Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     real             *vdwgridparam;
104     __m128d           one_half = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->rcoulomb;
148     rcutoff          = _mm_set1_pd(rcutoff_scalar);
149     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
150
151     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
152     rvdw             = _mm_set1_pd(fr->rvdw);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_pd();
192         vvdwsum          = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx10             = _mm_sub_pd(ix1,jx0);
213             dy10             = _mm_sub_pd(iy1,jy0);
214             dz10             = _mm_sub_pd(iz1,jz0);
215             dx20             = _mm_sub_pd(ix2,jx0);
216             dy20             = _mm_sub_pd(iy2,jy0);
217             dz20             = _mm_sub_pd(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227
228             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _mm_setzero_pd();
238             fjy0             = _mm_setzero_pd();
239             fjz0             = _mm_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm_mul_pd(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_pd(iq0,jq0);
252             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254
255             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
256                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm_mul_pd(r00,ewtabscale);
262             ewitab           = _mm_cvttpd_epi32(ewrt);
263             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
267             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
268             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
269             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
271             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
272             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
273             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
274             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
275
276             /* Analytical LJ-PME */
277             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
278             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
279             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
280             exponent         = gmx_simd_exp_d(ewcljrsq);
281             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
282             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
283             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
284             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
285             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
286             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
287                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
288             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
289             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
290
291             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm_and_pd(velec,cutoff_mask);
295             velecsum         = _mm_add_pd(velecsum,velec);
296             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
297             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
298
299             fscal            = _mm_add_pd(felec,fvdw);
300
301             fscal            = _mm_and_pd(fscal,cutoff_mask);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_pd(fscal,dx00);
305             ty               = _mm_mul_pd(fscal,dy00);
306             tz               = _mm_mul_pd(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_pd(fix0,tx);
310             fiy0             = _mm_add_pd(fiy0,ty);
311             fiz0             = _mm_add_pd(fiz0,tz);
312
313             fjx0             = _mm_add_pd(fjx0,tx);
314             fjy0             = _mm_add_pd(fjy0,ty);
315             fjz0             = _mm_add_pd(fjz0,tz);
316
317             }
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq10,rcutoff2))
324             {
325
326             r10              = _mm_mul_pd(rsq10,rinv10);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm_mul_pd(iq1,jq0);
330
331             /* EWALD ELECTROSTATICS */
332
333             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
334             ewrt             = _mm_mul_pd(r10,ewtabscale);
335             ewitab           = _mm_cvttpd_epi32(ewrt);
336             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
337             ewitab           = _mm_slli_epi32(ewitab,2);
338             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
339             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
340             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
341             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
342             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
343             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
344             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
345             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
346             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
347             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
348
349             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_and_pd(velec,cutoff_mask);
353             velecsum         = _mm_add_pd(velecsum,velec);
354
355             fscal            = felec;
356
357             fscal            = _mm_and_pd(fscal,cutoff_mask);
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm_mul_pd(fscal,dx10);
361             ty               = _mm_mul_pd(fscal,dy10);
362             tz               = _mm_mul_pd(fscal,dz10);
363
364             /* Update vectorial force */
365             fix1             = _mm_add_pd(fix1,tx);
366             fiy1             = _mm_add_pd(fiy1,ty);
367             fiz1             = _mm_add_pd(fiz1,tz);
368
369             fjx0             = _mm_add_pd(fjx0,tx);
370             fjy0             = _mm_add_pd(fjy0,ty);
371             fjz0             = _mm_add_pd(fjz0,tz);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm_any_lt(rsq20,rcutoff2))
380             {
381
382             r20              = _mm_mul_pd(rsq20,rinv20);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq20             = _mm_mul_pd(iq2,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_pd(r20,ewtabscale);
391             ewitab           = _mm_cvttpd_epi32(ewrt);
