Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128d           one_half = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = _mm_set1_pd(rcutoff_scalar);
155     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
158     rvdw             = _mm_set1_pd(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _mm_setzero_pd();
187         fiy0             = _mm_setzero_pd();
188         fiz0             = _mm_setzero_pd();
189         fix1             = _mm_setzero_pd();
190         fiy1             = _mm_setzero_pd();
191         fiz1             = _mm_setzero_pd();
192         fix2             = _mm_setzero_pd();
193         fiy2             = _mm_setzero_pd();
194         fiz2             = _mm_setzero_pd();
195         fix3             = _mm_setzero_pd();
196         fiy3             = _mm_setzero_pd();
197         fiz3             = _mm_setzero_pd();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_pd();
201         vvdwsum          = _mm_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_pd(ix0,jx0);
219             dy00             = _mm_sub_pd(iy0,jy0);
220             dz00             = _mm_sub_pd(iz0,jz0);
221             dx10             = _mm_sub_pd(ix1,jx0);
222             dy10             = _mm_sub_pd(iy1,jy0);
223             dz10             = _mm_sub_pd(iz1,jz0);
224             dx20             = _mm_sub_pd(ix2,jx0);
225             dy20             = _mm_sub_pd(iy2,jy0);
226             dz20             = _mm_sub_pd(iz2,jz0);
227             dx30             = _mm_sub_pd(ix3,jx0);
228             dy30             = _mm_sub_pd(iy3,jy0);
229             dz30             = _mm_sub_pd(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_pd(rsq00);
238             rinv10           = gmx_mm_invsqrt_pd(rsq10);
239             rinv20           = gmx_mm_invsqrt_pd(rsq20);
240             rinv30           = gmx_mm_invsqrt_pd(rsq30);
241
242             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
243             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
244             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
245             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251
252             fjx0             = _mm_setzero_pd();
253             fjy0             = _mm_setzero_pd();
254             fjz0             = _mm_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
267                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
268
269             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
270                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
271
272             /* Analytical LJ-PME */
273             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
274             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
275             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
276             exponent         = gmx_simd_exp_d(ewcljrsq);
277             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
278             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
279             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
280             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
281             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
282             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
283                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
284             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
285             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
286
287             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _mm_and_pd(fscal,cutoff_mask);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_pd(fscal,dx00);
299             ty               = _mm_mul_pd(fscal,dy00);
300             tz               = _mm_mul_pd(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_pd(fix0,tx);
304             fiy0             = _mm_add_pd(fiy0,ty);
305             fiz0             = _mm_add_pd(fiz0,tz);
306
307             fjx0             = _mm_add_pd(fjx0,tx);
308             fjy0             = _mm_add_pd(fjy0,ty);
309             fjz0             = _mm_add_pd(fjz0,tz);
310
311             }
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq10,rcutoff2))
318             {
319
320             r10              = _mm_mul_pd(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_pd(iq1,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_pd(r10,ewtabscale);
329             ewitab           = _mm_cvttpd_epi32(ewrt);
330             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
339             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
340             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
342
343             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_and_pd(velec,cutoff_mask);
347             velecsum         = _mm_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm_and_pd(fscal,cutoff_mask);
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_pd(fscal,dx10);
355             ty               = _mm_mul_pd(fscal,dy10);
356             tz               = _mm_mul_pd(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm_add_pd(fix1,tx);
360             fiy1             = _mm_add_pd(fiy1,ty);
361             fiz1             = _mm_add_pd(fiz1,tz);
362
363             fjx0             = _mm_add_pd(fjx0,tx);
364             fjy0             = _mm_add_pd(fjy0,ty);
365             fjz0             = _mm_add_pd(fjz0,tz);
366
367             }
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             if (gmx_mm_any_lt(rsq20,rcutoff2))
374             {
375
376             r20              = _mm_mul_pd(rsq20,rinv20);
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _mm_mul_pd(iq2,jq0);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm_mul_pd(r20,ewtabscale);
385             ewitab           = _mm_cvttpd_epi32(ewrt);
386             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
390             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
391             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
