Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128d           one_half = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
154     rvdw             = _mm_set1_pd(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm_setzero_pd();
183         fiy0             = _mm_setzero_pd();
184         fiz0             = _mm_setzero_pd();
185         fix1             = _mm_setzero_pd();
186         fiy1             = _mm_setzero_pd();
187         fiz1             = _mm_setzero_pd();
188         fix2             = _mm_setzero_pd();
189         fiy2             = _mm_setzero_pd();
190         fiz2             = _mm_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_pd();
194         vvdwsum          = _mm_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_pd(ix0,jx0);
212             dy00             = _mm_sub_pd(iy0,jy0);
213             dz00             = _mm_sub_pd(iz0,jz0);
214             dx10             = _mm_sub_pd(ix1,jx0);
215             dy10             = _mm_sub_pd(iy1,jy0);
216             dz10             = _mm_sub_pd(iz1,jz0);
217             dx20             = _mm_sub_pd(ix2,jx0);
218             dy20             = _mm_sub_pd(iy2,jy0);
219             dz20             = _mm_sub_pd(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm_invsqrt_pd(rsq00);
227             rinv10           = gmx_mm_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm_invsqrt_pd(rsq20);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_pd(iq0,jq0);
254             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
258                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _mm_mul_pd(r00,ewtabscale);
264             ewitab           = _mm_cvttpd_epi32(ewrt);
265             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
266             ewitab           = _mm_slli_epi32(ewitab,2);
267             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
268             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
269             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
270             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
271             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
273             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
274             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
275             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
276             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
277
278             /* Analytical LJ-PME */
279             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
280             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
281             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
282             exponent         = gmx_simd_exp_d(ewcljrsq);
283             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
284             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
285             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
286             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
287             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
288             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
289                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
290             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
291             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
292
293             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velec            = _mm_and_pd(velec,cutoff_mask);
297             velecsum         = _mm_add_pd(velecsum,velec);
298             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
299             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
300
301             fscal            = _mm_add_pd(felec,fvdw);
302
303             fscal            = _mm_and_pd(fscal,cutoff_mask);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_pd(fscal,dx00);
307             ty               = _mm_mul_pd(fscal,dy00);
308             tz               = _mm_mul_pd(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_pd(fix0,tx);
312             fiy0             = _mm_add_pd(fiy0,ty);
313             fiz0             = _mm_add_pd(fiz0,tz);
314
315             fjx0             = _mm_add_pd(fjx0,tx);
316             fjy0             = _mm_add_pd(fjy0,ty);
317             fjz0             = _mm_add_pd(fjz0,tz);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq10,rcutoff2))
326             {
327
328             r10              = _mm_mul_pd(rsq10,rinv10);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm_mul_pd(iq1,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_pd(r10,ewtabscale);
337             ewitab           = _mm_cvttpd_epi32(ewrt);
338             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
342             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
343             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
344             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
345             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
346             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
347             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
348             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
349             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
350
351             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_and_pd(velec,cutoff_mask);
355             velecsum         = _mm_add_pd(velecsum,velec);
356
357             fscal            = felec;
358
359             fscal            = _mm_and_pd(fscal,cutoff_mask);
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_pd(fscal,dx10);
363             ty               = _mm_mul_pd(fscal,dy10);
364             tz               = _mm_mul_pd(fscal,dz10);
365
366             /* Update vectorial force */
367             fix1             = _mm_add_pd(fix1,tx);
368             fiy1             = _mm_add_pd(fiy1,ty);
369             fiz1             = _mm_add_pd(fiz1,tz);
370
371             fjx0             = _mm_add_pd(fjx0,tx);
372             fjy0             = _mm_add_pd(fjy0,ty);
373             fjz0             = _mm_add_pd(fjz0,tz);
374
375             }
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             if (gmx_mm_any_lt(rsq20,rcutoff2))
382             {
383
384             r20              = _mm_mul_pd(rsq20,rinv20);