392             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
393             ewitab           = _mm_slli_epi32(ewitab,2);
394             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
395             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
396             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
397             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
398             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
399             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
400             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
401             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
402             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
403             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
404
405             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_pd(velec,cutoff_mask);
409             velecsum         = _mm_add_pd(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_pd(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_pd(fscal,dx20);
417             ty               = _mm_mul_pd(fscal,dy20);
418             tz               = _mm_mul_pd(fscal,dz20);
419
420             /* Update vectorial force */
421             fix2             = _mm_add_pd(fix2,tx);
422             fiy2             = _mm_add_pd(fiy2,ty);
423             fiz2             = _mm_add_pd(fiz2,tz);
424
425             fjx0             = _mm_add_pd(fjx0,tx);
426             fjy0             = _mm_add_pd(fjy0,ty);
427             fjz0             = _mm_add_pd(fjz0,tz);
428
429             }
430
431             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 177 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             jnrA             = jjnr[jidx];
440             j_coord_offsetA  = DIM*jnrA;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_pd(ix0,jx0);
448             dy00             = _mm_sub_pd(iy0,jy0);
449             dz00             = _mm_sub_pd(iz0,jz0);
450             dx10             = _mm_sub_pd(ix1,jx0);
451             dy10             = _mm_sub_pd(iy1,jy0);
452             dz10             = _mm_sub_pd(iz1,jz0);
453             dx20             = _mm_sub_pd(ix2,jx0);
454             dy20             = _mm_sub_pd(iy2,jy0);
455             dz20             = _mm_sub_pd(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm_invsqrt_pd(rsq00);
463             rinv10           = gmx_mm_invsqrt_pd(rsq10);
464             rinv20           = gmx_mm_invsqrt_pd(rsq20);
465
466             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
467             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
468             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = _mm_load_sd(charge+jnrA+0);
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473
474             fjx0             = _mm_setzero_pd();
475             fjy0             = _mm_setzero_pd();
476             fjz0             = _mm_setzero_pd();
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             if (gmx_mm_any_lt(rsq00,rcutoff2))
483             {
484
485             r00              = _mm_mul_pd(rsq00,rinv00);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq00             = _mm_mul_pd(iq0,jq0);
489             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
490
491             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
492
493             /* EWALD ELECTROSTATICS */
494
495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
496             ewrt             = _mm_mul_pd(r00,ewtabscale);
497             ewitab           = _mm_cvttpd_epi32(ewrt);
498             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
499             ewitab           = _mm_slli_epi32(ewitab,2);
500             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
501             ewtabD           = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
503             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
504             ewtabFn          = _mm_setzero_pd();
505             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
506             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
507             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
508             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
509             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
510
511             /* Analytical LJ-PME */
512             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
513             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
514             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
515             exponent         = gmx_simd_exp_d(ewcljrsq);
516             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
517             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
518             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
519             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
520             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
521             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
522                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
523             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
524             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
525
526             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
527
528             /* Update potential sum for this i atom from the interaction with this j atom. */
529             velec            = _mm_and_pd(velec,cutoff_mask);
530             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
531             velecsum         = _mm_add_pd(velecsum,velec);
532             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
533             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
534             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
535
536             fscal            = _mm_add_pd(felec,fvdw);
537
538             fscal            = _mm_and_pd(fscal,cutoff_mask);
539
540             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_pd(fscal,dx00);
544             ty               = _mm_mul_pd(fscal,dy00);
545             tz               = _mm_mul_pd(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_pd(fix0,tx);
549             fiy0             = _mm_add_pd(fiy0,ty);
550             fiz0             = _mm_add_pd(fiz0,tz);
551
552             fjx0             = _mm_add_pd(fjx0,tx);
553             fjy0             = _mm_add_pd(fjy0,ty);
