Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d           c6grid_00;
99     __m128d           c6grid_10;
100     __m128d           c6grid_20;
101     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
102     real             *vdwgridparam;
103     __m128d           one_half = _mm_set1_pd(0.5);
104     __m128d           minus_one = _mm_set1_pd(-1.0);
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128     vdwgridparam     = fr->ljpme_c6grid;
129     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
130     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
131     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
141     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
142     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146     rcutoff_scalar   = fr->ic->rcoulomb;
147     rcutoff          = _mm_set1_pd(rcutoff_scalar);
148     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
149
150     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
151     rvdw             = _mm_set1_pd(fr->ic->rvdw);
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_pd();
180         fiy0             = _mm_setzero_pd();
181         fiz0             = _mm_setzero_pd();
182         fix1             = _mm_setzero_pd();
183         fiy1             = _mm_setzero_pd();
184         fiz1             = _mm_setzero_pd();
185         fix2             = _mm_setzero_pd();
186         fiy2             = _mm_setzero_pd();
187         fiz2             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = sse2_invsqrt_d(rsq00);
224             rinv10           = sse2_invsqrt_d(rsq10);
225             rinv20           = sse2_invsqrt_d(rsq20);
226
227             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
228             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             r00              = _mm_mul_pd(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_pd(iq0,jq0);
251             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
253
254             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
255                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _mm_mul_pd(r00,ewtabscale);
261             ewitab           = _mm_cvttpd_epi32(ewrt);
262             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
263             ewitab           = _mm_slli_epi32(ewitab,2);
264             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
265             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
266             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
267             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
268             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
270             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
271             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
272             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
273             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
274
275             /* Analytical LJ-PME */
276             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
278             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
279             exponent         = sse2_exp_d(ewcljrsq);
280             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
281             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
282             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
283             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
284             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
286                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
287             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
288             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
289
290             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velec            = _mm_and_pd(velec,cutoff_mask);
294             velecsum         = _mm_add_pd(velecsum,velec);
295             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
296             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
297
298             fscal            = _mm_add_pd(felec,fvdw);
299
300             fscal            = _mm_and_pd(fscal,cutoff_mask);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_pd(fscal,dx00);
304             ty               = _mm_mul_pd(fscal,dy00);
305             tz               = _mm_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm_add_pd(fix0,tx);
309             fiy0             = _mm_add_pd(fiy0,ty);
310             fiz0             = _mm_add_pd(fiz0,tz);
311
312             fjx0             = _mm_add_pd(fjx0,tx);
313             fjy0             = _mm_add_pd(fjy0,ty);
314             fjz0             = _mm_add_pd(fjz0,tz);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_mm_any_lt(rsq10,rcutoff2))
323             {
324
325             r10              = _mm_mul_pd(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _mm_mul_pd(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_pd(r10,ewtabscale);
334             ewitab           = _mm_cvttpd_epi32(ewrt);
335             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
336             ewitab           = _mm_slli_epi32(ewitab,2);
337             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
338             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
339             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
340             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
341             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
342             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
343             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
344             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
345             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
346             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
347
348             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _mm_and_pd(velec,cutoff_mask);
352             velecsum         = _mm_add_pd(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _mm_and_pd(fscal,cutoff_mask);
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_pd(fscal,dx10);
360             ty               = _mm_mul_pd(fscal,dy10);
361             tz               = _mm_mul_pd(fscal,dz10);
362
363             /* Update vectorial force */
364             fix1             = _mm_add_pd(fix1,tx);
365             fiy1             = _mm_add_pd(fiy1,ty);
366             fiz1             = _mm_add_pd(fiz1,tz);
367
368             fjx0             = _mm_add_pd(fjx0,tx);
369             fjy0             = _mm_add_pd(fjy0,ty);