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq20             = _mm_mul_pd(iq2,jq0);
388
389             /* EWALD ELECTROSTATICS */
390
391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
392             ewrt             = _mm_mul_pd(r20,ewtabscale);
393             ewitab           = _mm_cvttpd_epi32(ewrt);
394             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
395             ewitab           = _mm_slli_epi32(ewitab,2);
396             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
397             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
398             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
399             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
400             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
401             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
402             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
403             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
404             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
405             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
406
407             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_pd(velec,cutoff_mask);
411             velecsum         = _mm_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm_and_pd(fscal,cutoff_mask);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_pd(fscal,dx20);
419             ty               = _mm_mul_pd(fscal,dy20);
420             tz               = _mm_mul_pd(fscal,dz20);
421
422             /* Update vectorial force */
423             fix2             = _mm_add_pd(fix2,tx);
424             fiy2             = _mm_add_pd(fiy2,ty);
425             fiz2             = _mm_add_pd(fiz2,tz);
426
427             fjx0             = _mm_add_pd(fjx0,tx);
428             fjy0             = _mm_add_pd(fjy0,ty);
429             fjz0             = _mm_add_pd(fjz0,tz);
430
431             }
432
433             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
434
435             /* Inner loop uses 177 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             jnrA             = jjnr[jidx];
442             j_coord_offsetA  = DIM*jnrA;
443
444             /* load j atom coordinates */
445             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
446                                               &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm_sub_pd(ix0,jx0);
450             dy00             = _mm_sub_pd(iy0,jy0);
451             dz00             = _mm_sub_pd(iz0,jz0);
452             dx10             = _mm_sub_pd(ix1,jx0);
453             dy10             = _mm_sub_pd(iy1,jy0);
454             dz10             = _mm_sub_pd(iz1,jz0);
455             dx20             = _mm_sub_pd(ix2,jx0);
456             dy20             = _mm_sub_pd(iy2,jy0);
457             dz20             = _mm_sub_pd(iz2,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
463
464             rinv00           = gmx_mm_invsqrt_pd(rsq00);
465             rinv10           = gmx_mm_invsqrt_pd(rsq10);
466             rinv20           = gmx_mm_invsqrt_pd(rsq20);
467
468             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
469             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
470             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
471
472             /* Load parameters for j particles */
473             jq0              = _mm_load_sd(charge+jnrA+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475
476             fjx0             = _mm_setzero_pd();
477             fjy0             = _mm_setzero_pd();
478             fjz0             = _mm_setzero_pd();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             if (gmx_mm_any_lt(rsq00,rcutoff2))
485             {
486
487             r00              = _mm_mul_pd(rsq00,rinv00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq00             = _mm_mul_pd(iq0,jq0);
491             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
492
493             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
494
495             /* EWALD ELECTROSTATICS */
496
497             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
498             ewrt             = _mm_mul_pd(r00,ewtabscale);
499             ewitab           = _mm_cvttpd_epi32(ewrt);
500             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
501             ewitab           = _mm_slli_epi32(ewitab,2);
502             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
503             ewtabD           = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
505             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
506             ewtabFn          = _mm_setzero_pd();
507             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
508             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
509             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
510             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
511             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
512
513             /* Analytical LJ-PME */
514             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
515             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
516             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
517             exponent         = gmx_simd_exp_d(ewcljrsq);
518             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
519             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
520             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
521             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
522             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
523             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
524                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
525             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
526             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
527
528             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_and_pd(velec,cutoff_mask);
532             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
533             velecsum         = _mm_add_pd(velecsum,velec);
534             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