392             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
393             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
394             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
395             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
396             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
397             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
398
399             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm_and_pd(velec,cutoff_mask);
403             velecsum         = _mm_add_pd(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm_and_pd(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_pd(fscal,dx20);
411             ty               = _mm_mul_pd(fscal,dy20);
412             tz               = _mm_mul_pd(fscal,dz20);
413
414             /* Update vectorial force */
415             fix2             = _mm_add_pd(fix2,tx);
416             fiy2             = _mm_add_pd(fiy2,ty);
417             fiz2             = _mm_add_pd(fiz2,tz);
418
419             fjx0             = _mm_add_pd(fjx0,tx);
420             fjy0             = _mm_add_pd(fjy0,ty);
421             fjz0             = _mm_add_pd(fjz0,tz);
422
423             }
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             if (gmx_mm_any_lt(rsq30,rcutoff2))
430             {
431
432             r30              = _mm_mul_pd(rsq30,rinv30);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq30             = _mm_mul_pd(iq3,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = _mm_mul_pd(r30,ewtabscale);
441             ewitab           = _mm_cvttpd_epi32(ewrt);
442             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
443             ewitab           = _mm_slli_epi32(ewitab,2);
444             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
445             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
446             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
447             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
448             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
449             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
450             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
451             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
452             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
453             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
454
455             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velec            = _mm_and_pd(velec,cutoff_mask);
459             velecsum         = _mm_add_pd(velecsum,velec);
460
461             fscal            = felec;
462
463             fscal            = _mm_and_pd(fscal,cutoff_mask);
464
465             /* Calculate temporary vectorial force */
466             tx               = _mm_mul_pd(fscal,dx30);
467             ty               = _mm_mul_pd(fscal,dy30);
468             tz               = _mm_mul_pd(fscal,dz30);
469
470             /* Update vectorial force */
471             fix3             = _mm_add_pd(fix3,tx);
472             fiy3             = _mm_add_pd(fiy3,ty);
473             fiz3             = _mm_add_pd(fiz3,tz);
474
475             fjx0             = _mm_add_pd(fjx0,tx);
476             fjy0             = _mm_add_pd(fjy0,ty);
477             fjz0             = _mm_add_pd(fjz0,tz);
478
479             }
480
481             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
482
483             /* Inner loop uses 203 flops */
484         }
485
486         if(jidx<j_index_end)
487         {
488
489             jnrA             = jjnr[jidx];
490             j_coord_offsetA  = DIM*jnrA;
491
492             /* load j atom coordinates */
493             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
494                                               &jx0,&jy0,&jz0);
495
496             /* Calculate displacement vector */
497             dx00             = _mm_sub_pd(ix0,jx0);
498             dy00             = _mm_sub_pd(iy0,jy0);
499             dz00             = _mm_sub_pd(iz0,jz0);
500             dx10             = _mm_sub_pd(ix1,jx0);
501             dy10             = _mm_sub_pd(iy1,jy0);
502             dz10             = _mm_sub_pd(iz1,jz0);
503             dx20             = _mm_sub_pd(ix2,jx0);
504             dy20             = _mm_sub_pd(iy2,jy0);
505             dz20             = _mm_sub_pd(iz2,jz0);
506             dx30             = _mm_sub_pd(ix3,jx0);
507             dy30             = _mm_sub_pd(iy3,jy0);
508             dz30             = _mm_sub_pd(iz3,jz0);
509
510             /* Calculate squared distance and things based on it */
511             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
512             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
513             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
514             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
515
516             rinv00           = gmx_mm_invsqrt_pd(rsq00);
517             rinv10           = gmx_mm_invsqrt_pd(rsq10);
518             rinv20           = gmx_mm_invsqrt_pd(rsq20);
519             rinv30           = gmx_mm_invsqrt_pd(rsq30);
520
521             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
522             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
523             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
524             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
525
526             /* Load parameters for j particles */
527             jq0              = _mm_load_sd(charge+jnrA+0);
528             vdwjidx0A        = 2*vdwtype[jnrA+0];
529
530             fjx0             = _mm_setzero_pd();
531             fjy0             = _mm_setzero_pd();
532             fjz0             = _mm_setzero_pd();
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             if (gmx_mm_any_lt(rsq00,rcutoff2))
539             {
540
541             r00              = _mm_mul_pd(rsq00,rinv00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
545
