Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128d           c6grid_00;
110     __m128d           c6grid_01;
111     __m128d           c6grid_02;
112     __m128d           c6grid_10;
113     __m128d           c6grid_11;
114     __m128d           c6grid_12;
115     __m128d           c6grid_20;
116     __m128d           c6grid_21;
117     __m128d           c6grid_22;
118     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
119     real             *vdwgridparam;
120     __m128d           one_half = _mm_set1_pd(0.5);
121     __m128d           minus_one = _mm_set1_pd(-1.0);
122     __m128i          ewitab;
123     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
124     real             *ewtab;
125     __m128d          dummy_mask,cutoff_mask;
126     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
127     __m128d          one     = _mm_set1_pd(1.0);
128     __m128d          two     = _mm_set1_pd(2.0);
129     x                = xx[0];
130     f                = ff[0];
131
132     nri              = nlist->nri;
133     iinr             = nlist->iinr;
134     jindex           = nlist->jindex;
135     jjnr             = nlist->jjnr;
136     shiftidx         = nlist->shift;
137     gid              = nlist->gid;
138     shiftvec         = fr->shift_vec[0];
139     fshift           = fr->fshift[0];
140     facel            = _mm_set1_pd(fr->epsfac);
141     charge           = mdatoms->chargeA;
142     nvdwtype         = fr->ntype;
143     vdwparam         = fr->nbfp;
144     vdwtype          = mdatoms->typeA;
145     vdwgridparam     = fr->ljpme_c6grid;
146     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
147     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
148     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
149
150     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
151     ewtab            = fr->ic->tabq_coul_FDV0;
152     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
153     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
154
155     /* Setup water-specific parameters */
156     inr              = nlist->iinr[0];
157     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
158     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
159     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
160     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162     jq0              = _mm_set1_pd(charge[inr+0]);
163     jq1              = _mm_set1_pd(charge[inr+1]);
164     jq2              = _mm_set1_pd(charge[inr+2]);
165     vdwjidx0A        = 2*vdwtype[inr+0];
166     qq00             = _mm_mul_pd(iq0,jq0);
167     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
168     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
169     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
170     qq01             = _mm_mul_pd(iq0,jq1);
171     qq02             = _mm_mul_pd(iq0,jq2);
172     qq10             = _mm_mul_pd(iq1,jq0);
173     qq11             = _mm_mul_pd(iq1,jq1);
174     qq12             = _mm_mul_pd(iq1,jq2);
175     qq20             = _mm_mul_pd(iq2,jq0);
176     qq21             = _mm_mul_pd(iq2,jq1);
177     qq22             = _mm_mul_pd(iq2,jq2);
178
179     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
180     rcutoff_scalar   = fr->rcoulomb;
181     rcutoff          = _mm_set1_pd(rcutoff_scalar);
182     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
183
184     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
185     rvdw             = _mm_set1_pd(fr->rvdw);
186
187     /* Avoid stupid compiler warnings */
188     jnrA = jnrB = 0;
189     j_coord_offsetA = 0;
190     j_coord_offsetB = 0;
191
192     outeriter        = 0;
193     inneriter        = 0;
194
195     /* Start outer loop over neighborlists */
196     for(iidx=0; iidx<nri; iidx++)
197     {
198         /* Load shift vector for this list */
199         i_shift_offset   = DIM*shiftidx[iidx];
200
201         /* Load limits for loop over neighbors */
202         j_index_start    = jindex[iidx];
203         j_index_end      = jindex[iidx+1];
204
205         /* Get outer coordinate index */
206         inr              = iinr[iidx];
207         i_coord_offset   = DIM*inr;
208
209         /* Load i particle coords and add shift vector */
210         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
211                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
212
213         fix0             = _mm_setzero_pd();
214         fiy0             = _mm_setzero_pd();
215         fiz0             = _mm_setzero_pd();
216         fix1             = _mm_setzero_pd();
217         fiy1             = _mm_setzero_pd();
218         fiz1             = _mm_setzero_pd();
219         fix2             = _mm_setzero_pd();
220         fiy2             = _mm_setzero_pd();
221         fiz2             = _mm_setzero_pd();
222
223         /* Reset potential sums */
224         velecsum         = _mm_setzero_pd();
225         vvdwsum          = _mm_setzero_pd();
226
227         /* Start inner kernel loop */
228         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
229         {
230
231             /* Get j neighbor index, and coordinate index */
232             jnrA             = jjnr[jidx];
233             jnrB             = jjnr[jidx+1];
234             j_coord_offsetA  = DIM*jnrA;
235             j_coord_offsetB  = DIM*jnrB;
236
237             /* load j atom coordinates */
238             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
239                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
240
241             /* Calculate displacement vector */
242             dx00             = _mm_sub_pd(ix0,jx0);
243             dy00             = _mm_sub_pd(iy0,jy0);
244             dz00             = _mm_sub_pd(iz0,jz0);
245             dx01             = _mm_sub_pd(ix0,jx1);
246             dy01             = _mm_sub_pd(iy0,jy1);
247             dz01             = _mm_sub_pd(iz0,jz1);
248             dx02             = _mm_sub_pd(ix0,jx2);
249             dy02             = _mm_sub_pd(iy0,jy2);
250             dz02             = _mm_sub_pd(iz0,jz2);
251             dx10             = _mm_sub_pd(ix1,jx0);
252             dy10             = _mm_sub_pd(iy1,jy0);
253             dz10             = _mm_sub_pd(iz1,jz0);
254             dx11             = _mm_sub_pd(ix1,jx1);
255             dy11             = _mm_sub_pd(iy1,jy1);
256             dz11             = _mm_sub_pd(iz1,jz1);
257             dx12             = _mm_sub_pd(ix1,jx2);
258             dy12             = _mm_sub_pd(iy1,jy2);
259             dz12             = _mm_sub_pd(iz1,jz2);
260             dx20             = _mm_sub_pd(ix2,jx0);
261             dy20             = _mm_sub_pd(iy2,jy0);
262             dz20             = _mm_sub_pd(iz2,jz0);
263             dx21             = _mm_sub_pd(ix2,jx1);
264             dy21             = _mm_sub_pd(iy2,jy1);
265             dz21             = _mm_sub_pd(iz2,jz1);
266             dx22             = _mm_sub_pd(ix2,jx2);
267             dy22             = _mm_sub_pd(iy2,jy2);
268             dz22             = _mm_sub_pd(iz2,jz2);
269
270             /* Calculate squared distance and things based on it */
271             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
272             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
273             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
274             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
275             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
276             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
277             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
278             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
279             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
280
281             rinv00           = gmx_mm_invsqrt_pd(rsq00);
282             rinv01           = gmx_mm_invsqrt_pd(rsq01);
283             rinv02           = gmx_mm_invsqrt_pd(rsq02);
284             rinv10           = gmx_mm_invsqrt_pd(rsq10);
285             rinv11           = gmx_mm_invsqrt_pd(rsq11);
286             rinv12           = gmx_mm_invsqrt_pd(rsq12);
287             rinv20           = gmx_mm_invsqrt_pd(rsq20);
288             rinv21           = gmx_mm_invsqrt_pd(rsq21);
289             rinv22           = gmx_mm_invsqrt_pd(rsq22);
290
291             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
292             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
293             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
294             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
295             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
296             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
297             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
298             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
299             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
300
301             fjx0             = _mm_setzero_pd();
302             fjy0             = _mm_setzero_pd();
303             fjz0             = _mm_setzero_pd();
304             fjx1             = _mm_setzero_pd();
305             fjy1             = _mm_setzero_pd();
306             fjz1             = _mm_setzero_pd();
307             fjx2             = _mm_setzero_pd();
308             fjy2             = _mm_setzero_pd();
309             fjz2             = _mm_setzero_pd();
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             if (gmx_mm_any_lt(rsq00,rcutoff2))
316             {
317
318             r00              = _mm_mul_pd(rsq00,rinv00);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r00,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
329             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
330             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
331             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
333             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
334             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
335             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
336             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
337
338             /* Analytical LJ-PME */
339             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
340             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
341             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
342             exponent         = gmx_simd_exp_d(ewcljrsq);
343             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
344             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
345             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
346             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
347             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
348             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
349                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
350             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
351             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
352
353             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm_and_pd(velec,cutoff_mask);
357             velecsum         = _mm_add_pd(velecsum,velec);
358             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
359             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
360
361             fscal            = _mm_add_pd(felec,fvdw);
362
363             fscal            = _mm_and_pd(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_pd(fscal,dx00);
367             ty               = _mm_mul_pd(fscal,dy00);
368             tz               = _mm_mul_pd(fscal,dz00);
369
370             /* Update vectorial force */
371             fix0             = _mm_add_pd(fix0,tx);
372             fiy0             = _mm_add_pd(fiy0,ty);
373             fiz0             = _mm_add_pd(fiz0,tz);
374
375             fjx0             = _mm_add_pd(fjx0,tx);
376             fjy0             = _mm_add_pd(fjy0,ty);
377             fjz0             = _mm_add_pd(fjz0,tz);
378
379             }
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             if (gmx_mm_any_lt(rsq01,rcutoff2))
386             {
387
388             r01              = _mm_mul_pd(rsq01,rinv01);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _mm_mul_pd(r01,ewtabscale);
394             ewitab           = _mm_cvttpd_epi32(ewrt);
395             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
399             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
400             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
401             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
402             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
403             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
404             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
405             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
406             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
407
408             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_and_pd(velec,cutoff_mask);
412             velecsum         = _mm_add_pd(velecsum,velec);
413
414             fscal            = felec;
415
416             fscal            = _mm_and_pd(fscal,cutoff_mask);
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm_mul_pd(fscal,dx01);
420             ty               = _mm_mul_pd(fscal,dy01);
421             tz               = _mm_mul_pd(fscal,dz01);
422
423             /* Update vectorial force */
424             fix0             = _mm_add_pd(fix0,tx);
425             fiy0             = _mm_add_pd(fiy0,ty);
426             fiz0             = _mm_add_pd(fiz0,tz);
427
428             fjx1             = _mm_add_pd(fjx1,tx);
429             fjy1             = _mm_add_pd(fjy1,ty);
430             fjz1             = _mm_add_pd(fjz1,tz);
431
432             }
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             if (gmx_mm_any_lt(rsq02,rcutoff2))
439             {
440
441             r02              = _mm_mul_pd(rsq02,rinv02);
442
443             /* EWALD ELECTROSTATICS */
444
445             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
446             ewrt             = _mm_mul_pd(r02,ewtabscale);
447             ewitab           = _mm_cvttpd_epi32(ewrt);