370             fjz0             = _mm_add_pd(fjz0,tz);
371
372             }
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm_any_lt(rsq20,rcutoff2))
379             {
380
381             r20              = _mm_mul_pd(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm_mul_pd(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm_mul_pd(r20,ewtabscale);
390             ewitab           = _mm_cvttpd_epi32(ewrt);
391             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
392             ewitab           = _mm_slli_epi32(ewitab,2);
393             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
394             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
395             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
396             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
397             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
398             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
399             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
400             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
401             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
402             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
403
404             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_and_pd(velec,cutoff_mask);
408             velecsum         = _mm_add_pd(velecsum,velec);
409
410             fscal            = felec;
411
412             fscal            = _mm_and_pd(fscal,cutoff_mask);
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm_mul_pd(fscal,dx20);
416             ty               = _mm_mul_pd(fscal,dy20);
417             tz               = _mm_mul_pd(fscal,dz20);
418
419             /* Update vectorial force */
420             fix2             = _mm_add_pd(fix2,tx);
421             fiy2             = _mm_add_pd(fiy2,ty);
422             fiz2             = _mm_add_pd(fiz2,tz);
423
424             fjx0             = _mm_add_pd(fjx0,tx);
425             fjy0             = _mm_add_pd(fjy0,ty);
426             fjz0             = _mm_add_pd(fjz0,tz);
427
428             }
429
430             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 177 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             jnrA             = jjnr[jidx];
439             j_coord_offsetA  = DIM*jnrA;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_pd(ix0,jx0);
447             dy00             = _mm_sub_pd(iy0,jy0);
448             dz00             = _mm_sub_pd(iz0,jz0);
449             dx10             = _mm_sub_pd(ix1,jx0);
450             dy10             = _mm_sub_pd(iy1,jy0);
451             dz10             = _mm_sub_pd(iz1,jz0);
452             dx20             = _mm_sub_pd(ix2,jx0);
453             dy20             = _mm_sub_pd(iy2,jy0);
454             dz20             = _mm_sub_pd(iz2,jz0);
455
456             /* Calculate squared distance and things based on it */
457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
458             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
459             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
460
461             rinv00           = sse2_invsqrt_d(rsq00);
462             rinv10           = sse2_invsqrt_d(rsq10);
463             rinv20           = sse2_invsqrt_d(rsq20);
464
465             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
466             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
468
469             /* Load parameters for j particles */
470             jq0              = _mm_load_sd(charge+jnrA+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq00,rcutoff2))
482             {
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
489
490             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
491
492             /* EWALD ELECTROSTATICS */
493
494             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
495             ewrt             = _mm_mul_pd(r00,ewtabscale);
496             ewitab           = _mm_cvttpd_epi32(ewrt);
497             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
498             ewitab           = _mm_slli_epi32(ewitab,2);
499             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
500             ewtabD           = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
502             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
503             ewtabFn          = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
505             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
506             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
507             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
508             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
509
510             /* Analytical LJ-PME */
511             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
512             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
513             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
514             exponent         = sse2_exp_d(ewcljrsq);
515             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
516             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
517             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
518             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
519             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
520             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
521                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
522             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
523             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
524
525             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm_and_pd(velec,cutoff_mask);
529             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
530             velecsum         = _mm_add_pd(velecsum,velec);
531             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
532             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
533             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
534
535             fscal            = _mm_add_pd(felec,fvdw);
536
537             fscal            = _mm_and_pd(fscal,cutoff_mask);
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx00);
543             ty               = _mm_mul_pd(fscal,dy00);
544             tz               = _mm_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_pd(fix0,tx);
548             fiy0             = _mm_add_pd(fiy0,ty);
549             fiz0             = _mm_add_pd(fiz0,tz);
550
551             fjx0             = _mm_add_pd(fjx0,tx);