546             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
547
548             /* Analytical LJ-PME */
549             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
550             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
551             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
552             exponent         = gmx_simd_exp_d(ewcljrsq);
553             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
554             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
555             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
556             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
557             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
558             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
559                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
560             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
561             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
562
563             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
567             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
568             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
569
570             fscal            = fvdw;
571
572             fscal            = _mm_and_pd(fscal,cutoff_mask);
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_pd(fscal,dx00);
578             ty               = _mm_mul_pd(fscal,dy00);
579             tz               = _mm_mul_pd(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm_add_pd(fix0,tx);
583             fiy0             = _mm_add_pd(fiy0,ty);
584             fiz0             = _mm_add_pd(fiz0,tz);
585
586             fjx0             = _mm_add_pd(fjx0,tx);
587             fjy0             = _mm_add_pd(fjy0,ty);
588             fjz0             = _mm_add_pd(fjz0,tz);
589
590             }
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             if (gmx_mm_any_lt(rsq10,rcutoff2))
597             {
598
599             r10              = _mm_mul_pd(rsq10,rinv10);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq10             = _mm_mul_pd(iq1,jq0);
603
604             /* EWALD ELECTROSTATICS */
605
606             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607             ewrt             = _mm_mul_pd(r10,ewtabscale);
608             ewitab           = _mm_cvttpd_epi32(ewrt);
609             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
614             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
615             ewtabFn          = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
617             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
618             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
619             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
621
622             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
623
624             /* Update potential sum for this i atom from the interaction with this j atom. */
625             velec            = _mm_and_pd(velec,cutoff_mask);
626             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
627             velecsum         = _mm_add_pd(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm_and_pd(fscal,cutoff_mask);
632
633             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_pd(fscal,dx10);
637             ty               = _mm_mul_pd(fscal,dy10);
638             tz               = _mm_mul_pd(fscal,dz10);
639
640             /* Update vectorial force */
641             fix1             = _mm_add_pd(fix1,tx);
642             fiy1             = _mm_add_pd(fiy1,ty);
643             fiz1             = _mm_add_pd(fiz1,tz);
644
645             fjx0             = _mm_add_pd(fjx0,tx);
646             fjy0             = _mm_add_pd(fjy0,ty);
647             fjz0             = _mm_add_pd(fjz0,tz);
648
649             }
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (gmx_mm_any_lt(rsq20,rcutoff2))
656             {
657
658             r20              = _mm_mul_pd(rsq20,rinv20);
659
660             /* Compute parameters for interactions between i and j atoms */
661             qq20             = _mm_mul_pd(iq2,jq0);
662
663             /* EWALD ELECTROSTATICS */
664
665             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
666             ewrt             = _mm_mul_pd(r20,ewtabscale);
667             ewitab           = _mm_cvttpd_epi32(ewrt);
668             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
669             ewitab           = _mm_slli_epi32(ewitab,2);
670             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
671             ewtabD           = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
673             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
674             ewtabFn          = _mm_setzero_pd();
675             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
676             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
677             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
678             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
679             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
680
681             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm_and_pd(velec,cutoff_mask);
685             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
686             velecsum         = _mm_add_pd(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _mm_and_pd(fscal,cutoff_mask);
691
692             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm_mul_pd(fscal,dx20);
696             ty               = _mm_mul_pd(fscal,dy20);
697             tz               = _mm_mul_pd(fscal,dz20);
698
699             /* Update vectorial force */
700             fix2             = _mm_add_pd(fix2,tx);
701             fiy2             = _mm_add_pd(fiy2,ty);
702             fiz2             = _mm_add_pd(fiz2,tz);
703
704             fjx0             = _mm_add_pd(fjx0,tx);
705             fjy0             = _mm_add_pd(fjy0,ty);
706             fjz0             = _mm_add_pd(fjz0,tz);