554             fjz0             = _mm_add_pd(fjz0,tz);
555
556             }
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             if (gmx_mm_any_lt(rsq10,rcutoff2))
563             {
564
565             r10              = _mm_mul_pd(rsq10,rinv10);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm_mul_pd(iq1,jq0);
569
570             /* EWALD ELECTROSTATICS */
571
572             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
573             ewrt             = _mm_mul_pd(r10,ewtabscale);
574             ewitab           = _mm_cvttpd_epi32(ewrt);
575             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
576             ewitab           = _mm_slli_epi32(ewitab,2);
577             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
578             ewtabD           = _mm_setzero_pd();
579             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
580             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
581             ewtabFn          = _mm_setzero_pd();
582             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
583             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
584             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
585             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
586             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
587
588             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_and_pd(velec,cutoff_mask);
592             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
593             velecsum         = _mm_add_pd(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_and_pd(fscal,cutoff_mask);
598
599             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx10);
603             ty               = _mm_mul_pd(fscal,dy10);
604             tz               = _mm_mul_pd(fscal,dz10);
605
606             /* Update vectorial force */
607             fix1             = _mm_add_pd(fix1,tx);
608             fiy1             = _mm_add_pd(fiy1,ty);
609             fiz1             = _mm_add_pd(fiz1,tz);
610
611             fjx0             = _mm_add_pd(fjx0,tx);
612             fjy0             = _mm_add_pd(fjy0,ty);
613             fjz0             = _mm_add_pd(fjz0,tz);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq20,rcutoff2))
622             {
623
624             r20              = _mm_mul_pd(rsq20,rinv20);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq20             = _mm_mul_pd(iq2,jq0);
628
629             /* EWALD ELECTROSTATICS */
630
631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632             ewrt             = _mm_mul_pd(r20,ewtabscale);
633             ewitab           = _mm_cvttpd_epi32(ewrt);
634             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
635             ewitab           = _mm_slli_epi32(ewitab,2);
636             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
637             ewtabD           = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
639             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
640             ewtabFn          = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
642             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
643             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
644             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
645             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
646
647             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
648
649             /* Update potential sum for this i atom from the interaction with this j atom. */
650             velec            = _mm_and_pd(velec,cutoff_mask);
651             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
652             velecsum         = _mm_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm_and_pd(fscal,cutoff_mask);
657
658             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
659
660             /* Calculate temporary vectorial force */
661             tx               = _mm_mul_pd(fscal,dx20);
662             ty               = _mm_mul_pd(fscal,dy20);
663             tz               = _mm_mul_pd(fscal,dz20);
664
665             /* Update vectorial force */
666             fix2             = _mm_add_pd(fix2,tx);
667             fiy2             = _mm_add_pd(fiy2,ty);
668             fiz2             = _mm_add_pd(fiz2,tz);
669
670             fjx0             = _mm_add_pd(fjx0,tx);
671             fjy0             = _mm_add_pd(fjy0,ty);
672             fjz0             = _mm_add_pd(fjz0,tz);
673
674             }
675
676             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
677
678             /* Inner loop uses 177 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         ggid                        = gid[iidx];
687         /* Update potential energies */
688         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
689         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
690
691         /* Increment number of inner iterations */
692         inneriter                  += j_index_end - j_index_start;
693
694         /* Outer loop uses 20 flops */
695     }
696
697     /* Increment number of outer iterations */
698     outeriter        += nri;
699
700     /* Update outer/inner flops */
701
702     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
703 }
704 /*
705  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
706  * Electrostatics interaction: Ewald
707  * VdW interaction:            LJEwald
708  * Geometry:                   Water3-Particle
709  * Calculate force/pot:        Force
710  */
711 void
712 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_double
713                     (t_nblist                    * gmx_restrict       nlist,
714                      rvec                        * gmx_restrict          xx,
715                      rvec                        * gmx_restrict          ff,
716                      t_forcerec                  * gmx_restrict          fr,
717                      t_mdatoms                   * gmx_restrict     mdatoms,
718                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
719                      t_nrnb                      * gmx_restrict        nrnb)
720 {
721     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
722      * just 0 for non-waters.
723      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
724      * jnr indices corresponding to data put in the four positions in the SIMD register.