552             fjy0             = _mm_add_pd(fjy0,ty);
553             fjz0             = _mm_add_pd(fjz0,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq10,rcutoff2))
562             {
563
564             r10              = _mm_mul_pd(rsq10,rinv10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_pd(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r10,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
579             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
580             ewtabFn          = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
582             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
583             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
584             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
585             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
586
587             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
588
589             /* Update potential sum for this i atom from the interaction with this j atom. */
590             velec            = _mm_and_pd(velec,cutoff_mask);
591             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
592             velecsum         = _mm_add_pd(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_and_pd(fscal,cutoff_mask);
597
598             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_pd(fscal,dx10);
602             ty               = _mm_mul_pd(fscal,dy10);
603             tz               = _mm_mul_pd(fscal,dz10);
604
605             /* Update vectorial force */
606             fix1             = _mm_add_pd(fix1,tx);
607             fiy1             = _mm_add_pd(fiy1,ty);
608             fiz1             = _mm_add_pd(fiz1,tz);
609
610             fjx0             = _mm_add_pd(fjx0,tx);
611             fjy0             = _mm_add_pd(fjy0,ty);
612             fjz0             = _mm_add_pd(fjz0,tz);
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (gmx_mm_any_lt(rsq20,rcutoff2))
621             {
622
623             r20              = _mm_mul_pd(rsq20,rinv20);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq20             = _mm_mul_pd(iq2,jq0);
627
628             /* EWALD ELECTROSTATICS */
629
630             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
631             ewrt             = _mm_mul_pd(r20,ewtabscale);
632             ewitab           = _mm_cvttpd_epi32(ewrt);
633             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
634             ewitab           = _mm_slli_epi32(ewitab,2);
635             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
636             ewtabD           = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
638             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
639             ewtabFn          = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
641             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
642             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
643             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
644             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
645
646             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_and_pd(velec,cutoff_mask);
650             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
651             velecsum         = _mm_add_pd(velecsum,velec);
652
653             fscal            = felec;
654
655             fscal            = _mm_and_pd(fscal,cutoff_mask);
656
657             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_pd(fscal,dx20);
661             ty               = _mm_mul_pd(fscal,dy20);
662             tz               = _mm_mul_pd(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm_add_pd(fix2,tx);
666             fiy2             = _mm_add_pd(fiy2,ty);
667             fiz2             = _mm_add_pd(fiz2,tz);
668
669             fjx0             = _mm_add_pd(fjx0,tx);
670             fjy0             = _mm_add_pd(fjy0,ty);
671             fjz0             = _mm_add_pd(fjz0,tz);
672
673             }
674
675             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
676
677             /* Inner loop uses 177 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
688         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 20 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
702 }
703 /*
704  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
705  * Electrostatics interaction: Ewald
706  * VdW interaction:            LJEwald
707  * Geometry:                   Water3-Particle
708  * Calculate force/pot:        Force
709  */
710 void
711 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
712                     (t_nblist                    * gmx_restrict       nlist,
713                      rvec                        * gmx_restrict          xx,
714                      rvec                        * gmx_restrict          ff,
715                      struct t_forcerec           * gmx_restrict          fr,
716                      t_mdatoms                   * gmx_restrict     mdatoms,
717                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
718                      t_nrnb                      * gmx_restrict        nrnb)
719 {
720     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
721      * just 0 for non-waters.
722      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
723      * jnr indices corresponding to data put in the four positions in the SIMD register.
724      */
725     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
726     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
727     int              jnrA,jnrB;
728     int              j_coord_offsetA,j_coord_offsetB;
729     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
730     real             rcutoff_scalar;
731     real             *shiftvec,*fshift,*x,*f;
732     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
733     int              vdwioffset0;
734     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735     int              vdwioffset1;
736     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737     int              vdwioffset2;
738     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739     int              vdwjidx0A,vdwjidx0B;
740     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
742     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
743     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
744     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
745     real             *charge;
746     int              nvdwtype;
747     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
748     int              *vdwtype;
749     real             *vdwparam;