707
708             }
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             if (gmx_mm_any_lt(rsq30,rcutoff2))
715             {
716
717             r30              = _mm_mul_pd(rsq30,rinv30);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq30             = _mm_mul_pd(iq3,jq0);
721
722             /* EWALD ELECTROSTATICS */
723
724             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
725             ewrt             = _mm_mul_pd(r30,ewtabscale);
726             ewitab           = _mm_cvttpd_epi32(ewrt);
727             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
728             ewitab           = _mm_slli_epi32(ewitab,2);
729             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
730             ewtabD           = _mm_setzero_pd();
731             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
732             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
733             ewtabFn          = _mm_setzero_pd();
734             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
735             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
736             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
737             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
738             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
739
740             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
741
742             /* Update potential sum for this i atom from the interaction with this j atom. */
743             velec            = _mm_and_pd(velec,cutoff_mask);
744             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
745             velecsum         = _mm_add_pd(velecsum,velec);
746
747             fscal            = felec;
748
749             fscal            = _mm_and_pd(fscal,cutoff_mask);
750
751             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
752
753             /* Calculate temporary vectorial force */
754             tx               = _mm_mul_pd(fscal,dx30);
755             ty               = _mm_mul_pd(fscal,dy30);
756             tz               = _mm_mul_pd(fscal,dz30);
757
758             /* Update vectorial force */
759             fix3             = _mm_add_pd(fix3,tx);
760             fiy3             = _mm_add_pd(fiy3,ty);
761             fiz3             = _mm_add_pd(fiz3,tz);
762
763             fjx0             = _mm_add_pd(fjx0,tx);
764             fjy0             = _mm_add_pd(fjy0,ty);
765             fjz0             = _mm_add_pd(fjz0,tz);
766
767             }
768
769             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
770
771             /* Inner loop uses 203 flops */
772         }
773
774         /* End of innermost loop */
775
776         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
777                                               f+i_coord_offset,fshift+i_shift_offset);
778
779         ggid                        = gid[iidx];
780         /* Update potential energies */
781         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
782         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
783
784         /* Increment number of inner iterations */
785         inneriter                  += j_index_end - j_index_start;
786
787         /* Outer loop uses 26 flops */
788     }
789
790     /* Increment number of outer iterations */
791     outeriter        += nri;
792
793     /* Update outer/inner flops */
794
795     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*203);
796 }
797 /*
798  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
799  * Electrostatics interaction: Ewald
800  * VdW interaction:            LJEwald
801  * Geometry:                   Water4-Particle
802  * Calculate force/pot:        Force
803  */
804 void
805 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_double
806                     (t_nblist                    * gmx_restrict       nlist,
807                      rvec                        * gmx_restrict          xx,
808                      rvec                        * gmx_restrict          ff,
809                      t_forcerec                  * gmx_restrict          fr,
810                      t_mdatoms                   * gmx_restrict     mdatoms,
811                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
812                      t_nrnb                      * gmx_restrict        nrnb)
813 {
814     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
815      * just 0 for non-waters.
816      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
817      * jnr indices corresponding to data put in the four positions in the SIMD register.
818      */
819     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
820     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
821     int              jnrA,jnrB;
822     int              j_coord_offsetA,j_coord_offsetB;
823     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
824     real             rcutoff_scalar;
825     real             *shiftvec,*fshift,*x,*f;
826     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
827     int              vdwioffset0;
828     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
829     int              vdwioffset1;
830     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
831     int              vdwioffset2;
832     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
833     int              vdwioffset3;
834     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
835     int              vdwjidx0A,vdwjidx0B;
836     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
837     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
838     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
839     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
840     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
841     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
842     real             *charge;
843     int              nvdwtype;
844     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
845     int              *vdwtype;
