,jz0);
1207             dx30             = _mm_sub_pd(ix3,jx0);
1208             dy30             = _mm_sub_pd(iy3,jy0);
1209             dz30             = _mm_sub_pd(iz3,jz0);
1210
1211             /* Calculate squared distance and things based on it */
1212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1216
1217             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1218             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1219             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1220             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1221
1222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1225             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1226
1227             /* Load parameters for j particles */
1228             jq0              = _mm_load_sd(charge+jnrA+0);
1229             vdwjidx0A        = 2*vdwtype[jnrA+0];
1230
1231             fjx0             = _mm_setzero_pd();
1232             fjy0             = _mm_setzero_pd();
1233             fjz0             = _mm_setzero_pd();
1234
1235             /**************************
1236              * CALCULATE INTERACTIONS *
1237              **************************/
1238
1239             if (gmx_mm_any_lt(rsq00,rcutoff2))
1240             {
1241
1242             r00              = _mm_mul_pd(rsq00,rinv00);
1243
1244             /* Compute parameters for interactions between i and j atoms */
1245             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1246
1247             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1248
1249             /* Analytical LJ-PME */
1250             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1251             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1252             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1253             exponent         = gmx_simd_exp_d(ewcljrsq);
1254             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1255             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1256             /* f6A = 6 * C6grid * (1 - poly) */
1257             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1258             /* f6B = C6grid * exponent * beta^6 */
1259             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1260             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1261             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1262
1263             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1264
1265             fscal            = fvdw;
1266
1267             fscal            = _mm_and_pd(fscal,cutoff_mask);
1268
1269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_pd(fscal,dx00);
1273             ty               = _mm_mul_pd(fscal,dy00);
1274             tz               = _mm_mul_pd(fscal,dz00);
1275
1276             /* Update vectorial force */
1277             fix0             = _mm_add_pd(fix0,tx);
1278             fiy0             = _mm_add_pd(fiy0,ty);
1279             fiz0             = _mm_add_pd(fiz0,tz);
1280
1281             fjx0             = _mm_add_pd(fjx0,tx);
1282             fjy0             = _mm_add_pd(fjy0,ty);
1283             fjz0             = _mm_add_pd(fjz0,tz);
1284
1285             }
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             if (gmx_mm_any_lt(rsq10,rcutoff2))
1292             {
1293
1294             r10              = _mm_mul_pd(rsq10,rinv10);
1295
1296             /* Compute parameters for interactions between i and j atoms */
1297             qq10             = _mm_mul_pd(iq1,jq0);
1298
1299             /* EWALD ELECTROSTATICS */
1300
1301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1302             ewrt             = _mm_mul_pd(r10,ewtabscale);
1303             ewitab           = _mm_cvttpd_epi32(ewrt);
1304             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1305             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1306             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1307             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1308
1309             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_and_pd(fscal,cutoff_mask);
1314
1315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316
1317             /* Calculate temporary vectorial force */
1318             tx               = _mm_mul_pd(fscal,dx10);
1319             ty               = _mm_mul_pd(fscal,dy10);
1320             tz               = _mm_mul_pd(fscal,dz10);
1321
1322             /* Update vectorial force */
1323             fix1             = _mm_add_pd(fix1,tx);
1324             fiy1             = _mm_add_pd(fiy1,ty);
1325             fiz1             = _mm_add_pd(fiz1,tz);
1326
1327             fjx0             = _mm_add_pd(fjx0,tx);
1328             fjy0             = _mm_add_pd(fjy0,ty);
1329             fjz0             = _mm_add_pd(fjz0,tz);
1330
1331             }
1332
1333             /**************************
1334              * CALCULATE INTERACTIONS *
1335              **************************/
1336
1337             if (gmx_mm_any_lt(rsq20,rcutoff2))
1338             {
1339
1340             r20              = _mm_mul_pd(rsq20,rinv20);
1341
1342             /* Compute parameters for interactions between i and j atoms */
1343             qq20             = _mm_mul_pd(iq2,jq0);
1344
1345             /* EWALD ELECTROSTATICS */
1346
1347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1348             ewrt             = _mm_mul_pd(r20,ewtabscale);
1349             ewitab           = _mm_cvttpd_epi32(ewrt);
1350             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1351             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1352             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1353             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1354
1355             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1356
1357             fscal            = felec;
1358
1359             fscal            = _mm_and_pd(fscal,cutoff_mask);
1360
1361             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1362
1363             /* Calculate temporary vectorial force */
1364             tx               = _mm_mul_pd(fscal,dx20);
1365             ty               = _mm_mul_pd(fscal,dy20);
1366             tz               = _mm_mul_pd(fscal,dz20);
1367
1368             /* Update vectorial force */
1369             fix2             = _mm_add_pd(fix2,tx);
1370             fiy2             = _mm_add_pd(fiy2,ty);
1371             fiz2             = _mm_add_pd(fiz2,tz);
1372
1373             fjx0             = _mm_add_pd(fjx0,tx);
1374             fjy0             = _mm_add_pd(fjy0,ty);
1375             fjz0             = _mm_add_pd(fjz0,tz);
1376
1377             }
1378
1379             /**************************
1380              * CALCULATE INTERACTIONS *
1381              **************************/
1382
1383             if (gmx_mm_any_lt(rsq30,rcutoff2))
1384             {
1385
1386             r30              = _mm_mul_pd(rsq30,rinv30);
1387
1388             /* Compute parameters for interactions between i and j atoms */
1389             qq30             = _mm_mul_pd(iq3,jq0);
1390
1391             /* EWALD ELECTROSTATICS */
1392
1393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1394             ewrt             = _mm_mul_pd(r30,ewtabscale);
1395             ewitab           = _mm_cvttpd_epi32(ewrt);
1396             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1397             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1398             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1399             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1400
1401             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1402
1403             fscal            = felec;
1404
1405             fscal            = _mm_and_pd(fscal,cutoff_mask);
1406
1407             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm_mul_pd(fscal,dx30);
1411             ty               = _mm_mul_pd(fscal,dy30);
1412             tz               = _mm_mul_pd(fscal,dz30);
1413
1414             /* Update vectorial force */
1415             fix3             = _mm_add_pd(fix3,tx);
1416             fiy3             = _mm_add_pd(fiy3,ty);
1417             fiz3             = _mm_add_pd(fiz3,tz);
1418
1419             fjx0             = _mm_add_pd(fjx0,tx);
1420             fjy0             = _mm_add_pd(fjy0,ty);
1421             fjz0             = _mm_add_pd(fjz0,tz);
1422
1423             }
1424
1425             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1426
1427             /* Inner loop uses 169 flops */
1428         }
1429
1430         /* End of innermost loop */
1431
1432         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1433                                               f+i_coord_offset,fshift+i_shift_offset);
1434
1435         /* Increment number of inner iterations */
1436         inneriter                  += j_index_end - j_index_start;
1437
1438         /* Outer loop uses 24 flops */
1439     }
1440
1441     /* Increment number of outer iterations */
1442     outeriter        += nri;
1443
1444     /* Update outer/inner flops */
1445
1446     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1447 }