448             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
449             ewitab           = _mm_slli_epi32(ewitab,2);
450             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
451             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
452             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
453             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
454             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
455             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
456             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
457             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
458             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
459             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
460
461             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm_and_pd(velec,cutoff_mask);
465             velecsum         = _mm_add_pd(velecsum,velec);
466
467             fscal            = felec;
468
469             fscal            = _mm_and_pd(fscal,cutoff_mask);
470
471             /* Calculate temporary vectorial force */
472             tx               = _mm_mul_pd(fscal,dx02);
473             ty               = _mm_mul_pd(fscal,dy02);
474             tz               = _mm_mul_pd(fscal,dz02);
475
476             /* Update vectorial force */
477             fix0             = _mm_add_pd(fix0,tx);
478             fiy0             = _mm_add_pd(fiy0,ty);
479             fiz0             = _mm_add_pd(fiz0,tz);
480
481             fjx2             = _mm_add_pd(fjx2,tx);
482             fjy2             = _mm_add_pd(fjy2,ty);
483             fjz2             = _mm_add_pd(fjz2,tz);
484
485             }
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             if (gmx_mm_any_lt(rsq10,rcutoff2))
492             {
493
494             r10              = _mm_mul_pd(rsq10,rinv10);
495
496             /* EWALD ELECTROSTATICS */
497
498             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499             ewrt             = _mm_mul_pd(r10,ewtabscale);
500             ewitab           = _mm_cvttpd_epi32(ewrt);
501             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
502             ewitab           = _mm_slli_epi32(ewitab,2);
503             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
504             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
505             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
506             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
507             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
508             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
509             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
510             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
511             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
512             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
513
514             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm_and_pd(velec,cutoff_mask);
518             velecsum         = _mm_add_pd(velecsum,velec);
519
520             fscal            = felec;
521
522             fscal            = _mm_and_pd(fscal,cutoff_mask);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm_mul_pd(fscal,dx10);
526             ty               = _mm_mul_pd(fscal,dy10);
527             tz               = _mm_mul_pd(fscal,dz10);
528
529             /* Update vectorial force */
530             fix1             = _mm_add_pd(fix1,tx);
531             fiy1             = _mm_add_pd(fiy1,ty);
532             fiz1             = _mm_add_pd(fiz1,tz);
533
534             fjx0             = _mm_add_pd(fjx0,tx);
535             fjy0             = _mm_add_pd(fjy0,ty);
536             fjz0             = _mm_add_pd(fjz0,tz);
537
538             }
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             if (gmx_mm_any_lt(rsq11,rcutoff2))
545             {
546
547             r11              = _mm_mul_pd(rsq11,rinv11);
548
549             /* EWALD ELECTROSTATICS */
550
551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552             ewrt             = _mm_mul_pd(r11,ewtabscale);
553             ewitab           = _mm_cvttpd_epi32(ewrt);
554             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
558             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
559             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
560             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
561             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
562             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
563             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
564             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
565             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
566
567             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_and_pd(velec,cutoff_mask);
571             velecsum         = _mm_add_pd(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_and_pd(fscal,cutoff_mask);
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_pd(fscal,dx11);
579             ty               = _mm_mul_pd(fscal,dy11);
580             tz               = _mm_mul_pd(fscal,dz11);
581
582             /* Update vectorial force */
583             fix1             = _mm_add_pd(fix1,tx);
584             fiy1             = _mm_add_pd(fiy1,ty);
585             fiz1             = _mm_add_pd(fiz1,tz);
586
587             fjx1             = _mm_add_pd(fjx1,tx);
588             fjy1             = _mm_add_pd(fjy1,ty);
589             fjz1             = _mm_add_pd(fjz1,tz);
590
591             }
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             if (gmx_mm_any_lt(rsq12,rcutoff2))
598             {
599
600             r12              = _mm_mul_pd(rsq12,rinv12);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r12,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
608             ewitab           = _mm_slli_epi32(ewitab,2);
609             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
610             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
611             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
612             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
613             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
614             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
615             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
616             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
617             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
618             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
619
620             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm_and_pd(velec,cutoff_mask);
624             velecsum         = _mm_add_pd(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_and_pd(fscal,cutoff_mask);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_pd(fscal,dx12);
632             ty               = _mm_mul_pd(fscal,dy12);
633             tz               = _mm_mul_pd(fscal,dz12);
634
635             /* Update vectorial force */
636             fix1             = _mm_add_pd(fix1,tx);
637             fiy1             = _mm_add_pd(fiy1,ty);
638             fiz1             = _mm_add_pd(fiz1,tz);
639
640             fjx2             = _mm_add_pd(fjx2,tx);
641             fjy2             = _mm_add_pd(fjy2,ty);
642             fjz2             = _mm_add_pd(fjz2,tz);
643
644             }
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             if (gmx_mm_any_lt(rsq20,rcutoff2))
651             {
652
653             r20              = _mm_mul_pd(rsq20,rinv20);
654
655             /* EWALD ELECTROSTATICS */
656
657             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
658             ewrt             = _mm_mul_pd(r20,ewtabscale);
659             ewitab           = _mm_cvttpd_epi32(ewrt);
660             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
661             ewitab           = _mm_slli_epi32(ewitab,2);
662             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
663             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
664             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
665             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
666             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
667             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
668             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
669             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
670             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
671             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
672
673             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
674
675             /* Update potential sum for this i atom from the interaction with this j atom. */
676             velec            = _mm_and_pd(velec,cutoff_mask);
677             velecsum         = _mm_add_pd(velecsum,velec);
678
679             fscal            = felec;
680
681             fscal            = _mm_and_pd(fscal,cutoff_mask);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_pd(fscal,dx20);
685             ty               = _mm_mul_pd(fscal,dy20);
686             tz               = _mm_mul_pd(fscal,dz20);
687
688             /* Update vectorial force */
689             fix2             = _mm_add_pd(fix2,tx);
690             fiy2             = _mm_add_pd(fiy2,ty);
691             fiz2             = _mm_add_pd(fiz2,tz);
692
693             fjx0             = _mm_add_pd(fjx0,tx);
694             fjy0             = _mm_add_pd(fjy0,ty);
695             fjz0             = _mm_add_pd(fjz0,tz);
696
697             }
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             if (gmx_mm_any_lt(rsq21,rcutoff2))
704             {
705
706             r21              = _mm_mul_pd(rsq21,rinv21);
707
708             /* EWALD ELECTROSTATICS */
709
710             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
711             ewrt             = _mm_mul_pd(r21,ewtabscale);
712             ewitab           = _mm_cvttpd_epi32(ewrt);
713             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
714             ewitab           = _mm_slli_epi32(ewitab,2);
715             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
716             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
717             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
718             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
719             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
720             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
721             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
722             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
723             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
724             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
725
726             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
727
728             /* Update potential sum for this i atom from the interaction with this j atom. */
729             velec            = _mm_and_pd(velec,cutoff_mask);
730             velecsum         = _mm_add_pd(velecsum,velec);
731
732             fscal            = felec;
733
734             fscal            = _mm_and_pd(fscal,cutoff_mask);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm_mul_pd(fscal,dx21);
738             ty               = _mm_mul_pd(fscal,dy21);
739             tz               = _mm_mul_pd(fscal,dz21);
740
741             /* Update vectorial force */
742             fix2             = _mm_add_pd(fix2,tx);
743             fiy2             = _mm_add_pd(fiy2,ty);
744             fiz2             = _mm_add_pd(fiz2,tz);
745
746             fjx1             = _mm_add_pd(fjx1,tx);
747             fjy1             = _mm_add_pd(fjy1,ty);
748             fjz1             = _mm_add_pd(fjz1,tz);
749
750             }
751
752             /**************************
753              * CALCULATE INTERACTIONS *
754              **************************/
755
756             if (gmx_mm_any_lt(rsq22,rcutoff2))
757             {
758
759             r22              = _mm_mul_pd(rsq22,rinv22);
760
761             /* EWALD ELECTROSTATICS */
762
763             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
764             ewrt             = _mm_mul_pd(r22,ewtabscale);
765             ewitab           = _mm_cvttpd_epi32(ewrt);
766             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
767             ewitab           = _mm_slli_epi32(ewitab,2);
768             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
769             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
770             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
771             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
772             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
773             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
774             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
775             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
776             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
777             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
778
779             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
780
781             /* Update potential sum for this i atom from the interaction with this j atom. */
782             velec            = _mm_and_pd(velec,cutoff_mask);
783             velecsum         = _mm_add_pd(velecsum,velec);
784
785             fscal            = felec;
786
787             fscal            = _mm_and_pd(fscal,cutoff_mask);
788
789             /* Calculate temporary vectorial force */
790             tx               = _mm_mul_pd(fscal,dx22);
791             ty               = _mm_mul_pd(fscal,dy22);
792             tz               = _mm_mul_pd(fscal,dz22);
793
794             /* Update vectorial force */
795             fix2             = _mm_add_pd(fix2,tx);
796             fiy2             = _mm_add_pd(fiy2,ty);
797             fiz2             = _mm_add_pd(fiz2,tz);
798
799             fjx2             = _mm_add_pd(fjx2,tx);
800             fjy2             = _mm_add_pd(fjy2,ty);
801             fjz2             = _mm_add_pd(fjz2,tz);