535             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
536             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
537
538             fscal            = _mm_add_pd(felec,fvdw);
539
540             fscal            = _mm_and_pd(fscal,cutoff_mask);
541
542             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_pd(fscal,dx00);
546             ty               = _mm_mul_pd(fscal,dy00);
547             tz               = _mm_mul_pd(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm_add_pd(fix0,tx);
551             fiy0             = _mm_add_pd(fiy0,ty);
552             fiz0             = _mm_add_pd(fiz0,tz);
553
554             fjx0             = _mm_add_pd(fjx0,tx);
555             fjy0             = _mm_add_pd(fjy0,ty);
556             fjz0             = _mm_add_pd(fjz0,tz);
557
558             }
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm_any_lt(rsq10,rcutoff2))
565             {
566
567             r10              = _mm_mul_pd(rsq10,rinv10);
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq10             = _mm_mul_pd(iq1,jq0);
571
572             /* EWALD ELECTROSTATICS */
573
574             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
575             ewrt             = _mm_mul_pd(r10,ewtabscale);
576             ewitab           = _mm_cvttpd_epi32(ewrt);
577             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
578             ewitab           = _mm_slli_epi32(ewitab,2);
579             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
580             ewtabD           = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
582             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
583             ewtabFn          = _mm_setzero_pd();
584             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
585             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
586             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
587             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
588             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
589
590             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
591
592             /* Update potential sum for this i atom from the interaction with this j atom. */
593             velec            = _mm_and_pd(velec,cutoff_mask);
594             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
595             velecsum         = _mm_add_pd(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_and_pd(fscal,cutoff_mask);
600
601             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm_mul_pd(fscal,dx10);
605             ty               = _mm_mul_pd(fscal,dy10);
606             tz               = _mm_mul_pd(fscal,dz10);
607
608             /* Update vectorial force */
609             fix1             = _mm_add_pd(fix1,tx);
610             fiy1             = _mm_add_pd(fiy1,ty);
611             fiz1             = _mm_add_pd(fiz1,tz);
612
613             fjx0             = _mm_add_pd(fjx0,tx);
614             fjy0             = _mm_add_pd(fjy0,ty);
615             fjz0             = _mm_add_pd(fjz0,tz);
616
617             }
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             if (gmx_mm_any_lt(rsq20,rcutoff2))
624             {
625
626             r20              = _mm_mul_pd(rsq20,rinv20);
627
628             /* Compute parameters for interactions between i and j atoms */
629             qq20             = _mm_mul_pd(iq2,jq0);
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = _mm_mul_pd(r20,ewtabscale);
635             ewitab           = _mm_cvttpd_epi32(ewrt);
636             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
641             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
642             ewtabFn          = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
644             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
645             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
646             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
647             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
648
649             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm_and_pd(velec,cutoff_mask);
653             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
654             velecsum         = _mm_add_pd(velecsum,velec);
655
656             fscal            = felec;
657
658             fscal            = _mm_and_pd(fscal,cutoff_mask);
659
660             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
661
662             /* Calculate temporary vectorial force */
663             tx               = _mm_mul_pd(fscal,dx20);
664             ty               = _mm_mul_pd(fscal,dy20);
665             tz               = _mm_mul_pd(fscal,dz20);
666
667             /* Update vectorial force */
668             fix2             = _mm_add_pd(fix2,tx);
669             fiy2             = _mm_add_pd(fiy2,ty);
670             fiz2             = _mm_add_pd(fiz2,tz);
671
672             fjx0             = _mm_add_pd(fjx0,tx);
673             fjy0             = _mm_add_pd(fjy0,ty);
674             fjz0             = _mm_add_pd(fjz0,tz);
675
676             }
677
678             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 177 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
691         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 20 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
705 }
706 /*
707  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
708  * Electrostatics interaction: Ewald
709  * VdW interaction:            LJEwald
710  * Geometry:                   Water3-Particle
711  * Calculate force/pot:        Force
712  */
713 void
714 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
715                     (t_nblist                    * gmx_restrict       nlist,
716                      rvec                        * gmx_restrict          xx,
717                      rvec                        * gmx_restrict          ff,
718                      t_forcerec                  * gmx_restrict          fr,
719                      t_mdatoms                   * gmx_restrict     mdatoms,
720                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
721                      t_nrnb                      * gmx_restrict        nrnb)
722 {
723     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
724      * just 0 for non-waters.