725      */
726     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
727     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
728     int              jnrA,jnrB;
729     int              j_coord_offsetA,j_coord_offsetB;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
734     int              vdwioffset0;
735     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
736     int              vdwioffset1;
737     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
738     int              vdwioffset2;
739     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
740     int              vdwjidx0A,vdwjidx0B;
741     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
742     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
743     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
744     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
745     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
746     real             *charge;
747     int              nvdwtype;
748     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
749     int              *vdwtype;
750     real             *vdwparam;
751     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
752     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
753     __m128d           c6grid_00;
754     __m128d           c6grid_10;
755     __m128d           c6grid_20;
756     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
757     real             *vdwgridparam;
758     __m128d           one_half = _mm_set1_pd(0.5);
759     __m128d           minus_one = _mm_set1_pd(-1.0);
760     __m128i          ewitab;
761     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
762     real             *ewtab;
763     __m128d          dummy_mask,cutoff_mask;
764     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
765     __m128d          one     = _mm_set1_pd(1.0);
766     __m128d          two     = _mm_set1_pd(2.0);
767     x                = xx[0];
768     f                = ff[0];
769
770     nri              = nlist->nri;
771     iinr             = nlist->iinr;
772     jindex           = nlist->jindex;
773     jjnr             = nlist->jjnr;
774     shiftidx         = nlist->shift;
775     gid              = nlist->gid;
776     shiftvec         = fr->shift_vec[0];
777     fshift           = fr->fshift[0];
778     facel            = _mm_set1_pd(fr->epsfac);
779     charge           = mdatoms->chargeA;
780     nvdwtype         = fr->ntype;
781     vdwparam         = fr->nbfp;
782     vdwtype          = mdatoms->typeA;
783     vdwgridparam     = fr->ljpme_c6grid;
784     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
785     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
786     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
787
788     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
789     ewtab            = fr->ic->tabq_coul_F;
790     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
791     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
796     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
797     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
798     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
799
800     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
801     rcutoff_scalar   = fr->rcoulomb;
802     rcutoff          = _mm_set1_pd(rcutoff_scalar);
803     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
804
805     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
806     rvdw             = _mm_set1_pd(fr->rvdw);
807
808     /* Avoid stupid compiler warnings */
809     jnrA = jnrB = 0;
810     j_coord_offsetA = 0;
811     j_coord_offsetB = 0;
812
813     outeriter        = 0;
814     inneriter        = 0;
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
832                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
833
834         fix0             = _mm_setzero_pd();
835         fiy0             = _mm_setzero_pd();
836         fiz0             = _mm_setzero_pd();
837         fix1             = _mm_setzero_pd();
838         fiy1             = _mm_setzero_pd();
839         fiz1             = _mm_setzero_pd();
840         fix2             = _mm_setzero_pd();
841         fiy2             = _mm_setzero_pd();
842         fiz2             = _mm_setzero_pd();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm_sub_pd(ix0,jx0);
860             dy00             = _mm_sub_pd(iy0,jy0);
861             dz00             = _mm_sub_pd(iz0,jz0);
862             dx10             = _mm_sub_pd(ix1,jx0);
863             dy10             = _mm_sub_pd(iy1,jy0);
864             dz10             = _mm_sub_pd(iz1,jz0);
865             dx20             = _mm_sub_pd(ix2,jx0);
866             dy20             = _mm_sub_pd(iy2,jy0);
867             dz20             = _mm_sub_pd(iz2,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
871             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
872             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
873
874             rinv00           = gmx_mm_invsqrt_pd(rsq00);
875             rinv10           = gmx_mm_invsqrt_pd(rsq10);
876             rinv20           = gmx_mm_invsqrt_pd(rsq20);
877
878             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
879             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886
887             fjx0             = _mm_setzero_pd();
888             fjy0             = _mm_setzero_pd();
889             fjz0             = _mm_setzero_pd();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq00,rcutoff2))
896             {
897
898             r00              = _mm_mul_pd(rsq00,rinv00);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq00             = _mm_mul_pd(iq0,jq0);
902             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
903                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
904
905             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
906                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_pd(r00,ewtabscale);
912             ewitab           = _mm_cvttpd_epi32(ewrt);
913             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
914             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
915                                          &ewtabF,&ewtabFn);
916             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
917             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
918
919             /* Analytical LJ-PME */
920             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