846     real             *vdwparam;
847     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
848     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
849     __m128d           c6grid_00;
850     __m128d           c6grid_10;
851     __m128d           c6grid_20;
852     __m128d           c6grid_30;
853     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
854     real             *vdwgridparam;
855     __m128d           one_half = _mm_set1_pd(0.5);
856     __m128d           minus_one = _mm_set1_pd(-1.0);
857     __m128i          ewitab;
858     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
859     real             *ewtab;
860     __m128d          dummy_mask,cutoff_mask;
861     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
862     __m128d          one     = _mm_set1_pd(1.0);
863     __m128d          two     = _mm_set1_pd(2.0);
864     x                = xx[0];
865     f                = ff[0];
866
867     nri              = nlist->nri;
868     iinr             = nlist->iinr;
869     jindex           = nlist->jindex;
870     jjnr             = nlist->jjnr;
871     shiftidx         = nlist->shift;
872     gid              = nlist->gid;
873     shiftvec         = fr->shift_vec[0];
874     fshift           = fr->fshift[0];
875     facel            = _mm_set1_pd(fr->epsfac);
876     charge           = mdatoms->chargeA;
877     nvdwtype         = fr->ntype;
878     vdwparam         = fr->nbfp;
879     vdwtype          = mdatoms->typeA;
880     vdwgridparam     = fr->ljpme_c6grid;
881     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
882     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
883     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
884
885     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
886     ewtab            = fr->ic->tabq_coul_F;
887     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
888     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
889
890     /* Setup water-specific parameters */
891     inr              = nlist->iinr[0];
892     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
893     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
894     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
895     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
896
897     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
898     rcutoff_scalar   = fr->rcoulomb;
899     rcutoff          = _mm_set1_pd(rcutoff_scalar);
900     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
901
902     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
903     rvdw             = _mm_set1_pd(fr->rvdw);
904
905     /* Avoid stupid compiler warnings */
906     jnrA = jnrB = 0;
907     j_coord_offsetA = 0;
908     j_coord_offsetB = 0;
909
910     outeriter        = 0;
911     inneriter        = 0;
912
913     /* Start outer loop over neighborlists */
914     for(iidx=0; iidx<nri; iidx++)
915     {
916         /* Load shift vector for this list */
917         i_shift_offset   = DIM*shiftidx[iidx];
918
919         /* Load limits for loop over neighbors */
920         j_index_start    = jindex[iidx];
921         j_index_end      = jindex[iidx+1];
922
923         /* Get outer coordinate index */
924         inr              = iinr[iidx];
925         i_coord_offset   = DIM*inr;
926
927         /* Load i particle coords and add shift vector */
928         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
929                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
930
931         fix0             = _mm_setzero_pd();
932         fiy0             = _mm_setzero_pd();
933         fiz0             = _mm_setzero_pd();
934         fix1             = _mm_setzero_pd();
935         fiy1             = _mm_setzero_pd();
936         fiz1             = _mm_setzero_pd();
937         fix2             = _mm_setzero_pd();
938         fiy2             = _mm_setzero_pd();
939         fiz2             = _mm_setzero_pd();
940         fix3             = _mm_setzero_pd();
941         fiy3             = _mm_setzero_pd();
942         fiz3             = _mm_setzero_pd();
943
944         /* Start inner kernel loop */
945         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrA             = jjnr[jidx];
950             jnrB             = jjnr[jidx+1];
951             j_coord_offsetA  = DIM*jnrA;
952             j_coord_offsetB  = DIM*jnrB;
953
954             /* load j atom coordinates */
955             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
956                                               &jx0,&jy0,&jz0);
957
958             /* Calculate displacement vector */
959             dx00             = _mm_sub_pd(ix0,jx0);
960             dy00             = _mm_sub_pd(iy0,jy0);
961             dz00             = _mm_sub_pd(iz0,jz0);
962             dx10             = _mm_sub_pd(ix1,jx0);
963             dy10             = _mm_sub_pd(iy1,jy0);
964             dz10             = _mm_sub_pd(iz1,jz0);
965             dx20             = _mm_sub_pd(ix2,jx0);
966             dy20             = _mm_sub_pd(iy2,jy0);
967             dz20             = _mm_sub_pd(iz2,jz0);
968             dx30             = _mm_sub_pd(ix3,jx0);
969             dy30             = _mm_sub_pd(iy3,jy0);
970             dz30             = _mm_sub_pd(iz3,jz0);
971
972             /* Calculate squared distance and things based on it */
973             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
974             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
975             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
976             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
977
978             rinv00           = gmx_mm_invsqrt_pd(rsq00);
979             rinv10           = gmx_mm_invsqrt_pd(rsq10);
980             rinv20           = gmx_mm_invsqrt_pd(rsq20);
981             rinv30           = gmx_mm_invsqrt_pd(rsq30);
982
983             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
984             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
985             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