725      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
726      * jnr indices corresponding to data put in the four positions in the SIMD register.
727      */
728     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
729     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
730     int              jnrA,jnrB;
731     int              j_coord_offsetA,j_coord_offsetB;
732     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
733     real             rcutoff_scalar;
734     real             *shiftvec,*fshift,*x,*f;
735     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     int              vdwioffset0;
737     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     int              vdwioffset1;
739     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     int              vdwioffset2;
741     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwjidx0A,vdwjidx0B;
743     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
744     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
745     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
746     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
747     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
748     real             *charge;
749     int              nvdwtype;
750     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
751     int              *vdwtype;
752     real             *vdwparam;
753     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
754     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
755     __m128d           c6grid_00;
756     __m128d           c6grid_10;
757     __m128d           c6grid_20;
758     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
759     real             *vdwgridparam;
760     __m128d           one_half = _mm_set1_pd(0.5);
761     __m128d           minus_one = _mm_set1_pd(-1.0);
762     __m128i          ewitab;
763     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
764     real             *ewtab;
765     __m128d          dummy_mask,cutoff_mask;
766     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
767     __m128d          one     = _mm_set1_pd(1.0);
768     __m128d          two     = _mm_set1_pd(2.0);
769     x                = xx[0];
770     f                = ff[0];
771
772     nri              = nlist->nri;
773     iinr             = nlist->iinr;
774     jindex           = nlist->jindex;
775     jjnr             = nlist->jjnr;
776     shiftidx         = nlist->shift;
777     gid              = nlist->gid;
778     shiftvec         = fr->shift_vec[0];
779     fshift           = fr->fshift[0];
780     facel            = _mm_set1_pd(fr->epsfac);
781     charge           = mdatoms->chargeA;
782     nvdwtype         = fr->ntype;
783     vdwparam         = fr->nbfp;
784     vdwtype          = mdatoms->typeA;
785     vdwgridparam     = fr->ljpme_c6grid;
786     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
787     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
788     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
789
790     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
791     ewtab            = fr->ic->tabq_coul_F;
792     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
793     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
794
795     /* Setup water-specific parameters */
796     inr              = nlist->iinr[0];
797     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
798     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
799     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
800     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
801
802     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
803     rcutoff_scalar   = fr->rcoulomb;
804     rcutoff          = _mm_set1_pd(rcutoff_scalar);
805     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
806
807     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
808     rvdw             = _mm_set1_pd(fr->rvdw);
809
810     /* Avoid stupid compiler warnings */
811     jnrA = jnrB = 0;
812     j_coord_offsetA = 0;
813     j_coord_offsetB = 0;
814
815     outeriter        = 0;
816     inneriter        = 0;
817
818     /* Start outer loop over neighborlists */
819     for(iidx=0; iidx<nri; iidx++)
820     {
821         /* Load shift vector for this list */
822         i_shift_offset   = DIM*shiftidx[iidx];
823
824         /* Load limits for loop over neighbors */
825         j_index_start    = jindex[iidx];
826         j_index_end      = jindex[iidx+1];
827
828         /* Get outer coordinate index */
829         inr              = iinr[iidx];
830         i_coord_offset   = DIM*inr;
831
832         /* Load i particle coords and add shift vector */
833         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
834                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
835
836         fix0             = _mm_setzero_pd();
837         fiy0             = _mm_setzero_pd();
838         fiz0             = _mm_setzero_pd();
839         fix1             = _mm_setzero_pd();
840         fiy1             = _mm_setzero_pd();
841         fiz1             = _mm_setzero_pd();
842         fix2             = _mm_setzero_pd();
843         fiy2             = _mm_setzero_pd();
844         fiz2             = _mm_setzero_pd();
845
846         /* Start inner kernel loop */
847         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrA             = jjnr[jidx];