750     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
751     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
752     __m128d           c6grid_00;
753     __m128d           c6grid_10;
754     __m128d           c6grid_20;
755     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
756     real             *vdwgridparam;
757     __m128d           one_half = _mm_set1_pd(0.5);
758     __m128d           minus_one = _mm_set1_pd(-1.0);
759     __m128i          ewitab;
760     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
761     real             *ewtab;
762     __m128d          dummy_mask,cutoff_mask;
763     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
764     __m128d          one     = _mm_set1_pd(1.0);
765     __m128d          two     = _mm_set1_pd(2.0);
766     x                = xx[0];
767     f                = ff[0];
768
769     nri              = nlist->nri;
770     iinr             = nlist->iinr;
771     jindex           = nlist->jindex;
772     jjnr             = nlist->jjnr;
773     shiftidx         = nlist->shift;
774     gid              = nlist->gid;
775     shiftvec         = fr->shift_vec[0];
776     fshift           = fr->fshift[0];
777     facel            = _mm_set1_pd(fr->ic->epsfac);
778     charge           = mdatoms->chargeA;
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782     vdwgridparam     = fr->ljpme_c6grid;
783     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
784     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
785     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
786
787     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
788     ewtab            = fr->ic->tabq_coul_F;
789     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
790     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
791
792     /* Setup water-specific parameters */
793     inr              = nlist->iinr[0];
794     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
795     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
796     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
797     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
798
799     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
800     rcutoff_scalar   = fr->ic->rcoulomb;
801     rcutoff          = _mm_set1_pd(rcutoff_scalar);
802     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
803
804     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
805     rvdw             = _mm_set1_pd(fr->ic->rvdw);
806
807     /* Avoid stupid compiler warnings */
808     jnrA = jnrB = 0;
809     j_coord_offsetA = 0;
810     j_coord_offsetB = 0;
811
812     outeriter        = 0;
813     inneriter        = 0;
814
815     /* Start outer loop over neighborlists */
816     for(iidx=0; iidx<nri; iidx++)
817     {
818         /* Load shift vector for this list */
819         i_shift_offset   = DIM*shiftidx[iidx];
820
821         /* Load limits for loop over neighbors */
822         j_index_start    = jindex[iidx];
823         j_index_end      = jindex[iidx+1];
824
825         /* Get outer coordinate index */
826         inr              = iinr[iidx];
827         i_coord_offset   = DIM*inr;
828
829         /* Load i particle coords and add shift vector */
830         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
831                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
832
833         fix0             = _mm_setzero_pd();
834         fiy0             = _mm_setzero_pd();
835         fiz0             = _mm_setzero_pd();
836         fix1             = _mm_setzero_pd();
837         fiy1             = _mm_setzero_pd();
838         fiz1             = _mm_setzero_pd();
839         fix2             = _mm_setzero_pd();
840         fiy2             = _mm_setzero_pd();
841         fiz2             = _mm_setzero_pd();
842
843         /* Start inner kernel loop */
844         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrA             = jjnr[jidx];
849             jnrB             = jjnr[jidx+1];
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852
853             /* load j atom coordinates */
854             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
855                                               &jx0,&jy0,&jz0);
856
857             /* Calculate displacement vector */
858             dx00             = _mm_sub_pd(ix0,jx0);
859             dy00             = _mm_sub_pd(iy0,jy0);
860             dz00             = _mm_sub_pd(iz0,jz0);
861             dx10             = _mm_sub_pd(ix1,jx0);
862             dy10             = _mm_sub_pd(iy1,jy0);
863             dz10             = _mm_sub_pd(iz1,jz0);
864             dx20             = _mm_sub_pd(ix2,jx0);
865             dy20             = _mm_sub_pd(iy2,jy0);
866             dz20             = _mm_sub_pd(iz2,jz0);
867
868             /* Calculate squared distance and things based on it */
869             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
870             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
872
873             rinv00           = sse2_invsqrt_d(rsq00);
874             rinv10           = sse2_invsqrt_d(rsq10);
875             rinv20           = sse2_invsqrt_d(rsq20);
876
877             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
883             vdwjidx0A        = 2*vdwtype[jnrA+0];
884             vdwjidx0B        = 2*vdwtype[jnrB+0];
885
886             fjx0             = _mm_setzero_pd();
887             fjy0             = _mm_setzero_pd();
888             fjz0             = _mm_setzero_pd();
889
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             if (gmx_mm_any_lt(rsq00,rcutoff2))
895             {
896
897             r00              = _mm_mul_pd(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq00             = _mm_mul_pd(iq0,jq0);
901             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
902                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
903
904             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
905                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
906
907             /* EWALD ELECTROSTATICS */
908
909             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
910             ewrt             = _mm_mul_pd(r00,ewtabscale);
911             ewitab           = _mm_cvttpd_epi32(ewrt);
912             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
913             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
914                                          &ewtabF,&ewtabFn);
915             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
916             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
917