921             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
922             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
923             exponent         = gmx_simd_exp_d(ewcljrsq);
924             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
925             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
926             /* f6A = 6 * C6grid * (1 - poly) */
927             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
928             /* f6B = C6grid * exponent * beta^6 */
929             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
930             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
931             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
932
933             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
934
935             fscal            = _mm_add_pd(felec,fvdw);
936
937             fscal            = _mm_and_pd(fscal,cutoff_mask);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_pd(fscal,dx00);
941             ty               = _mm_mul_pd(fscal,dy00);
942             tz               = _mm_mul_pd(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm_add_pd(fix0,tx);
946             fiy0             = _mm_add_pd(fiy0,ty);
947             fiz0             = _mm_add_pd(fiz0,tz);
948
949             fjx0             = _mm_add_pd(fjx0,tx);
950             fjy0             = _mm_add_pd(fjy0,ty);
951             fjz0             = _mm_add_pd(fjz0,tz);
952
953             }
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             if (gmx_mm_any_lt(rsq10,rcutoff2))
960             {
961
962             r10              = _mm_mul_pd(rsq10,rinv10);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq10             = _mm_mul_pd(iq1,jq0);
966
967             /* EWALD ELECTROSTATICS */
968
969             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
970             ewrt             = _mm_mul_pd(r10,ewtabscale);
971             ewitab           = _mm_cvttpd_epi32(ewrt);
972             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
973             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
974                                          &ewtabF,&ewtabFn);
975             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
976             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
977
978             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
979
980             fscal            = felec;
981
982             fscal            = _mm_and_pd(fscal,cutoff_mask);
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm_mul_pd(fscal,dx10);
986             ty               = _mm_mul_pd(fscal,dy10);
987             tz               = _mm_mul_pd(fscal,dz10);
988
989             /* Update vectorial force */
990             fix1             = _mm_add_pd(fix1,tx);
991             fiy1             = _mm_add_pd(fiy1,ty);
992             fiz1             = _mm_add_pd(fiz1,tz);
993
994             fjx0             = _mm_add_pd(fjx0,tx);
995             fjy0             = _mm_add_pd(fjy0,ty);
996             fjz0             = _mm_add_pd(fjz0,tz);
997
998             }
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             if (gmx_mm_any_lt(rsq20,rcutoff2))
1005             {
1006
1007             r20              = _mm_mul_pd(rsq20,rinv20);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq20             = _mm_mul_pd(iq2,jq0);
1011
1012             /* EWALD ELECTROSTATICS */
1013
1014             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1015             ewrt             = _mm_mul_pd(r20,ewtabscale);
1016             ewitab           = _mm_cvttpd_epi32(ewrt);
1017             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1018             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1019                                          &ewtabF,&ewtabFn);
1020             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1021             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1022
1023             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm_and_pd(fscal,cutoff_mask);
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm_mul_pd(fscal,dx20);
1031             ty               = _mm_mul_pd(fscal,dy20);
1032             tz               = _mm_mul_pd(fscal,dz20);
1033
1034             /* Update vectorial force */
1035             fix2             = _mm_add_pd(fix2,tx);
1036             fiy2             = _mm_add_pd(fiy2,ty);
1037             fiz2             = _mm_add_pd(fiz2,tz);
1038
1039             fjx0             = _mm_add_pd(fjx0,tx);
1040             fjy0             = _mm_add_pd(fjy0,ty);
1041             fjz0             = _mm_add_pd(fjz0,tz);
1042
1043             }
1044
1045             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1046
1047             /* Inner loop uses 143 flops */
1048         }
1049
1050         if(jidx<j_index_end)
1051         {
1052
1053             jnrA             = jjnr[jidx];
1054             j_coord_offsetA  = DIM*jnrA;
1055
1056             /* load j atom coordinates */
1057             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1058                                               &jx0,&jy0,&jz0);
1059
1060             /* Calculate displacement vector */
1061             dx00             = _mm_sub_pd(ix0,jx0);
1062             dy00             = _mm_sub_pd(iy0,jy0);
1063             dz00             = _mm_sub_pd(iz0,jz0);
1064             dx10             = _mm_sub_pd(ix1,jx0);
1065             dy10             = _mm_sub_pd(iy1,jy0);
1066             dz10             = _mm_sub_pd(iz1,jz0);
1067             dx20             = _mm_sub_pd(ix2,jx0);
1068             dy20             = _mm_sub_pd(iy2,jy0);
1069             dz20             = _mm_sub_pd(iz2,jz0);
1070
1071             /* Calculate squared distance and things based on it */
1072             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1073             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1074             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1075
1076             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1077             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1078             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1079
1080             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1081             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1082             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1083
1084             /* Load parameters for j particles */
1085             jq0              = _mm_load_sd(charge+jnrA+0);