852             jnrB             = jjnr[jidx+1];
853             j_coord_offsetA  = DIM*jnrA;
854             j_coord_offsetB  = DIM*jnrB;
855
856             /* load j atom coordinates */
857             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
858                                               &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx00             = _mm_sub_pd(ix0,jx0);
862             dy00             = _mm_sub_pd(iy0,jy0);
863             dz00             = _mm_sub_pd(iz0,jz0);
864             dx10             = _mm_sub_pd(ix1,jx0);
865             dy10             = _mm_sub_pd(iy1,jy0);
866             dz10             = _mm_sub_pd(iz1,jz0);
867             dx20             = _mm_sub_pd(ix2,jx0);
868             dy20             = _mm_sub_pd(iy2,jy0);
869             dz20             = _mm_sub_pd(iz2,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
873             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
874             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
875
876             rinv00           = gmx_mm_invsqrt_pd(rsq00);
877             rinv10           = gmx_mm_invsqrt_pd(rsq10);
878             rinv20           = gmx_mm_invsqrt_pd(rsq20);
879
880             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
881             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
882             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
886             vdwjidx0A        = 2*vdwtype[jnrA+0];
887             vdwjidx0B        = 2*vdwtype[jnrB+0];
888
889             fjx0             = _mm_setzero_pd();
890             fjy0             = _mm_setzero_pd();
891             fjz0             = _mm_setzero_pd();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             if (gmx_mm_any_lt(rsq00,rcutoff2))
898             {
899
900             r00              = _mm_mul_pd(rsq00,rinv00);
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm_mul_pd(iq0,jq0);
904             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
905                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
906
907             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
908                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
909
910             /* EWALD ELECTROSTATICS */
911
912             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
913             ewrt             = _mm_mul_pd(r00,ewtabscale);
914             ewitab           = _mm_cvttpd_epi32(ewrt);
915             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
916             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
917                                          &ewtabF,&ewtabFn);
918             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
919             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
920
921             /* Analytical LJ-PME */
922             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
923             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
924             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
925             exponent         = gmx_simd_exp_d(ewcljrsq);
926             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
927             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
928             /* f6A = 6 * C6grid * (1 - poly) */
929             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
930             /* f6B = C6grid * exponent * beta^6 */
931             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
932             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
933             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
934
935             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
936
937             fscal            = _mm_add_pd(felec,fvdw);
938
939             fscal            = _mm_and_pd(fscal,cutoff_mask);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_pd(fscal,dx00);
943             ty               = _mm_mul_pd(fscal,dy00);
944             tz               = _mm_mul_pd(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm_add_pd(fix0,tx);
948             fiy0             = _mm_add_pd(fiy0,ty);
949             fiz0             = _mm_add_pd(fiz0,tz);
950
951             fjx0             = _mm_add_pd(fjx0,tx);
952             fjy0             = _mm_add_pd(fjy0,ty);
953             fjz0             = _mm_add_pd(fjz0,tz);
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (gmx_mm_any_lt(rsq10,rcutoff2))
962             {
963
964             r10              = _mm_mul_pd(rsq10,rinv10);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq10             = _mm_mul_pd(iq1,jq0);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _mm_mul_pd(r10,ewtabscale);
973             ewitab           = _mm_cvttpd_epi32(ewrt);
974             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
975             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
976                                          &ewtabF,&ewtabFn);
977             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
978             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
979
980             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
981
982             fscal            = felec;
983
984             fscal            = _mm_and_pd(fscal,cutoff_mask);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm_mul_pd(fscal,dx10);