802
803             }
804
805             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
806
807             /* Inner loop uses 450 flops */
808         }
809
810         if(jidx<j_index_end)
811         {
812
813             jnrA             = jjnr[jidx];
814             j_coord_offsetA  = DIM*jnrA;
815
816             /* load j atom coordinates */
817             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
818                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
819
820             /* Calculate displacement vector */
821             dx00             = _mm_sub_pd(ix0,jx0);
822             dy00             = _mm_sub_pd(iy0,jy0);
823             dz00             = _mm_sub_pd(iz0,jz0);
824             dx01             = _mm_sub_pd(ix0,jx1);
825             dy01             = _mm_sub_pd(iy0,jy1);
826             dz01             = _mm_sub_pd(iz0,jz1);
827             dx02             = _mm_sub_pd(ix0,jx2);
828             dy02             = _mm_sub_pd(iy0,jy2);
829             dz02             = _mm_sub_pd(iz0,jz2);
830             dx10             = _mm_sub_pd(ix1,jx0);
831             dy10             = _mm_sub_pd(iy1,jy0);
832             dz10             = _mm_sub_pd(iz1,jz0);
833             dx11             = _mm_sub_pd(ix1,jx1);
834             dy11             = _mm_sub_pd(iy1,jy1);
835             dz11             = _mm_sub_pd(iz1,jz1);
836             dx12             = _mm_sub_pd(ix1,jx2);
837             dy12             = _mm_sub_pd(iy1,jy2);
838             dz12             = _mm_sub_pd(iz1,jz2);
839             dx20             = _mm_sub_pd(ix2,jx0);
840             dy20             = _mm_sub_pd(iy2,jy0);
841             dz20             = _mm_sub_pd(iz2,jz0);
842             dx21             = _mm_sub_pd(ix2,jx1);
843             dy21             = _mm_sub_pd(iy2,jy1);
844             dz21             = _mm_sub_pd(iz2,jz1);
845             dx22             = _mm_sub_pd(ix2,jx2);
846             dy22             = _mm_sub_pd(iy2,jy2);
847             dz22             = _mm_sub_pd(iz2,jz2);
848
849             /* Calculate squared distance and things based on it */
850             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
851             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
852             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
853             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
854             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
855             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
856             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
857             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
858             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
859
860             rinv00           = gmx_mm_invsqrt_pd(rsq00);
861             rinv01           = gmx_mm_invsqrt_pd(rsq01);
862             rinv02           = gmx_mm_invsqrt_pd(rsq02);
863             rinv10           = gmx_mm_invsqrt_pd(rsq10);
864             rinv11           = gmx_mm_invsqrt_pd(rsq11);
865             rinv12           = gmx_mm_invsqrt_pd(rsq12);
866             rinv20           = gmx_mm_invsqrt_pd(rsq20);
867             rinv21           = gmx_mm_invsqrt_pd(rsq21);
868             rinv22           = gmx_mm_invsqrt_pd(rsq22);
869
870             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
871             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
872             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
873             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
874             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
875             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
876             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
877             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
878             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
879
880             fjx0             = _mm_setzero_pd();
881             fjy0             = _mm_setzero_pd();
882             fjz0             = _mm_setzero_pd();
883             fjx1             = _mm_setzero_pd();
884             fjy1             = _mm_setzero_pd();
885             fjz1             = _mm_setzero_pd();
886             fjx2             = _mm_setzero_pd();
887             fjy2             = _mm_setzero_pd();
888             fjz2             = _mm_setzero_pd();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm_any_lt(rsq00,rcutoff2))
895             {
896
897             r00              = _mm_mul_pd(rsq00,rinv00);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _mm_mul_pd(r00,ewtabscale);
903             ewitab           = _mm_cvttpd_epi32(ewrt);
904             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
905             ewitab           = _mm_slli_epi32(ewitab,2);
906             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
907             ewtabD           = _mm_setzero_pd();
908             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
909             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
910             ewtabFn          = _mm_setzero_pd();
911             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
912             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
913             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
914             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
915             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
916
917             /* Analytical LJ-PME */
918             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
919             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
920             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
921             exponent         = gmx_simd_exp_d(ewcljrsq);
922             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
923             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
924             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
925             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
926             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
927             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
928                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
929             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
930             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
931
932             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
933
934             /* Update potential sum for this i atom from the interaction with this j atom. */
935             velec            = _mm_and_pd(velec,cutoff_mask);
936             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
937             velecsum         = _mm_add_pd(velecsum,velec);
938             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
939             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
940             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
941
942             fscal            = _mm_add_pd(felec,fvdw);
943
944             fscal            = _mm_and_pd(fscal,cutoff_mask);
945
946             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_pd(fscal,dx00);
950             ty               = _mm_mul_pd(fscal,dy00);
951             tz               = _mm_mul_pd(fscal,dz00);
952
953             /* Update vectorial force */
954             fix0             = _mm_add_pd(fix0,tx);
955             fiy0             = _mm_add_pd(fiy0,ty);
956             fiz0             = _mm_add_pd(fiz0,tz);
957
958             fjx0             = _mm_add_pd(fjx0,tx);
959             fjy0             = _mm_add_pd(fjy0,ty);
960             fjz0             = _mm_add_pd(fjz0,tz);
961
962             }
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             if (gmx_mm_any_lt(rsq01,rcutoff2))
969             {
970
971             r01              = _mm_mul_pd(rsq01,rinv01);
972
973             /* EWALD ELECTROSTATICS */
974
975             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
976             ewrt             = _mm_mul_pd(r01,ewtabscale);
977             ewitab           = _mm_cvttpd_epi32(ewrt);
978             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
979             ewitab           = _mm_slli_epi32(ewitab,2);
980             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
981             ewtabD           = _mm_setzero_pd();
982             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
983             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
984             ewtabFn          = _mm_setzero_pd();
985             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
986             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
987             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
988             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
989             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
990
991             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
992
993             /* Update potential sum for this i atom from the interaction with this j atom. */
994             velec            = _mm_and_pd(velec,cutoff_mask);
995             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
996             velecsum         = _mm_add_pd(velecsum,velec);
997
998             fscal            = felec;
999
1000             fscal            = _mm_and_pd(fscal,cutoff_mask);
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_pd(fscal,dx01);
1006             ty               = _mm_mul_pd(fscal,dy01);
1007             tz               = _mm_mul_pd(fscal,dz01);
1008
1009             /* Update vectorial force */
1010             fix0             = _mm_add_pd(fix0,tx);
1011             fiy0             = _mm_add_pd(fiy0,ty);
1012             fiz0             = _mm_add_pd(fiz0,tz);
1013
1014             fjx1             = _mm_add_pd(fjx1,tx);
1015             fjy1             = _mm_add_pd(fjy1,ty);
1016             fjz1             = _mm_add_pd(fjz1,tz);
1017
1018             }
1019
1020             /**************************
1021              * CALCULATE INTERACTIONS *
1022              **************************/
1023
1024             if (gmx_mm_any_lt(rsq02,rcutoff2))
1025             {
1026
1027             r02              = _mm_mul_pd(rsq02,rinv02);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1032             ewrt             = _mm_mul_pd(r02,ewtabscale);
1033             ewitab           = _mm_cvttpd_epi32(ewrt);
1034             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1035             ewitab           = _mm_slli_epi32(ewitab,2);
1036             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1037             ewtabD           = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1039             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1040             ewtabFn          = _mm_setzero_pd();
1041             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1042             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1043             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1044             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
1045             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1046
1047             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1048
1049             /* Update potential sum for this i atom from the interaction with this j atom. */
1050             velec            = _mm_and_pd(velec,cutoff_mask);
1051             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1052             velecsum         = _mm_add_pd(velecsum,velec);
1053
1054             fscal            = felec;
1055
1056             fscal            = _mm_and_pd(fscal,cutoff_mask);
1057
1058             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm_mul_pd(fscal,dx02);
1062             ty               = _mm_mul_pd(fscal,dy02);
1063             tz               = _mm_mul_pd(fscal,dz02);
1064
1065             /* Update vectorial force */
1066             fix0             = _mm_add_pd(fix0,tx);
1067             fiy0             = _mm_add_pd(fiy0,ty);
1068             fiz0             = _mm_add_pd(fiz0,tz);
1069
1070             fjx2             = _mm_add_pd(fjx2,tx);
1071             fjy2             = _mm_add_pd(fjy2,ty);
1072             fjz2             = _mm_add_pd(fjz2,tz);
1073
1074             }
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm_any_lt(rsq10,rcutoff2))
1081             {
1082
1083             r10              = _mm_mul_pd(rsq10,rinv10);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088             ewrt             = _mm_mul_pd(r10,ewtabscale);
1089             ewitab           = _mm_cvttpd_epi32(ewrt);
1090             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1091             ewitab           = _mm_slli_epi32(ewitab,2);
1092             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1093             ewtabD           = _mm_setzero_pd();
1094             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1095             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1096             ewtabFn          = _mm_setzero_pd();
1097             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1098             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1099             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1100             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1101             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1102
1103             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1104
1105             /* Update potential sum for this i atom from the interaction with this j atom. */
1106             velec            = _mm_and_pd(velec,cutoff_mask);
1107             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1108             velecsum         = _mm_add_pd(velecsum,velec);
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm_and_pd(fscal,cutoff_mask);
1113
1114             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm_mul_pd(fscal,dx10);
1118             ty               = _mm_mul_pd(fscal,dy10);
1119             tz               = _mm_mul_pd(fscal,dz10);
1120
1121             /* Update vectorial force */
1122             fix1             = _mm_add_pd(fix1,tx);
1123             fiy1             = _mm_add_pd(fiy1,ty);
1124             fiz1             = _mm_add_pd(fiz1,tz);