986             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
987
988             /* Load parameters for j particles */
989             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
990             vdwjidx0A        = 2*vdwtype[jnrA+0];
991             vdwjidx0B        = 2*vdwtype[jnrB+0];
992
993             fjx0             = _mm_setzero_pd();
994             fjy0             = _mm_setzero_pd();
995             fjz0             = _mm_setzero_pd();
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             if (gmx_mm_any_lt(rsq00,rcutoff2))
1002             {
1003
1004             r00              = _mm_mul_pd(rsq00,rinv00);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1008                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1009
1010             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
1011                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
1012
1013             /* Analytical LJ-PME */
1014             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1015             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1016             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1017             exponent         = gmx_simd_exp_d(ewcljrsq);
1018             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1019             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1020             /* f6A = 6 * C6grid * (1 - poly) */
1021             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1022             /* f6B = C6grid * exponent * beta^6 */
1023             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1024             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1025             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1026
1027             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1028
1029             fscal            = fvdw;
1030
1031             fscal            = _mm_and_pd(fscal,cutoff_mask);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm_mul_pd(fscal,dx00);
1035             ty               = _mm_mul_pd(fscal,dy00);
1036             tz               = _mm_mul_pd(fscal,dz00);
1037
1038             /* Update vectorial force */
1039             fix0             = _mm_add_pd(fix0,tx);
1040             fiy0             = _mm_add_pd(fiy0,ty);
1041             fiz0             = _mm_add_pd(fiz0,tz);
1042
1043             fjx0             = _mm_add_pd(fjx0,tx);
1044             fjy0             = _mm_add_pd(fjy0,ty);
1045             fjz0             = _mm_add_pd(fjz0,tz);
1046
1047             }
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             if (gmx_mm_any_lt(rsq10,rcutoff2))
1054             {
1055
1056             r10              = _mm_mul_pd(rsq10,rinv10);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq10             = _mm_mul_pd(iq1,jq0);
1060
1061             /* EWALD ELECTROSTATICS */
1062
1063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1064             ewrt             = _mm_mul_pd(r10,ewtabscale);
1065             ewitab           = _mm_cvttpd_epi32(ewrt);
1066             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1067             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1068                                          &ewtabF,&ewtabFn);
1069             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1070             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1071
1072             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1073
1074             fscal            = felec;
1075
1076             fscal            = _mm_and_pd(fscal,cutoff_mask);
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm_mul_pd(fscal,dx10);
1080             ty               = _mm_mul_pd(fscal,dy10);
1081             tz               = _mm_mul_pd(fscal,dz10);
1082
1083             /* Update vectorial force */
1084             fix1             = _mm_add_pd(fix1,tx);
1085             fiy1             = _mm_add_pd(fiy1,ty);
1086             fiz1             = _mm_add_pd(fiz1,tz);
1087
1088             fjx0             = _mm_add_pd(fjx0,tx);
1089             fjy0             = _mm_add_pd(fjy0,ty);
1090             fjz0             = _mm_add_pd(fjz0,tz);
1091
1092             }
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             if (gmx_mm_any_lt(rsq20,rcutoff2))
1099             {
1100
1101             r20              = _mm_mul_pd(rsq20,rinv20);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq20             = _mm_mul_pd(iq2,jq0);
1105
1106             /* EWALD ELECTROSTATICS */
1107
1108             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1109             ewrt             = _mm_mul_pd(r20,ewtabscale);
1110             ewitab           = _mm_cvttpd_epi32(ewrt);
1111             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1112             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1113                                          &ewtabF,&ewtabFn);
1114             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1115             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1116
1117             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1118
1119             fscal            = felec;
1120
1121             fscal            = _mm_and_pd(fscal,cutoff_mask);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm_mul_pd(fscal,dx20);
1125             ty               = _mm_mul_pd(fscal,dy20);
1126             tz               = _mm_mul_pd(fscal,dz20);
1127
1128             /* Update vectorial force */
1129             fix2             = _mm_add_pd(fix2,tx);
1130             fiy2             = _mm_add_pd(fiy2,ty);
1131             fiz2             = _mm_add_pd(fiz2,tz);
1132
1133             fjx0             = _mm_add_pd(fjx0,tx);
1134             fjy0             = _mm_add_pd(fjy0,ty);
1135             fjz0             = _mm_add_pd(fjz0,tz);
1136
1137             }
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             if (gmx_mm_any_lt(rsq30,rcutoff2))
1144             {
1145