918             /* Analytical LJ-PME */
919             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
920             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
921             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
922             exponent         = sse2_exp_d(ewcljrsq);
923             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
924             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
925             /* f6A = 6 * C6grid * (1 - poly) */
926             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
927             /* f6B = C6grid * exponent * beta^6 */
928             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
929             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
930             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
931
932             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
933
934             fscal            = _mm_add_pd(felec,fvdw);
935
936             fscal            = _mm_and_pd(fscal,cutoff_mask);
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_pd(fscal,dx00);
940             ty               = _mm_mul_pd(fscal,dy00);
941             tz               = _mm_mul_pd(fscal,dz00);
942
943             /* Update vectorial force */
944             fix0             = _mm_add_pd(fix0,tx);
945             fiy0             = _mm_add_pd(fiy0,ty);
946             fiz0             = _mm_add_pd(fiz0,tz);
947
948             fjx0             = _mm_add_pd(fjx0,tx);
949             fjy0             = _mm_add_pd(fjy0,ty);
950             fjz0             = _mm_add_pd(fjz0,tz);
951
952             }
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             if (gmx_mm_any_lt(rsq10,rcutoff2))
959             {
960
961             r10              = _mm_mul_pd(rsq10,rinv10);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm_mul_pd(iq1,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm_mul_pd(r10,ewtabscale);
970             ewitab           = _mm_cvttpd_epi32(ewrt);
971             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
972             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
973                                          &ewtabF,&ewtabFn);
974             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
975             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
976
977             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
978
979             fscal            = felec;
980
981             fscal            = _mm_and_pd(fscal,cutoff_mask);
982
983             /* Calculate temporary vectorial force */
984             tx               = _mm_mul_pd(fscal,dx10);
985             ty               = _mm_mul_pd(fscal,dy10);
986             tz               = _mm_mul_pd(fscal,dz10);
987
988             /* Update vectorial force */
989             fix1             = _mm_add_pd(fix1,tx);
990             fiy1             = _mm_add_pd(fiy1,ty);
991             fiz1             = _mm_add_pd(fiz1,tz);
992
993             fjx0             = _mm_add_pd(fjx0,tx);
994             fjy0             = _mm_add_pd(fjy0,ty);
995             fjz0             = _mm_add_pd(fjz0,tz);
996
997             }
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm_any_lt(rsq20,rcutoff2))
1004             {
1005
1006             r20              = _mm_mul_pd(rsq20,rinv20);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq20             = _mm_mul_pd(iq2,jq0);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_pd(r20,ewtabscale);
1015             ewitab           = _mm_cvttpd_epi32(ewrt);
1016             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1017             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1018                                          &ewtabF,&ewtabFn);
1019             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1020             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1021
1022             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm_and_pd(fscal,cutoff_mask);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm_mul_pd(fscal,dx20);
1030             ty               = _mm_mul_pd(fscal,dy20);
1031             tz               = _mm_mul_pd(fscal,dz20);
1032
1033             /* Update vectorial force */
1034             fix2             = _mm_add_pd(fix2,tx);
1035             fiy2             = _mm_add_pd(fiy2,ty);
1036             fiz2             = _mm_add_pd(fiz2,tz);
1037
1038             fjx0             = _mm_add_pd(fjx0,tx);
1039             fjy0             = _mm_add_pd(fjy0,ty);
1040             fjz0             = _mm_add_pd(fjz0,tz);
1041
1042             }
1043
1044             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1045
1046             /* Inner loop uses 143 flops */
1047         }
1048
1049         if(jidx<j_index_end)
1050         {
1051
1052             jnrA             = jjnr[jidx];
1053             j_coord_offsetA  = DIM*jnrA;
1054
1055             /* load j atom coordinates */
1056             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1057                                               &jx0,&jy0,&jz0);
1058
1059             /* Calculate displacement vector */
1060             dx00             = _mm_sub_pd(ix0,jx0);
1061             dy00             = _mm_sub_pd(iy0,jy0);
1062             dz00             = _mm_sub_pd(iz0,jz0);
1063             dx10             = _mm_sub_pd(ix1,jx0);
1064             dy10             = _mm_sub_pd(iy1,jy0);
1065             dz10             = _mm_sub_pd(iz1,jz0);
1066             dx20             = _mm_sub_pd(ix2,jx0);
1067             dy20             = _mm_sub_pd(iy2,jy0);
1068             dz20             = _mm_sub_pd(iz2,jz0);
1069
1070             /* Calculate squared distance and things based on it */
1071             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1072             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1073             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1074
1075             rinv00           = sse2_invsqrt_d(rsq00);
1076             rinv10           = sse2_invsqrt_d(rsq10);
1077             rinv20           = sse2_invsqrt_d(rsq20);
1078
1079             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1080             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1081             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1082
1083             /* Load parameters for j particles */
1084             jq0              = _mm_load_sd(charge+jnrA+0);
1085             vdwjidx0A        = 2*vdwtype[jnrA+0];
1086
1087             fjx0             = _mm_setzero_pd();
1088             fjy0             = _mm_setzero_pd();
1089             fjz0             = _mm_setzero_pd();