1125
1126             fjx0             = _mm_add_pd(fjx0,tx);
1127             fjy0             = _mm_add_pd(fjy0,ty);
1128             fjz0             = _mm_add_pd(fjz0,tz);
1129
1130             }
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             if (gmx_mm_any_lt(rsq11,rcutoff2))
1137             {
1138
1139             r11              = _mm_mul_pd(rsq11,rinv11);
1140
1141             /* EWALD ELECTROSTATICS */
1142
1143             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1144             ewrt             = _mm_mul_pd(r11,ewtabscale);
1145             ewitab           = _mm_cvttpd_epi32(ewrt);
1146             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1147             ewitab           = _mm_slli_epi32(ewitab,2);
1148             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1149             ewtabD           = _mm_setzero_pd();
1150             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1151             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1152             ewtabFn          = _mm_setzero_pd();
1153             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1154             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1155             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1156             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1157             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1158
1159             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1160
1161             /* Update potential sum for this i atom from the interaction with this j atom. */
1162             velec            = _mm_and_pd(velec,cutoff_mask);
1163             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1164             velecsum         = _mm_add_pd(velecsum,velec);
1165
1166             fscal            = felec;
1167
1168             fscal            = _mm_and_pd(fscal,cutoff_mask);
1169
1170             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1171
1172             /* Calculate temporary vectorial force */
1173             tx               = _mm_mul_pd(fscal,dx11);
1174             ty               = _mm_mul_pd(fscal,dy11);
1175             tz               = _mm_mul_pd(fscal,dz11);
1176
1177             /* Update vectorial force */
1178             fix1             = _mm_add_pd(fix1,tx);
1179             fiy1             = _mm_add_pd(fiy1,ty);
1180             fiz1             = _mm_add_pd(fiz1,tz);
1181
1182             fjx1             = _mm_add_pd(fjx1,tx);
1183             fjy1             = _mm_add_pd(fjy1,ty);
1184             fjz1             = _mm_add_pd(fjz1,tz);
1185
1186             }
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             if (gmx_mm_any_lt(rsq12,rcutoff2))
1193             {
1194
1195             r12              = _mm_mul_pd(rsq12,rinv12);
1196
1197             /* EWALD ELECTROSTATICS */
1198
1199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1200             ewrt             = _mm_mul_pd(r12,ewtabscale);
1201             ewitab           = _mm_cvttpd_epi32(ewrt);
1202             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1203             ewitab           = _mm_slli_epi32(ewitab,2);
1204             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1205             ewtabD           = _mm_setzero_pd();
1206             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1207             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1208             ewtabFn          = _mm_setzero_pd();
1209             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1210             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1211             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1212             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1213             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1214
1215             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1216
1217             /* Update potential sum for this i atom from the interaction with this j atom. */
1218             velec            = _mm_and_pd(velec,cutoff_mask);
1219             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1220             velecsum         = _mm_add_pd(velecsum,velec);
1221
1222             fscal            = felec;
1223
1224             fscal            = _mm_and_pd(fscal,cutoff_mask);
1225
1226             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1227
1228             /* Calculate temporary vectorial force */
1229             tx               = _mm_mul_pd(fscal,dx12);
1230             ty               = _mm_mul_pd(fscal,dy12);
1231             tz               = _mm_mul_pd(fscal,dz12);
1232
1233             /* Update vectorial force */
1234             fix1             = _mm_add_pd(fix1,tx);
1235             fiy1             = _mm_add_pd(fiy1,ty);
1236             fiz1             = _mm_add_pd(fiz1,tz);
1237
1238             fjx2             = _mm_add_pd(fjx2,tx);
1239             fjy2             = _mm_add_pd(fjy2,ty);
1240             fjz2             = _mm_add_pd(fjz2,tz);
1241
1242             }
1243
1244             /**************************
1245              * CALCULATE INTERACTIONS *
1246              **************************/
1247
1248             if (gmx_mm_any_lt(rsq20,rcutoff2))
1249             {
1250
1251             r20              = _mm_mul_pd(rsq20,rinv20);
1252
1253             /* EWALD ELECTROSTATICS */
1254
1255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1256             ewrt             = _mm_mul_pd(r20,ewtabscale);
1257             ewitab           = _mm_cvttpd_epi32(ewrt);
1258             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1259             ewitab           = _mm_slli_epi32(ewitab,2);
1260             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1261             ewtabD           = _mm_setzero_pd();
1262             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1263             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1264             ewtabFn          = _mm_setzero_pd();
1265             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1266             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1267             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1268             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1269             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1270
1271             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1272
1273             /* Update potential sum for this i atom from the interaction with this j atom. */
1274             velec            = _mm_and_pd(velec,cutoff_mask);
1275             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1276             velecsum         = _mm_add_pd(velecsum,velec);
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_and_pd(fscal,cutoff_mask);
1281
1282             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1283
1284             /* Calculate temporary vectorial force */
1285             tx               = _mm_mul_pd(fscal,dx20);
1286             ty               = _mm_mul_pd(fscal,dy20);
1287             tz               = _mm_mul_pd(fscal,dz20);
1288
1289             /* Update vectorial force */
1290             fix2             = _mm_add_pd(fix2,tx);
1291             fiy2             = _mm_add_pd(fiy2,ty);
1292             fiz2             = _mm_add_pd(fiz2,tz);
1293
1294             fjx0             = _mm_add_pd(fjx0,tx);
1295             fjy0             = _mm_add_pd(fjy0,ty);
1296             fjz0             = _mm_add_pd(fjz0,tz);
1297
1298             }
1299
1300             /**************************
1301              * CALCULATE INTERACTIONS *
1302              **************************/
1303
1304             if (gmx_mm_any_lt(rsq21,rcutoff2))
1305             {
1306
1307             r21              = _mm_mul_pd(rsq21,rinv21);
1308
1309             /* EWALD ELECTROSTATICS */
1310
1311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1312             ewrt             = _mm_mul_pd(r21,ewtabscale);
1313             ewitab           = _mm_cvttpd_epi32(ewrt);
1314             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1315             ewitab           = _mm_slli_epi32(ewitab,2);
1316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1317             ewtabD           = _mm_setzero_pd();
1318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1320             ewtabFn          = _mm_setzero_pd();
1321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1324             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1325             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1326
1327             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1328
1329             /* Update potential sum for this i atom from the interaction with this j atom. */
1330             velec            = _mm_and_pd(velec,cutoff_mask);
1331             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1332             velecsum         = _mm_add_pd(velecsum,velec);
1333
1334             fscal            = felec;
1335
1336             fscal            = _mm_and_pd(fscal,cutoff_mask);
1337
1338             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1339
1340             /* Calculate temporary vectorial force */
1341             tx               = _mm_mul_pd(fscal,dx21);
1342             ty               = _mm_mul_pd(fscal,dy21);
1343             tz               = _mm_mul_pd(fscal,dz21);
1344
1345             /* Update vectorial force */
1346             fix2             = _mm_add_pd(fix2,tx);
1347             fiy2             = _mm_add_pd(fiy2,ty);
1348             fiz2             = _mm_add_pd(fiz2,tz);
1349
1350             fjx1             = _mm_add_pd(fjx1,tx);
1351             fjy1             = _mm_add_pd(fjy1,ty);
1352             fjz1             = _mm_add_pd(fjz1,tz);
1353
1354             }
1355
1356             /**************************
1357              * CALCULATE INTERACTIONS *
1358              **************************/
1359
1360             if (gmx_mm_any_lt(rsq22,rcutoff2))
1361             {
1362
1363             r22              = _mm_mul_pd(rsq22,rinv22);
1364
1365             /* EWALD ELECTROSTATICS */
1366
1367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1368             ewrt             = _mm_mul_pd(r22,ewtabscale);
1369             ewitab           = _mm_cvttpd_epi32(ewrt);
1370             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1371             ewitab           = _mm_slli_epi32(ewitab,2);
1372             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1373             ewtabD           = _mm_setzero_pd();
1374             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1375             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1376             ewtabFn          = _mm_setzero_pd();
1377             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1378             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1379             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1380             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1381             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1382
1383             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1384
1385             /* Update potential sum for this i atom from the interaction with this j atom. */
1386             velec            = _mm_and_pd(velec,cutoff_mask);
1387             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1388             velecsum         = _mm_add_pd(velecsum,velec);
1389
1390             fscal            = felec;
1391
1392             fscal            = _mm_and_pd(fscal,cutoff_mask);
1393
1394             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1395
1396             /* Calculate temporary vectorial force */
1397             tx               = _mm_mul_pd(fscal,dx22);
1398             ty               = _mm_mul_pd(fscal,dy22);
1399             tz               = _mm_mul_pd(fscal,dz22);
1400
1401             /* Update vectorial force */
1402             fix2             = _mm_add_pd(fix2,tx);
1403             fiy2             = _mm_add_pd(fiy2,ty);
1404             fiz2             = _mm_add_pd(fiz2,tz);
1405
1406             fjx2             = _mm_add_pd(fjx2,tx);
1407             fjy2             = _mm_add_pd(fjy2,ty);
1408             fjz2             = _mm_add_pd(fjz2,tz);
1409
1410             }
1411
1412             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1413
1414             /* Inner loop uses 450 flops */
1415         }
1416
1417         /* End of innermost loop */
1418
1419         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1420                                               f+i_coord_offset,fshift+i_shift_offset);
1421
1422         ggid                        = gid[iidx];
1423         /* Update potential energies */
1424         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1425         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1426
1427         /* Increment number of inner iterations */
1428         inneriter                  += j_index_end - j_index_start;
1429
1430         /* Outer loop uses 20 flops */
1431     }
1432
1433     /* Increment number of outer iterations */
1434     outeriter        += nri;
1435
1436     /* Update outer/inner flops */
1437
1438     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*450);
1439 }
1440 /*
1441  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_sse2_double
1442  * Electrostatics interaction: Ewald
1443  * VdW interaction:            LJEwald
1444  * Geometry:                   Water3-Water3
1445  * Calculate force/pot:        Force
1446  */
1447 void
1448 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_sse2_double
1449                     (t_nblist                    * gmx_restrict       nlist,
1450                      rvec                        * gmx_restrict          xx,
1451                      rvec                        * gmx_restrict          ff,
1452                      t_forcerec                  * gmx_restrict          fr,
1453                      t_mdatoms                   * gmx_restrict     mdatoms,
1454                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1455                      t_nrnb                      * gmx_restrict        nrnb)
1456 {
1457     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1458      * just 0 for non-waters.