1146             r30              = _mm_mul_pd(rsq30,rinv30);
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq30             = _mm_mul_pd(iq3,jq0);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_pd(r30,ewtabscale);
1155             ewitab           = _mm_cvttpd_epi32(ewrt);
1156             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1157             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1158                                          &ewtabF,&ewtabFn);
1159             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1160             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1161
1162             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_and_pd(fscal,cutoff_mask);
1167
1168             /* Calculate temporary vectorial force */
1169             tx               = _mm_mul_pd(fscal,dx30);
1170             ty               = _mm_mul_pd(fscal,dy30);
1171             tz               = _mm_mul_pd(fscal,dz30);
1172
1173             /* Update vectorial force */
1174             fix3             = _mm_add_pd(fix3,tx);
1175             fiy3             = _mm_add_pd(fiy3,ty);
1176             fiz3             = _mm_add_pd(fiz3,tz);
1177
1178             fjx0             = _mm_add_pd(fjx0,tx);
1179             fjy0             = _mm_add_pd(fjy0,ty);
1180             fjz0             = _mm_add_pd(fjz0,tz);
1181
1182             }
1183
1184             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1185
1186             /* Inner loop uses 169 flops */
1187         }
1188
1189         if(jidx<j_index_end)
1190         {
1191
1192             jnrA             = jjnr[jidx];
1193             j_coord_offsetA  = DIM*jnrA;
1194
1195             /* load j atom coordinates */
1196             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1197                                               &jx0,&jy0,&jz0);
1198
1199             /* Calculate displacement vector */
1200             dx00             = _mm_sub_pd(ix0,jx0);
1201             dy00             = _mm_sub_pd(iy0,jy0);
1202             dz00             = _mm_sub_pd(iz0,jz0);
1203             dx10             = _mm_sub_pd(ix1,jx0);
1204             dy10             = _mm_sub_pd(iy1,jy0);
1205             dz10             = _mm_sub_pd(iz1,jz0);
1206             dx20             = _mm_sub_pd(ix2,jx0);
1207             dy20             = _mm_sub_pd(iy2,jy0);
1208             dz20             = _mm_sub_pd(iz2,jz0);
1209             dx30             = _mm_sub_pd(ix3,jx0);
1210             dy30             = _mm_sub_pd(iy3,jy0);
1211             dz30             = _mm_sub_pd(iz3,jz0);
1212
1213             /* Calculate squared distance and things based on it */
1214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1217             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1218
1219             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1220             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1221             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1222             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1223
1224             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1225             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1226             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1227             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1228
1229             /* Load parameters for j particles */
1230             jq0              = _mm_load_sd(charge+jnrA+0);
1231             vdwjidx0A        = 2*vdwtype[jnrA+0];
1232
1233             fjx0             = _mm_setzero_pd();
1234             fjy0             = _mm_setzero_pd();
1235             fjz0             = _mm_setzero_pd();
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_mm_any_lt(rsq00,rcutoff2))
1242             {
1243
1244             r00              = _mm_mul_pd(rsq00,rinv00);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1248
1249             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1250
1251             /* Analytical LJ-PME */
1252             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1253             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1254             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1255             exponent         = gmx_simd_exp_d(ewcljrsq);
1256             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1257             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1258             /* f6A = 6 * C6grid * (1 - poly) */
1259             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1260             /* f6B = C6grid * exponent * beta^6 */
1261             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1262             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1263             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1264
1265             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1266
1267             fscal            = fvdw;
1268
1269             fscal            = _mm_and_pd(fscal,cutoff_mask);
1270
1271             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1272
1273             /* Calculate temporary vectorial force */
1274             tx               = _mm_mul_pd(fscal,dx00);
1275             ty               = _mm_mul_pd(fscal,dy00);
1276             tz               = _mm_mul_pd(fscal,dz00);
1277
1278             /* Update vectorial force */
1279             fix0             = _mm_add_pd(fix0,tx);
1280             fiy0             = _mm_add_pd(fiy0,ty);
1281             fiz0             = _mm_add_pd(fiz0,tz);
1282
1283             fjx0             = _mm_add_pd(fjx0,tx);
1284             fjy0             = _mm_add_pd(fjy0,ty);
1285             fjz0             = _mm_add_pd(fjz0,tz);
1286
1287             }
1288
1289             /**************************
1290              * CALCULATE INTERACTIONS *
1291              **************************/
1292
1293             if (gmx_mm_any_lt(rsq10,rcutoff2))
1294             {
1295
1296             r10              = _mm_mul_pd(rsq10,rinv10);
1297