988             ty               = _mm_mul_pd(fscal,dy10);
989             tz               = _mm_mul_pd(fscal,dz10);
990
991             /* Update vectorial force */
992             fix1             = _mm_add_pd(fix1,tx);
993             fiy1             = _mm_add_pd(fiy1,ty);
994             fiz1             = _mm_add_pd(fiz1,tz);
995
996             fjx0             = _mm_add_pd(fjx0,tx);
997             fjy0             = _mm_add_pd(fjy0,ty);
998             fjz0             = _mm_add_pd(fjz0,tz);
999
1000             }
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             if (gmx_mm_any_lt(rsq20,rcutoff2))
1007             {
1008
1009             r20              = _mm_mul_pd(rsq20,rinv20);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq20             = _mm_mul_pd(iq2,jq0);
1013
1014             /* EWALD ELECTROSTATICS */
1015
1016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1017             ewrt             = _mm_mul_pd(r20,ewtabscale);
1018             ewitab           = _mm_cvttpd_epi32(ewrt);
1019             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1020             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1021                                          &ewtabF,&ewtabFn);
1022             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1023             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1024
1025             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1026
1027             fscal            = felec;
1028
1029             fscal            = _mm_and_pd(fscal,cutoff_mask);
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_pd(fscal,dx20);
1033             ty               = _mm_mul_pd(fscal,dy20);
1034             tz               = _mm_mul_pd(fscal,dz20);
1035
1036             /* Update vectorial force */
1037             fix2             = _mm_add_pd(fix2,tx);
1038             fiy2             = _mm_add_pd(fiy2,ty);
1039             fiz2             = _mm_add_pd(fiz2,tz);
1040
1041             fjx0             = _mm_add_pd(fjx0,tx);
1042             fjy0             = _mm_add_pd(fjy0,ty);
1043             fjz0             = _mm_add_pd(fjz0,tz);
1044
1045             }
1046
1047             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1048
1049             /* Inner loop uses 143 flops */
1050         }
1051
1052         if(jidx<j_index_end)
1053         {
1054
1055             jnrA             = jjnr[jidx];
1056             j_coord_offsetA  = DIM*jnrA;
1057
1058             /* load j atom coordinates */
1059             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1060                                               &jx0,&jy0,&jz0);
1061
1062             /* Calculate displacement vector */
1063             dx00             = _mm_sub_pd(ix0,jx0);
1064             dy00             = _mm_sub_pd(iy0,jy0);
1065             dz00             = _mm_sub_pd(iz0,jz0);
1066             dx10             = _mm_sub_pd(ix1,jx0);
1067             dy10             = _mm_sub_pd(iy1,jy0);
1068             dz10             = _mm_sub_pd(iz1,jz0);
1069             dx20             = _mm_sub_pd(ix2,jx0);
1070             dy20             = _mm_sub_pd(iy2,jy0);
1071             dz20             = _mm_sub_pd(iz2,jz0);
1072
1073             /* Calculate squared distance and things based on it */
1074             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1075             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1076             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1077
1078             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1079             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1080             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1081
1082             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1083             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1084             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1085
1086             /* Load parameters for j particles */
1087             jq0              = _mm_load_sd(charge+jnrA+0);
1088             vdwjidx0A        = 2*vdwtype[jnrA+0];
1089
1090             fjx0             = _mm_setzero_pd();
1091             fjy0             = _mm_setzero_pd();
1092             fjz0             = _mm_setzero_pd();
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             if (gmx_mm_any_lt(rsq00,rcutoff2))
1099             {
1100
1101             r00              = _mm_mul_pd(rsq00,rinv00);
1102
1103             /* Compute parameters for interactions between i and j atoms */
1104             qq00             = _mm_mul_pd(iq0,jq0);
1105             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1106
1107             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1108
1109             /* EWALD ELECTROSTATICS */
1110
1111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112             ewrt             = _mm_mul_pd(r00,ewtabscale);
1113             ewitab           = _mm_cvttpd_epi32(ewrt);
1114             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1115             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1116             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1117             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1118
1119             /* Analytical LJ-PME */