1086             vdwjidx0A        = 2*vdwtype[jnrA+0];
1087
1088             fjx0             = _mm_setzero_pd();
1089             fjy0             = _mm_setzero_pd();
1090             fjz0             = _mm_setzero_pd();
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (gmx_mm_any_lt(rsq00,rcutoff2))
1097             {
1098
1099             r00              = _mm_mul_pd(rsq00,rinv00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq00             = _mm_mul_pd(iq0,jq0);
1103             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1104
1105             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm_mul_pd(r00,ewtabscale);
1111             ewitab           = _mm_cvttpd_epi32(ewrt);
1112             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1113             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1114             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1115             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1116
1117             /* Analytical LJ-PME */
1118             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1119             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1120             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1121             exponent         = gmx_simd_exp_d(ewcljrsq);
1122             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1123             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1124             /* f6A = 6 * C6grid * (1 - poly) */
1125             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1126             /* f6B = C6grid * exponent * beta^6 */
1127             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1128             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1129             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1130
1131             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1132
1133             fscal            = _mm_add_pd(felec,fvdw);
1134
1135             fscal            = _mm_and_pd(fscal,cutoff_mask);
1136
1137             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_pd(fscal,dx00);
1141             ty               = _mm_mul_pd(fscal,dy00);
1142             tz               = _mm_mul_pd(fscal,dz00);
1143
1144             /* Update vectorial force */
1145             fix0             = _mm_add_pd(fix0,tx);
1146             fiy0             = _mm_add_pd(fiy0,ty);
1147             fiz0             = _mm_add_pd(fiz0,tz);
1148
1149             fjx0             = _mm_add_pd(fjx0,tx);
1150             fjy0             = _mm_add_pd(fjy0,ty);
1151             fjz0             = _mm_add_pd(fjz0,tz);
1152
1153             }
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             if (gmx_mm_any_lt(rsq10,rcutoff2))
1160             {
1161
1162             r10              = _mm_mul_pd(rsq10,rinv10);
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm_mul_pd(iq1,jq0);
1166
1167             /* EWALD ELECTROSTATICS */
1168
1169             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170             ewrt             = _mm_mul_pd(r10,ewtabscale);
1171             ewitab           = _mm_cvttpd_epi32(ewrt);
1172             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1173             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1174             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1175             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1176
1177             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm_and_pd(fscal,cutoff_mask);
1182
1183             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm_mul_pd(fscal,dx10);
1187             ty               = _mm_mul_pd(fscal,dy10);
1188             tz               = _mm_mul_pd(fscal,dz10);
1189
1190             /* Update vectorial force */
1191             fix1             = _mm_add_pd(fix1,tx);
1192             fiy1             = _mm_add_pd(fiy1,ty);
1193             fiz1             = _mm_add_pd(fiz1,tz);
1194
1195             fjx0             = _mm_add_pd(fjx0,tx);
1196             fjy0             = _mm_add_pd(fjy0,ty);
1197             fjz0             = _mm_add_pd(fjz0,tz);
1198
1199             }
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (gmx_mm_any_lt(rsq20,rcutoff2))
1206             {
1207
1208             r20              = _mm_mul_pd(rsq20,rinv20);
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq20             = _mm_mul_pd(iq2,jq0);
1212
1213             /* EWALD ELECTROSTATICS */
1214
1215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1216             ewrt             = _mm_mul_pd(r20,ewtabscale);
1217             ewitab           = _mm_cvttpd_epi32(ewrt);
1218             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1219             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1220             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1221             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1222
1223             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1224
1225             fscal            = felec;
1226
1227             fscal            = _mm_and_pd(fscal,cutoff_mask);
1228
1229             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = _mm_mul_pd(fscal,dx20);
1233             ty               = _mm_mul_pd(fscal,dy20);
1234             tz               = _mm_mul_pd(fscal,dz20);
1235
1236             /* Update vectorial force */
1237             fix2             = _mm_add_pd(fix2,tx);
1238             fiy2             = _mm_add_pd(fiy2,ty);
1239             fiz2             = _mm_add_pd(fiz2,tz);
1240
1241             fjx0             = _mm_add_pd(fjx0,tx);
1242             fjy0             = _mm_add_pd(fjy0,ty);
1243             fjz0             = _mm_add_pd(fjz0,tz);
1244
1245             }
1246
1247             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1248
1249             /* Inner loop uses 143 flops */
1250         }
1251
1252         /* End of innermost loop */
1253
1254         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1255                                               f+i_coord_offset,fshift+i_shift_offset);
1256
1257         /* Increment number of inner iterations */
1258         inneriter                  += j_index_end - j_index_start;
1259
1260         /* Outer loop uses 18 flops */
1261     }
1262
1263     /* Increment number of outer iterations */
1264     outeriter        += nri;
1265
1266     /* Update outer/inner flops */
1267
1268     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1269 }