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq00,rcutoff2))
1096             {
1097
1098             r00              = _mm_mul_pd(rsq00,rinv00);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq00             = _mm_mul_pd(iq0,jq0);
1102             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1103
1104             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1105
1106             /* EWALD ELECTROSTATICS */
1107
1108             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1109             ewrt             = _mm_mul_pd(r00,ewtabscale);
1110             ewitab           = _mm_cvttpd_epi32(ewrt);
1111             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1112             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1113             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1114             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1115
1116             /* Analytical LJ-PME */
1117             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1118             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1119             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1120             exponent         = sse2_exp_d(ewcljrsq);
1121             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1122             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1123             /* f6A = 6 * C6grid * (1 - poly) */
1124             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1125             /* f6B = C6grid * exponent * beta^6 */
1126             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1127             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1128             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1129
1130             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1131
1132             fscal            = _mm_add_pd(felec,fvdw);
1133
1134             fscal            = _mm_and_pd(fscal,cutoff_mask);
1135
1136             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm_mul_pd(fscal,dx00);
1140             ty               = _mm_mul_pd(fscal,dy00);
1141             tz               = _mm_mul_pd(fscal,dz00);
1142
1143             /* Update vectorial force */
1144             fix0             = _mm_add_pd(fix0,tx);
1145             fiy0             = _mm_add_pd(fiy0,ty);
1146             fiz0             = _mm_add_pd(fiz0,tz);
1147
1148             fjx0             = _mm_add_pd(fjx0,tx);
1149             fjy0             = _mm_add_pd(fjy0,ty);
1150             fjz0             = _mm_add_pd(fjz0,tz);
1151
1152             }
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             if (gmx_mm_any_lt(rsq10,rcutoff2))
1159             {
1160
1161             r10              = _mm_mul_pd(rsq10,rinv10);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq10             = _mm_mul_pd(iq1,jq0);
1165
1166             /* EWALD ELECTROSTATICS */
1167
1168             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169             ewrt             = _mm_mul_pd(r10,ewtabscale);
1170             ewitab           = _mm_cvttpd_epi32(ewrt);
1171             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1172             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1173             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1174             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1175
1176             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1177
1178             fscal            = felec;
1179
1180             fscal            = _mm_and_pd(fscal,cutoff_mask);
1181
1182             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm_mul_pd(fscal,dx10);
1186             ty               = _mm_mul_pd(fscal,dy10);
1187             tz               = _mm_mul_pd(fscal,dz10);
1188
1189             /* Update vectorial force */
1190             fix1             = _mm_add_pd(fix1,tx);
1191             fiy1             = _mm_add_pd(fiy1,ty);
1192             fiz1             = _mm_add_pd(fiz1,tz);
1193
1194             fjx0             = _mm_add_pd(fjx0,tx);
1195             fjy0             = _mm_add_pd(fjy0,ty);
1196             fjz0             = _mm_add_pd(fjz0,tz);
1197
1198             }
1199
1200             /**************************
1201              * CALCULATE INTERACTIONS *
1202              **************************/
1203
1204             if (gmx_mm_any_lt(rsq20,rcutoff2))
1205             {
1206
1207             r20              = _mm_mul_pd(rsq20,rinv20);
1208
1209             /* Compute parameters for interactions between i and j atoms */
1210             qq20             = _mm_mul_pd(iq2,jq0);
1211
1212             /* EWALD ELECTROSTATICS */
1213
1214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1215             ewrt             = _mm_mul_pd(r20,ewtabscale);
1216             ewitab           = _mm_cvttpd_epi32(ewrt);
1217             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1218             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1219             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1220             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1221
1222             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm_and_pd(fscal,cutoff_mask);
1227
1228             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm_mul_pd(fscal,dx20);
1232             ty               = _mm_mul_pd(fscal,dy20);
1233             tz               = _mm_mul_pd(fscal,dz20);
1234
1235             /* Update vectorial force */
1236             fix2             = _mm_add_pd(fix2,tx);
1237             fiy2             = _mm_add_pd(fiy2,ty);
1238             fiz2             = _mm_add_pd(fiz2,tz);
1239
1240             fjx0             = _mm_add_pd(fjx0,tx);
1241             fjy0             = _mm_add_pd(fjy0,ty);
1242             fjz0             = _mm_add_pd(fjz0,tz);
1243
1244             }
1245
1246             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1247
1248             /* Inner loop uses 143 flops */
1249         }
1250
1251         /* End of innermost loop */
1252
1253         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1254                                               f+i_coord_offset,fshift+i_shift_offset);
1255
1256         /* Increment number of inner iterations */
1257         inneriter                  += j_index_end - j_index_start;
1258
1259         /* Outer loop uses 18 flops */
1260     }
1261
1262     /* Increment number of outer iterations */
1263     outeriter        += nri;
1264
1265     /* Update outer/inner flops */
1266
1267     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1268 }