1459      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1460      * jnr indices corresponding to data put in the four positions in the SIMD register.
1461      */
1462     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1463     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1464     int              jnrA,jnrB;
1465     int              j_coord_offsetA,j_coord_offsetB;
1466     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1467     real             rcutoff_scalar;
1468     real             *shiftvec,*fshift,*x,*f;
1469     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1470     int              vdwioffset0;
1471     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1472     int              vdwioffset1;
1473     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1474     int              vdwioffset2;
1475     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1476     int              vdwjidx0A,vdwjidx0B;
1477     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1478     int              vdwjidx1A,vdwjidx1B;
1479     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1480     int              vdwjidx2A,vdwjidx2B;
1481     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1482     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1483     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1484     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1485     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1486     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1487     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1488     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1489     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1490     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1491     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1492     real             *charge;
1493     int              nvdwtype;
1494     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1495     int              *vdwtype;
1496     real             *vdwparam;
1497     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1498     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1499     __m128d           c6grid_00;
1500     __m128d           c6grid_01;
1501     __m128d           c6grid_02;
1502     __m128d           c6grid_10;
1503     __m128d           c6grid_11;
1504     __m128d           c6grid_12;
1505     __m128d           c6grid_20;
1506     __m128d           c6grid_21;
1507     __m128d           c6grid_22;
1508     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1509     real             *vdwgridparam;
1510     __m128d           one_half = _mm_set1_pd(0.5);
1511     __m128d           minus_one = _mm_set1_pd(-1.0);
1512     __m128i          ewitab;
1513     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1514     real             *ewtab;
1515     __m128d          dummy_mask,cutoff_mask;
1516     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1517     __m128d          one     = _mm_set1_pd(1.0);
1518     __m128d          two     = _mm_set1_pd(2.0);
1519     x                = xx[0];
1520     f                = ff[0];
1521
1522     nri              = nlist->nri;
1523     iinr             = nlist->iinr;
1524     jindex           = nlist->jindex;
1525     jjnr             = nlist->jjnr;
1526     shiftidx         = nlist->shift;
1527     gid              = nlist->gid;
1528     shiftvec         = fr->shift_vec[0];
1529     fshift           = fr->fshift[0];
1530     facel            = _mm_set1_pd(fr->epsfac);
1531     charge           = mdatoms->chargeA;
1532     nvdwtype         = fr->ntype;
1533     vdwparam         = fr->nbfp;
1534     vdwtype          = mdatoms->typeA;
1535     vdwgridparam     = fr->ljpme_c6grid;
1536     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1537     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1538     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1539
1540     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1541     ewtab            = fr->ic->tabq_coul_F;
1542     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1543     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1544
1545     /* Setup water-specific parameters */
1546     inr              = nlist->iinr[0];
1547     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1548     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1549     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1550     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1551
1552     jq0              = _mm_set1_pd(charge[inr+0]);
1553     jq1              = _mm_set1_pd(charge[inr+1]);
1554     jq2              = _mm_set1_pd(charge[inr+2]);
1555     vdwjidx0A        = 2*vdwtype[inr+0];
1556     qq00             = _mm_mul_pd(iq0,jq0);
1557     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1558     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1559     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1560     qq01             = _mm_mul_pd(iq0,jq1);
1561     qq02             = _mm_mul_pd(iq0,jq2);
1562     qq10             = _mm_mul_pd(iq1,jq0);
1563     qq11             = _mm_mul_pd(iq1,jq1);
1564     qq12             = _mm_mul_pd(iq1,jq2);
1565     qq20             = _mm_mul_pd(iq2,jq0);
1566     qq21             = _mm_mul_pd(iq2,jq1);
1567     qq22             = _mm_mul_pd(iq2,jq2);
1568
1569     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1570     rcutoff_scalar   = fr->rcoulomb;
1571     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1572     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1573
1574     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1575     rvdw             = _mm_set1_pd(fr->rvdw);
1576
1577     /* Avoid stupid compiler warnings */
1578     jnrA = jnrB = 0;
1579     j_coord_offsetA = 0;
1580     j_coord_offsetB = 0;
1581
1582     outeriter        = 0;
1583     inneriter        = 0;
1584
1585     /* Start outer loop over neighborlists */
1586     for(iidx=0; iidx<nri; iidx++)
1587     {
1588         /* Load shift vector for this list */
1589         i_shift_offset   = DIM*shiftidx[iidx];
1590
1591         /* Load limits for loop over neighbors */
1592         j_index_start    = jindex[iidx];
1593         j_index_end      = jindex[iidx+1];
1594
1595         /* Get outer coordinate index */
1596         inr              = iinr[iidx];
1597         i_coord_offset   = DIM*inr;
1598
1599         /* Load i particle coords and add shift vector */
1600         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1601                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1602
1603         fix0             = _mm_setzero_pd();
1604         fiy0             = _mm_setzero_pd();
1605         fiz0             = _mm_setzero_pd();
1606         fix1             = _mm_setzero_pd();
1607         fiy1             = _mm_setzero_pd();
1608         fiz1             = _mm_setzero_pd();
1609         fix2             = _mm_setzero_pd();
1610         fiy2             = _mm_setzero_pd();
1611         fiz2             = _mm_setzero_pd();
1612
1613         /* Start inner kernel loop */
1614         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1615         {
1616
1617             /* Get j neighbor index, and coordinate index */
1618             jnrA             = jjnr[jidx];
1619             jnrB             = jjnr[jidx+1];
1620             j_coord_offsetA  = DIM*jnrA;
1621             j_coord_offsetB  = DIM*jnrB;
1622
1623             /* load j atom coordinates */
1624             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1625                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1626
1627             /* Calculate displacement vector */
1628             dx00             = _mm_sub_pd(ix0,jx0);
1629             dy00             = _mm_sub_pd(iy0,jy0);
1630             dz00             = _mm_sub_pd(iz0,jz0);
1631             dx01             = _mm_sub_pd(ix0,jx1);
1632             dy01             = _mm_sub_pd(iy0,jy1);
1633             dz01             = _mm_sub_pd(iz0,jz1);
1634             dx02             = _mm_sub_pd(ix0,jx2);
1635             dy02             = _mm_sub_pd(iy0,jy2);
1636             dz02             = _mm_sub_pd(iz0,jz2);
1637             dx10             = _mm_sub_pd(ix1,jx0);
1638             dy10             = _mm_sub_pd(iy1,jy0);
1639             dz10             = _mm_sub_pd(iz1,jz0);
1640             dx11             = _mm_sub_pd(ix1,jx1);
1641             dy11             = _mm_sub_pd(iy1,jy1);
1642             dz11             = _mm_sub_pd(iz1,jz1);
1643             dx12             = _mm_sub_pd(ix1,jx2);
1644             dy12             = _mm_sub_pd(iy1,jy2);
1645             dz12             = _mm_sub_pd(iz1,jz2);
1646             dx20             = _mm_sub_pd(ix2,jx0);
1647             dy20             = _mm_sub_pd(iy2,jy0);
1648             dz20             = _mm_sub_pd(iz2,jz0);
1649             dx21             = _mm_sub_pd(ix2,jx1);
1650             dy21             = _mm_sub_pd(iy2,jy1);
1651             dz21             = _mm_sub_pd(iz2,jz1);
1652             dx22             = _mm_sub_pd(ix2,jx2);
1653             dy22             = _mm_sub_pd(iy2,jy2);
1654             dz22             = _mm_sub_pd(iz2,jz2);
1655
1656             /* Calculate squared distance and things based on it */
1657             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1658             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1659             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1660             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1661             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1662             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1663             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1664             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1665             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1666
1667             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1668             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1669             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1670             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1671             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1672             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1673             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1674             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1675             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1676
1677             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1678             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1679             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1680             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1681             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1682             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1683             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1684             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1685             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1686
1687             fjx0             = _mm_setzero_pd();
1688             fjy0             = _mm_setzero_pd();
1689             fjz0             = _mm_setzero_pd();
1690             fjx1             = _mm_setzero_pd();
1691             fjy1             = _mm_setzero_pd();
1692             fjz1             = _mm_setzero_pd();
1693             fjx2             = _mm_setzero_pd();
1694             fjy2             = _mm_setzero_pd();
1695             fjz2             = _mm_setzero_pd();
1696
1697             /**************************
1698              * CALCULATE INTERACTIONS *
1699              **************************/
1700
1701             if (gmx_mm_any_lt(rsq00,rcutoff2))
1702             {
1703
1704             r00              = _mm_mul_pd(rsq00,rinv00);
1705
1706             /* EWALD ELECTROSTATICS */
1707
1708             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1709             ewrt             = _mm_mul_pd(r00,ewtabscale);
1710             ewitab           = _mm_cvttpd_epi32(ewrt);
1711             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1712             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1713                                          &ewtabF,&ewtabFn);