1298             /* Compute parameters for interactions between i and j atoms */
1299             qq10             = _mm_mul_pd(iq1,jq0);
1300
1301             /* EWALD ELECTROSTATICS */
1302
1303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1304             ewrt             = _mm_mul_pd(r10,ewtabscale);
1305             ewitab           = _mm_cvttpd_epi32(ewrt);
1306             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1307             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1308             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1309             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1310
1311             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1312
1313             fscal            = felec;
1314
1315             fscal            = _mm_and_pd(fscal,cutoff_mask);
1316
1317             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1318
1319             /* Calculate temporary vectorial force */
1320             tx               = _mm_mul_pd(fscal,dx10);
1321             ty               = _mm_mul_pd(fscal,dy10);
1322             tz               = _mm_mul_pd(fscal,dz10);
1323
1324             /* Update vectorial force */
1325             fix1             = _mm_add_pd(fix1,tx);
1326             fiy1             = _mm_add_pd(fiy1,ty);
1327             fiz1             = _mm_add_pd(fiz1,tz);
1328
1329             fjx0             = _mm_add_pd(fjx0,tx);
1330             fjy0             = _mm_add_pd(fjy0,ty);
1331             fjz0             = _mm_add_pd(fjz0,tz);
1332
1333             }
1334
1335             /**************************
1336              * CALCULATE INTERACTIONS *
1337              **************************/
1338
1339             if (gmx_mm_any_lt(rsq20,rcutoff2))
1340             {
1341
1342             r20              = _mm_mul_pd(rsq20,rinv20);
1343
1344             /* Compute parameters for interactions between i and j atoms */
1345             qq20             = _mm_mul_pd(iq2,jq0);
1346
1347             /* EWALD ELECTROSTATICS */
1348
1349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1350             ewrt             = _mm_mul_pd(r20,ewtabscale);
1351             ewitab           = _mm_cvttpd_epi32(ewrt);
1352             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1353             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1354             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1355             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1356
1357             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1358
1359             fscal            = felec;
1360
1361             fscal            = _mm_and_pd(fscal,cutoff_mask);
1362
1363             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1364
1365             /* Calculate temporary vectorial force */
1366             tx               = _mm_mul_pd(fscal,dx20);
1367             ty               = _mm_mul_pd(fscal,dy20);
1368             tz               = _mm_mul_pd(fscal,dz20);
1369
1370             /* Update vectorial force */
1371             fix2             = _mm_add_pd(fix2,tx);
1372             fiy2             = _mm_add_pd(fiy2,ty);
1373             fiz2             = _mm_add_pd(fiz2,tz);
1374
1375             fjx0             = _mm_add_pd(fjx0,tx);
1376             fjy0             = _mm_add_pd(fjy0,ty);
1377             fjz0             = _mm_add_pd(fjz0,tz);
1378
1379             }
1380
1381             /**************************
1382              * CALCULATE INTERACTIONS *
1383              **************************/
1384
1385             if (gmx_mm_any_lt(rsq30,rcutoff2))
1386             {
1387
1388             r30              = _mm_mul_pd(rsq30,rinv30);
1389
1390             /* Compute parameters for interactions between i and j atoms */
1391             qq30             = _mm_mul_pd(iq3,jq0);
1392
1393             /* EWALD ELECTROSTATICS */
1394
1395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1396             ewrt             = _mm_mul_pd(r30,ewtabscale);
1397             ewitab           = _mm_cvttpd_epi32(ewrt);
1398             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1399             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1400             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1401             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1402
1403             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1404
1405             fscal            = felec;
1406
1407             fscal            = _mm_and_pd(fscal,cutoff_mask);
1408
1409             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1410
1411             /* Calculate temporary vectorial force */
1412             tx               = _mm_mul_pd(fscal,dx30);
1413             ty               = _mm_mul_pd(fscal,dy30);
1414             tz               = _mm_mul_pd(fscal,dz30);
1415
1416             /* Update vectorial force */
1417             fix3             = _mm_add_pd(fix3,tx);
1418             fiy3             = _mm_add_pd(fiy3,ty);
1419             fiz3             = _mm_add_pd(fiz3,tz);
1420
1421             fjx0             = _mm_add_pd(fjx0,tx);
1422             fjy0             = _mm_add_pd(fjy0,ty);
1423             fjz0             = _mm_add_pd(fjz0,tz);
1424
1425             }
1426
1427             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1428
1429             /* Inner loop uses 169 flops */
1430         }
1431
1432         /* End of innermost loop */
1433
1434         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1435                                               f+i_coord_offset,fshift+i_shift_offset);
1436
1437         /* Increment number of inner iterations */
1438         inneriter                  += j_index_end - j_index_start;
1439
1440         /* Outer loop uses 24 flops */
1441     }
1442
1443     /* Increment number of outer iterations */
1444     outeriter        += nri;
1445
1446     /* Update outer/inner flops */
1447
1448     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*169);
1449 }