1120             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1121             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1122             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1123             exponent         = gmx_simd_exp_d(ewcljrsq);
1124             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1125             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1126             /* f6A = 6 * C6grid * (1 - poly) */
1127             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1128             /* f6B = C6grid * exponent * beta^6 */
1129             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1130             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1131             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1132
1133             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1134
1135             fscal            = _mm_add_pd(felec,fvdw);
1136
1137             fscal            = _mm_and_pd(fscal,cutoff_mask);
1138
1139             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1140
1141             /* Calculate temporary vectorial force */
1142             tx               = _mm_mul_pd(fscal,dx00);
1143             ty               = _mm_mul_pd(fscal,dy00);
1144             tz               = _mm_mul_pd(fscal,dz00);
1145
1146             /* Update vectorial force */
1147             fix0             = _mm_add_pd(fix0,tx);
1148             fiy0             = _mm_add_pd(fiy0,ty);
1149             fiz0             = _mm_add_pd(fiz0,tz);
1150
1151             fjx0             = _mm_add_pd(fjx0,tx);
1152             fjy0             = _mm_add_pd(fjy0,ty);
1153             fjz0             = _mm_add_pd(fjz0,tz);
1154
1155             }
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             if (gmx_mm_any_lt(rsq10,rcutoff2))
1162             {
1163
1164             r10              = _mm_mul_pd(rsq10,rinv10);
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             qq10             = _mm_mul_pd(iq1,jq0);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm_mul_pd(r10,ewtabscale);
1173             ewitab           = _mm_cvttpd_epi32(ewrt);
1174             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1175             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1176             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1177             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1178
1179             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm_and_pd(fscal,cutoff_mask);
1184
1185             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm_mul_pd(fscal,dx10);
1189             ty               = _mm_mul_pd(fscal,dy10);
1190             tz               = _mm_mul_pd(fscal,dz10);
1191
1192             /* Update vectorial force */
1193             fix1             = _mm_add_pd(fix1,tx);
1194             fiy1             = _mm_add_pd(fiy1,ty);
1195             fiz1             = _mm_add_pd(fiz1,tz);
1196
1197             fjx0             = _mm_add_pd(fjx0,tx);
1198             fjy0             = _mm_add_pd(fjy0,ty);
1199             fjz0             = _mm_add_pd(fjz0,tz);
1200
1201             }
1202
1203             /**************************
1204              * CALCULATE INTERACTIONS *
1205              **************************/
1206
1207             if (gmx_mm_any_lt(rsq20,rcutoff2))
1208             {
1209
1210             r20              = _mm_mul_pd(rsq20,rinv20);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq20             = _mm_mul_pd(iq2,jq0);
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1218             ewrt             = _mm_mul_pd(r20,ewtabscale);
1219             ewitab           = _mm_cvttpd_epi32(ewrt);
1220             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1221             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1222             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1223             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1224
1225             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm_and_pd(fscal,cutoff_mask);
1230
1231             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm_mul_pd(fscal,dx20);
1235             ty               = _mm_mul_pd(fscal,dy20);
1236             tz               = _mm_mul_pd(fscal,dz20);
1237
1238             /* Update vectorial force */
1239             fix2             = _mm_add_pd(fix2,tx);
1240             fiy2             = _mm_add_pd(fiy2,ty);
1241             fiz2             = _mm_add_pd(fiz2,tz);
1242
1243             fjx0             = _mm_add_pd(fjx0,tx);
1244             fjy0             = _mm_add_pd(fjy0,ty);
1245             fjz0             = _mm_add_pd(fjz0,tz);
1246
1247             }
1248
1249             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1250
1251             /* Inner loop uses 143 flops */
1252         }
1253
1254         /* End of innermost loop */
1255
1256         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1257                                               f+i_coord_offset,fshift+i_shift_offset);
1258
1259         /* Increment number of inner iterations */
1260         inneriter                  += j_index_end - j_index_start;
1261
1262         /* Outer loop uses 18 flops */
1263     }
1264
1265     /* Increment number of outer iterations */
1266     outeriter        += nri;
1267
1268     /* Update outer/inner flops */
1269
1270     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1271 }