1714             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1715             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1716
1717             /* Analytical LJ-PME */
1718             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1719             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1720             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1721             exponent         = gmx_simd_exp_d(ewcljrsq);
1722             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1723             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1724             /* f6A = 6 * C6grid * (1 - poly) */
1725             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1726             /* f6B = C6grid * exponent * beta^6 */
1727             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1728             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1729             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1730
1731             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1732
1733             fscal            = _mm_add_pd(felec,fvdw);
1734
1735             fscal            = _mm_and_pd(fscal,cutoff_mask);
1736
1737             /* Calculate temporary vectorial force */
1738             tx               = _mm_mul_pd(fscal,dx00);
1739             ty               = _mm_mul_pd(fscal,dy00);
1740             tz               = _mm_mul_pd(fscal,dz00);
1741
1742             /* Update vectorial force */
1743             fix0             = _mm_add_pd(fix0,tx);
1744             fiy0             = _mm_add_pd(fiy0,ty);
1745             fiz0             = _mm_add_pd(fiz0,tz);
1746
1747             fjx0             = _mm_add_pd(fjx0,tx);
1748             fjy0             = _mm_add_pd(fjy0,ty);
1749             fjz0             = _mm_add_pd(fjz0,tz);
1750
1751             }
1752
1753             /**************************
1754              * CALCULATE INTERACTIONS *
1755              **************************/
1756
1757             if (gmx_mm_any_lt(rsq01,rcutoff2))
1758             {
1759
1760             r01              = _mm_mul_pd(rsq01,rinv01);
1761
1762             /* EWALD ELECTROSTATICS */
1763
1764             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1765             ewrt             = _mm_mul_pd(r01,ewtabscale);
1766             ewitab           = _mm_cvttpd_epi32(ewrt);
1767             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1768             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1769                                          &ewtabF,&ewtabFn);
1770             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1771             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1772
1773             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1774
1775             fscal            = felec;
1776
1777             fscal            = _mm_and_pd(fscal,cutoff_mask);
1778
1779             /* Calculate temporary vectorial force */
1780             tx               = _mm_mul_pd(fscal,dx01);
1781             ty               = _mm_mul_pd(fscal,dy01);
1782             tz               = _mm_mul_pd(fscal,dz01);
1783
1784             /* Update vectorial force */
1785             fix0             = _mm_add_pd(fix0,tx);
1786             fiy0             = _mm_add_pd(fiy0,ty);
1787             fiz0             = _mm_add_pd(fiz0,tz);
1788
1789             fjx1             = _mm_add_pd(fjx1,tx);
1790             fjy1             = _mm_add_pd(fjy1,ty);
1791             fjz1             = _mm_add_pd(fjz1,tz);
1792
1793             }
1794
1795             /**************************
1796              * CALCULATE INTERACTIONS *
1797              **************************/
1798
1799             if (gmx_mm_any_lt(rsq02,rcutoff2))
1800             {
1801
1802             r02              = _mm_mul_pd(rsq02,rinv02);
1803
1804             /* EWALD ELECTROSTATICS */
1805
1806             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1807             ewrt             = _mm_mul_pd(r02,ewtabscale);
1808             ewitab           = _mm_cvttpd_epi32(ewrt);
1809             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1810             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1811                                          &ewtabF,&ewtabFn);
1812             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1813             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1814
1815             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1816
1817             fscal            = felec;
1818
1819             fscal            = _mm_and_pd(fscal,cutoff_mask);
1820
1821             /* Calculate temporary vectorial force */
1822             tx               = _mm_mul_pd(fscal,dx02);
1823             ty               = _mm_mul_pd(fscal,dy02);
1824             tz               = _mm_mul_pd(fscal,dz02);
1825
1826             /* Update vectorial force */
1827             fix0             = _mm_add_pd(fix0,tx);
1828             fiy0             = _mm_add_pd(fiy0,ty);
1829             fiz0             = _mm_add_pd(fiz0,tz);
1830
1831             fjx2             = _mm_add_pd(fjx2,tx);
1832             fjy2             = _mm_add_pd(fjy2,ty);
1833             fjz2             = _mm_add_pd(fjz2,tz);
1834
1835             }
1836
1837             /**************************
1838              * CALCULATE INTERACTIONS *
1839              **************************/
1840
1841             if (gmx_mm_any_lt(rsq10,rcutoff2))
1842             {
1843
1844             r10              = _mm_mul_pd(rsq10,rinv10);
1845
1846             /* EWALD ELECTROSTATICS */
1847
1848             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1849             ewrt             = _mm_mul_pd(r10,ewtabscale);
1850             ewitab           = _mm_cvttpd_epi32(ewrt);
1851             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1852             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1853                                          &ewtabF,&ewtabFn);
1854             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1855             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1856
1857             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1858
1859             fscal            = felec;
1860
1861             fscal            = _mm_and_pd(fscal,cutoff_mask);
1862
1863             /* Calculate temporary vectorial force */
1864             tx               = _mm_mul_pd(fscal,dx10);
1865             ty               = _mm_mul_pd(fscal,dy10);
1866             tz               = _mm_mul_pd(fscal,dz10);
1867
1868             /* Update vectorial force */
1869             fix1             = _mm_add_pd(fix1,tx);
1870             fiy1             = _mm_add_pd(fiy1,ty);
1871             fiz1             = _mm_add_pd(fiz1,tz);
1872
1873             fjx0             = _mm_add_pd(fjx0,tx);
1874             fjy0             = _mm_add_pd(fjy0,ty);
1875             fjz0             = _mm_add_pd(fjz0,tz);
1876
1877             }
1878
1879             /**************************
1880              * CALCULATE INTERACTIONS *
1881              **************************/
1882
1883             if (gmx_mm_any_lt(rsq11,rcutoff2))
1884             {
1885
1886             r11              = _mm_mul_pd(rsq11,rinv11);
1887
1888             /* EWALD ELECTROSTATICS */
1889
1890             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1891             ewrt             = _mm_mul_pd(r11,ewtabscale);
1892             ewitab           = _mm_cvttpd_epi32(ewrt);
1893             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1894             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1895                                          &ewtabF,&ewtabFn);
1896             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1897             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1898
1899             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1900
1901             fscal            = felec;
1902
1903             fscal            = _mm_and_pd(fscal,cutoff_mask);
1904
1905             /* Calculate temporary vectorial force */
1906             tx               = _mm_mul_pd(fscal,dx11);
1907             ty               = _mm_mul_pd(fscal,dy11);
1908             tz               = _mm_mul_pd(fscal,dz11);
1909
1910             /* Update vectorial force */
1911             fix1             = _mm_add_pd(fix1,tx);
1912             fiy1             = _mm_add_pd(fiy1,ty);
1913             fiz1             = _mm_add_pd(fiz1,tz);
1914
1915             fjx1             = _mm_add_pd(fjx1,tx);
1916             fjy1             = _mm_add_pd(fjy1,ty);
1917             fjz1             = _mm_add_pd(fjz1,tz);
1918
1919             }
1920
1921             /**************************
1922              * CALCULATE INTERACTIONS *
1923              **************************/
1924
1925             if (gmx_mm_any_lt(rsq12,rcutoff2))
1926             {
1927
1928             r12              = _mm_mul_pd(rsq12,rinv12);
1929
1930             /* EWALD ELECTROSTATICS */
1931
1932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1933             ewrt             = _mm_mul_pd(r12,ewtabscale);
1934             ewitab           = _mm_cvttpd_epi32(ewrt);
1935             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1936             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1937                                          &ewtabF,&ewtabFn);
1938             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1939             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1940
1941             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1942
1943             fscal            = felec;
1944
1945             fscal            = _mm_and_pd(fscal,cutoff_mask);
1946
1947             /* Calculate temporary vectorial force */
1948             tx               = _mm_mul_pd(fscal,dx12);
1949             ty               = _mm_mul_pd(fscal,dy12);
1950             tz               = _mm_mul_pd(fscal,dz12);
1951
1952             /* Update vectorial force */
1953             fix1             = _mm_add_pd(fix1,tx);
1954             fiy1             = _mm_add_pd(fiy1,ty);
1955             fiz1             = _mm_add_pd(fiz1,tz);
1956
1957             fjx2             = _mm_add_pd(fjx2,tx);
1958             fjy2             = _mm_add_pd(fjy2,ty);
1959             fjz2             = _mm_add_pd(fjz2,tz);
1960
1961             }
1962
1963             /**************************
1964              * CALCULATE INTERACTIONS *
1965              **************************/
1966
1967             if (gmx_mm_any_lt(rsq20,rcutoff2))
1968             {
1969
1970             r20              = _mm_mul_pd(rsq20,rinv20);
1971
1972             /* EWALD ELECTROSTATICS */
1973
1974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1975             ewrt             = _mm_mul_pd(r20,ewtabscale);
1976             ewitab           = _mm_cvttpd_epi32(ewrt);
1977             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1978             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1979                                          &ewtabF,&ewtabFn);
1980             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1981             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1982
1983             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1984
1985             fscal            = felec;
1986
1987             fscal            = _mm_and_pd(fscal,cutoff_mask);
1988
1989             /* Calculate temporary vectorial force */
1990             tx               = _mm_mul_pd(fscal,dx20);
1991             ty               = _mm_mul_pd(fscal,dy20);
1992             tz               = _mm_mul_pd(fscal,dz20);
1993
1994             /* Update vectorial force */
1995             fix2             = _mm_add_pd(fix2,tx);
1996             fiy2             = _mm_add_pd(fiy2,ty);
1997             fiz2             = _mm_add_pd(fiz2,tz);
1998
1999             fjx0             = _mm_add_pd(fjx0,tx);
2000             fjy0             = _mm_add_pd(fjy0,ty);
2001             fjz0             = _mm_add_pd(fjz0,tz);
2002
2003             }
2004
2005             /**************************
2006              * CALCULATE INTERACTIONS *
2007              **************************/
2008
2009             if (gmx_mm_any_lt(rsq21,rcutoff2))
2010             {
2011
2012             r21              = _mm_mul_pd(rsq21,rinv21);
2013
2014             /* EWALD ELECTROSTATICS */
2015
2016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2017             ewrt             = _mm_mul_pd(r21,ewtabscale);
2018             ewitab           = _mm_cvttpd_epi32(ewrt);
2019             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2020             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2021                                          &ewtabF,&ewtabFn);
2022             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2023             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2024
2025             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2026
2027             fscal            = felec;
2028
2029             fscal            = _mm_and_pd(fscal,cutoff_mask);
2030
2031             /* Calculate temporary vectorial force */
2032             tx               = _mm_mul_pd(fscal,dx21);
2033             ty               = _mm_mul_pd(fscal,dy21);
2034             tz               = _mm_mul_pd(fscal,dz21);
2035
2036             /* Update vectorial force */
2037             fix2             = _mm_add_pd(fix2,tx);
2038             fiy2             = _mm_add_pd(fiy2,ty);
2039             fiz2             = _mm_add_pd(fiz2,tz);
2040
2041             fjx1             = _mm_add_pd(fjx1,tx);
2042             fjy1             = _mm_add_pd(fjy1,ty);
2043             fjz1             = _mm_add_pd(fjz1,tz);
2044
2045             }
2046
2047             /**************************
2048              * CALCULATE INTERACTIONS *
2049              **************************/
2050
2051             if (gmx_mm_any_lt(rsq22,rcutoff2))
2052             {
2053
2054             r22              = _mm_mul_pd(rsq22,rinv22);
2055
2056             /* EWALD ELECTROSTATICS */
2057
2058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2059             ewrt             = _mm_mul_pd(r22,ewtabscale);
2060             ewitab           = _mm_cvttpd_epi32(ewrt);
2061             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2062             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2063                                          &ewtabF,&ewtabFn);
2064             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2065             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2066
2067             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2068
2069             fscal            = felec;
2070
2071             fscal            = _mm_and_pd(fscal,cutoff_mask);
2072
2073             /* Calculate temporary vectorial force */
2074             tx               = _mm_mul_pd(fscal,dx22);
2075             ty               = _mm_mul_pd(fscal,dy22);
2076             tz               = _mm_mul_pd(fscal,dz22);
2077
2078             /* Update vectorial force */
2079             fix2             = _mm_add_pd(fix2,tx);
2080             fiy2             = _mm_add_pd(fiy2,ty);
2081             fiz2             = _mm_add_pd(fiz2,tz);
2082
2083             fjx2             = _mm_add_pd(fjx2,tx);
2084             fjy2             = _mm_add_pd(fjy2,ty);
2085             fjz2             = _mm_add_pd(fjz2,tz);
2086
2087             }
2088
2089             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2090
2091             /* Inner loop uses 374 flops */
2092         }
2093
2094         if(jidx<j_index_end)
2095         {
2096
2097             jnrA             = jjnr[jidx];
2098             j_coord_offsetA  = DIM*jnrA;
2099
2100             /* load j atom coordinates */
2101             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2102                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2103
2104             /* Calculate displacement vector */
2105             dx00             = _mm_sub_pd(ix0,jx0);
2106             dy00             = _mm_sub_pd(iy0,jy0);
2107             dz00             = _mm_sub_pd(iz0,jz0);
2108             dx01             = _mm_sub_pd(ix0,jx1);
2109             dy01             = _mm_sub_pd(iy0,jy1);
2110             dz01             = _mm_sub_pd(iz0,jz1);
2111             dx02             = _mm_sub_pd(ix0,jx2);
2112             dy02             = _mm_sub_pd(iy0,jy2);
2113             dz02             = _mm_sub_pd(iz0,jz2);
2114             dx10             = _mm_sub_pd(ix1,jx0);
2115             dy10             = _mm_sub_pd(iy1,jy0);
2116             dz10             = _mm_sub_pd(iz1,jz0);
2117             dx11             = _mm_sub_pd(ix1,jx1);
2118             dy11             = _mm_sub_pd(iy1,jy1);
2119             dz11             = _mm_sub_pd(iz1,jz1);
2120             dx12             = _mm_sub_pd(ix1,jx2);
2121             dy12             = _mm_sub_pd(iy1,jy2);
2122             dz12             = _mm_sub_pd(iz1,jz2);
2123             dx20             = _mm_sub_pd(ix2,jx0);
2124             dy20             = _mm_sub_pd(iy2,jy0);
2125             dz20             = _mm_sub_pd(iz2,jz0);
2126             dx21             = _mm_sub_pd(ix2,jx1);
2127             dy21             = _mm_sub_pd(iy2,jy1);
2128             dz21             = _mm_sub_pd(iz2,jz1);
2129             dx22             = _mm_sub_pd(ix2,jx2);
2130             dy22             = _mm_sub_pd(iy2,jy2);
2131             dz22             = _mm_sub_pd(iz2,jz2);
2132
2133             /* Calculate squared distance and things based on it */
2134             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2135             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2136             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2137             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2138             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2139             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2140             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2141             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2142             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2143
2144             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2145             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2146             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2147             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2148             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2149             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2150             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2151             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2152             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2153
2154             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2155             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2156             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2157             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2158             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2159             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2160             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2161             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2162             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2163
2164             fjx0             = _mm_setzero_pd();
2165             fjy0             = _mm_setzero_pd();
2166             fjz0             = _mm_setzero_pd();
2167             fjx1             = _mm_setzero_pd();
2168             fjy1             = _mm_setzero_pd();
2169             fjz1             = _mm_setzero_pd();
2170             fjx2             = _mm_setzero_pd();
2171             fjy2             = _mm_setzero_pd();
2172             fjz2             = _mm_setzero_pd();
2173
2174             /**************************
2175              * CALCULATE INTERACTIONS *
2176              **************************/
2177
2178             if (gmx_mm_any_lt(rsq00,rcutoff2))
2179             {
2180
2181             r00              = _mm_mul_pd(rsq00,rinv00);
2182
2183             /* EWALD ELECTROSTATICS */
2184
2185             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2186             ewrt             = _mm_mul_pd(r00,ewtabscale);
2187             ewitab           = _mm_cvttpd_epi32(ewrt);
2188             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2189             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2190             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2191             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2192
2193             /* Analytical LJ-PME */
2194             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2195             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
2196             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
2197             exponent         = gmx_simd_exp_d(ewcljrsq);
2198             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2199             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
2200             /* f6A = 6 * C6grid * (1 - poly) */
2201             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
2202             /* f6B = C6grid * exponent * beta^6 */
2203             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
2204             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2205             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2206
2207             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2208
2209             fscal            = _mm_add_pd(felec,fvdw);
2210
2211             fscal            = _mm_and_pd(fscal,cutoff_mask);
2212
2213             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2214
2215             /* Calculate temporary vectorial force */
2216             tx               = _mm_mul_pd(fscal,dx00);
2217             ty               = _mm_mul_pd(fscal,dy00);
2218             tz               = _mm_mul_pd(fscal,dz00);
2219
2220             /* Update vectorial force */
2221             fix0             = _mm_add_pd(fix0,tx);
2222             fiy0             = _mm_add_pd(fiy0,ty);
2223             fiz0             = _mm_add_pd(fiz0,tz);
2224
2225             fjx0             = _mm_add_pd(fjx0,tx);
2226             fjy0             = _mm_add_pd(fjy0,ty);
2227             fjz0             = _mm_add_pd(fjz0,tz);
2228
2229             }
2230
2231             /**************************
2232              * CALCULATE INTERACTIONS *
2233              **************************/
2234
2235             if (gmx_mm_any_lt(rsq01,rcutoff2))
2236             {
2237
2238             r01              = _mm_mul_pd(rsq01,rinv01);
2239
2240             /* EWALD ELECTROSTATICS */
2241
2242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2243             ewrt             = _mm_mul_pd(r01,ewtabscale);
2244             ewitab           = _mm_cvttpd_epi32(ewrt);
2245             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2246             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2247             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2248             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2249
2250             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2251
2252             fscal            = felec;
2253
2254             fscal            = _mm_and_pd(fscal,cutoff_mask);
2255
2256             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2257
2258             /* Calculate temporary vectorial force */
2259             tx               = _mm_mul_pd(fscal,dx01);
2260             ty               = _mm_mul_pd(fscal,dy01);
2261             tz               = _mm_mul_pd(fscal,dz01);
2262
2263             /* Update vectorial force */
2264             fix0             = _mm_add_pd(fix0,tx);
2265             fiy0             = _mm_add_pd(fiy0,ty);
2266             fiz0             = _mm_add_pd(fiz0,tz);
2267
2268             fjx1             = _mm_add_pd(fjx1,tx);
2269             fjy1             = _mm_add_pd(fjy1,ty);
2270             fjz1             = _mm_add_pd(fjz1,tz);
2271
2272             }
2273
2274             /**************************
2275              * CALCULATE INTERACTIONS *
2276              **************************/
2277
2278             if (gmx_mm_any_lt(rsq02,rcutoff2))
2279             {
2280
2281             r02              = _mm_mul_pd(rsq02,rinv02);
2282
2283             /* EWALD ELECTROSTATICS */
2284
2285             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2286             ewrt             = _mm_mul_pd(r02,ewtabscale);
2287             ewitab           = _mm_cvttpd_epi32(ewrt);
2288             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2289             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2290             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2291             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2292
2293             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2294
2295             fscal            = felec;
2296
2297             fscal            = _mm_and_pd(fscal,cutoff_mask);
2298
2299             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2300
2301             /* Calculate temporary vectorial force */
2302             tx               = _mm_mul_pd(fscal,dx02);
2303             ty               = _mm_mul_pd(fscal,dy02);
2304             tz               = _mm_mul_pd(fscal,dz02);
2305
2306             /* Update vectorial force */
2307             fix0             = _mm_add_pd(fix0,tx);
2308             fiy0             = _mm_add_pd(fiy0,ty);
2309             fiz0             = _mm_add_pd(fiz0,tz);
2310
2311             fjx2             = _mm_add_pd(fjx2,tx);
2312             fjy2             = _mm_add_pd(fjy2,ty);
2313             fjz2             = _mm_add_pd(fjz2,tz);
2314
2315             }
2316
2317             /**************************
2318              * CALCULATE INTERACTIONS *
2319              **************************/
2320
2321             if (gmx_mm_any_lt(rsq10,rcutoff2))
2322             {
2323
2324             r10              = _mm_mul_pd(rsq10,rinv10);
2325
2326             /* EWALD ELECTROSTATICS */
2327
2328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2329             ewrt             = _mm_mul_pd(r10,ewtabscale);
2330             ewitab           = _mm_cvttpd_epi32(ewrt);
2331             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2332             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2333             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2334             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2335
2336             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2337
2338             fscal            = felec;
2339
2340             fscal            = _mm_and_pd(fscal,cutoff_mask);
2341
2342             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2343
2344             /* Calculate temporary vectorial force */
2345             tx               = _mm_mul_pd(fscal,dx10);
2346             ty               = _mm_mul_pd(fscal,dy10);
2347             tz               = _mm_mul_pd(fscal,dz10);
2348
2349             /* Update vectorial force */
2350             fix1             = _mm_add_pd(fix1,tx);
2351             fiy1             = _mm_add_pd(fiy1,ty);
2352             fiz1             = _mm_add_pd(fiz1,tz);
2353
2354             fjx0             = _mm_add_pd(fjx0,tx);
2355             fjy0             = _mm_add_pd(fjy0,ty);
2356             fjz0             = _mm_add_pd(fjz0,tz);
2357
2358             }
2359
2360             /**************************
2361              * CALCULATE INTERACTIONS *
2362              **************************/
2363
2364             if (gmx_mm_any_lt(rsq11,rcutoff2))
2365             {
2366
2367             r11              = _mm_mul_pd(rsq11,rinv11);
2368
2369             /* EWALD ELECTROSTATICS */
2370
2371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2372             ewrt             = _mm_mul_pd(r11,ewtabscale);
2373             ewitab           = _mm_cvttpd_epi32(ewrt);
2374             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2375             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2376             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2377             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2378
2379             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2380
2381             fscal            = felec;
2382
2383             fscal            = _mm_and_pd(fscal,cutoff_mask);
2384
2385             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2386
2387             /* Calculate temporary vectorial force */
2388             tx               = _mm_mul_pd(fscal,dx11);
2389             ty               = _mm_mul_pd(fscal,dy11);
2390             tz               = _mm_mul_pd(fscal,dz11);
2391
2392             /* Update vectorial force */
2393             fix1             = _mm_add_pd(fix1,tx);
2394             fiy1             = _mm_add_pd(fiy1,ty);
2395             fiz1             = _mm_add_pd(fiz1,tz);
2396
2397             fjx1             = _mm_add_pd(fjx1,tx);
2398             fjy1             = _mm_add_pd(fjy1,ty);
2399             fjz1             = _mm_add_pd(fjz1,tz);
2400
2401             }
2402
2403             /**************************
2404              * CALCULATE INTERACTIONS *
2405              **************************/
2406
2407             if (gmx_mm_any_lt(rsq12,rcutoff2))
2408             {
2409
2410             r12              = _mm_mul_pd(rsq12,rinv12);
2411
2412             /* EWALD ELECTROSTATICS */
2413
2414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2415             ewrt             = _mm_mul_pd(r12,ewtabscale);
2416             ewitab           = _mm_cvttpd_epi32(ewrt);
2417             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2418             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2419             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2420             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2421
2422             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2423
2424             fscal            = felec;
2425
2426             fscal            = _mm_and_pd(fscal,cutoff_mask);
2427
2428             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2429
2430             /* Calculate temporary vectorial force */
2431             tx               = _mm_mul_pd(fscal,dx12);
2432             ty               = _mm_mul_pd(fscal,dy12);
2433             tz               = _mm_mul_pd(fscal,dz12);
2434
2435             /* Update vectorial force */
2436             fix1             = _mm_add_pd(fix1,tx);
2437             fiy1             = _mm_add_pd(fiy1,ty);
2438             fiz1             = _mm_add_pd(fiz1,tz);
2439
2440             fjx2             = _mm_add_pd(fjx2,tx);
2441             fjy2             = _mm_add_pd(fjy2,ty);
2442             fjz2             = _mm_add_pd(fjz2,tz);
2443
2444             }
2445
2446             /**************************
2447              * CALCULATE INTERACTIONS *
2448              **************************/
2449
2450             if (gmx_mm_any_lt(rsq20,rcutoff2))
2451             {
2452
2453             r20              = _mm_mul_pd(rsq20,rinv20);
2454
2455             /* EWALD ELECTROSTATICS */
2456
2457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2458             ewrt             = _mm_mul_pd(r20,ewtabscale);
2459             ewitab           = _mm_cvttpd_epi32(ewrt);
2460             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2461             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2462             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2463             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2464
2465             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2466
2467             fscal            = felec;
2468
2469             fscal            = _mm_and_pd(fscal,cutoff_mask);
2470
2471             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2472
2473             /* Calculate temporary vectorial force */
2474             tx               = _mm_mul_pd(fscal,dx20);
2475             ty               = _mm_mul_pd(fscal,dy20);
2476             tz               = _mm_mul_pd(fscal,dz20);
2477
2478             /* Update vectorial force */
2479             fix2             = _mm_add_pd(fix2,tx);
2480             fiy2             = _mm_add_pd(fiy2,ty);
2481             fiz2             = _mm_add_pd(fiz2,tz);
2482
2483             fjx0             = _mm_add_pd(fjx0,tx);
2484             fjy0             = _mm_add_pd(fjy0,ty);
2485             fjz0             = _mm_add_pd(fjz0,tz);
2486
2487             }
2488
2489             /**************************
2490              * CALCULATE INTERACTIONS *
2491              **************************/
2492
2493             if (gmx_mm_any_lt(rsq21,rcutoff2))
2494             {
2495
2496             r21              = _mm_mul_pd(rsq21,rinv21);
2497
2498             /* EWALD ELECTROSTATICS */
2499
2500             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2501             ewrt             = _mm_mul_pd(r21,ewtabscale);
2502             ewitab           = _mm_cvttpd_epi32(ewrt);
2503             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2504             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2505             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2506             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2507
2508             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2509
2510             fscal            = felec;
2511
2512             fscal            = _mm_and_pd(fscal,cutoff_mask);
2513
2514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2515
2516             /* Calculate temporary vectorial force */
2517             tx               = _mm_mul_pd(fscal,dx21);
2518             ty               = _mm_mul_pd(fscal,dy21);
2519             tz               = _mm_mul_pd(fscal,dz21);
2520
2521             /* Update vectorial force */
2522             fix2             = _mm_add_pd(fix2,tx);
2523             fiy2             = _mm_add_pd(fiy2,ty);
2524             fiz2             = _mm_add_pd(fiz2,tz);
2525
2526             fjx1             = _mm_add_pd(fjx1,tx);
2527             fjy1             = _mm_add_pd(fjy1,ty);
2528             fjz1             = _mm_add_pd(fjz1,tz);
2529
2530             }
2531
2532             /**************************
2533              * CALCULATE INTERACTIONS *
2534              **************************/
2535
2536             if (gmx_mm_any_lt(rsq22,rcutoff2))
2537             {
2538
2539             r22              = _mm_mul_pd(rsq22,rinv22);
2540
2541             /* EWALD ELECTROSTATICS */
2542
2543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2544             ewrt             = _mm_mul_pd(r22,ewtabscale);
2545             ewitab           = _mm_cvttpd_epi32(ewrt);
2546             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2547             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2548             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2549             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2550
2551             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2552
2553             fscal            = felec;
2554
2555             fscal            = _mm_and_pd(fscal,cutoff_mask);
2556
2557             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2558
2559             /* Calculate temporary vectorial force */
2560             tx               = _mm_mul_pd(fscal,dx22);
2561             ty               = _mm_mul_pd(fscal,dy22);
2562             tz               = _mm_mul_pd(fscal,dz22);
2563
2564             /* Update vectorial force */
2565             fix2             = _mm_add_pd(fix2,tx);
2566             fiy2             = _mm_add_pd(fiy2,ty);
2567             fiz2             = _mm_add_pd(fiz2,tz);
2568
2569             fjx2             = _mm_add_pd(fjx2,tx);
2570             fjy2             = _mm_add_pd(fjy2,ty);
2571             fjz2             = _mm_add_pd(fjz2,tz);
2572
2573             }
2574
2575             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2576
2577             /* Inner loop uses 374 flops */
2578         }
2579
2580         /* End of innermost loop */
2581
2582         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2583                                               f+i_coord_offset,fshift+i_shift_offset);
2584
2585         /* Increment number of inner iterations */
2586         inneriter                  += j_index_end - j_index_start;
2587
2588         /* Outer loop uses 18 flops */
2589     }
2590
2591     /* Increment number of outer iterations */
2592     outeriter        += nri;
2593
2594     /* Update outer/inner flops */
2595
2596     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*374);
2597 }