Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128d           one_half = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_pd(rcutoff_scalar);
136     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_pd(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
224                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = _mm_mul_pd(r00,ewtabscale);
230             ewitab           = _mm_cvttpd_epi32(ewrt);
231             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
232             ewitab           = _mm_slli_epi32(ewitab,2);
233             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
234             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
235             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
236             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
237             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
239             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
240             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
241             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
242             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
243
244             /* Analytical LJ-PME */
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
247             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
248             exponent         = gmx_simd_exp_d(ewcljrsq);
249             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
250             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
251             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
252             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
253             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
255                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
256             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
257             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
258
259             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm_and_pd(velec,cutoff_mask);
263             velecsum         = _mm_add_pd(velecsum,velec);
264             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm_add_pd(felec,fvdw);
268
269             fscal            = _mm_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_pd(fscal,dx00);
273             ty               = _mm_mul_pd(fscal,dy00);
274             tz               = _mm_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_pd(fix0,tx);
278             fiy0             = _mm_add_pd(fiy0,ty);
279             fiz0             = _mm_add_pd(fiz0,tz);
280
281             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
282
283             }
284
285             /* Inner loop uses 82 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             jnrA             = jjnr[jidx];
292             j_coord_offsetA  = DIM*jnrA;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
296                                               &jx0,&jy0,&jz0);
297
298             /* Calculate displacement vector */
299             dx00             = _mm_sub_pd(ix0,jx0);
300             dy00             = _mm_sub_pd(iy0,jy0);
301             dz00             = _mm_sub_pd(iz0,jz0);
302
303             /* Calculate squared distance and things based on it */
304             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
305
306             rinv00           = gmx_mm_invsqrt_pd(rsq00);
307
308             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
309
310             /* Load parameters for j particles */
311             jq0              = _mm_load_sd(charge+jnrA+0);
312             vdwjidx0A        = 2*vdwtype[jnrA+0];
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             if (gmx_mm_any_lt(rsq00,rcutoff2))
319             {
320
321             r00              = _mm_mul_pd(rsq00,rinv00);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_pd(iq0,jq0);
325             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
326
327             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_pd(r00,ewtabscale);
333             ewitab           = _mm_cvttpd_epi32(ewrt);
334             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_setzero_pd();
338             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
339             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
340             ewtabFn          = _mm_setzero_pd();
341             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
342             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
343             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
344             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
345             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
346
347             /* Analytical LJ-PME */
348             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
349             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
350             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
351             exponent         = gmx_simd_exp_d(ewcljrsq);
352             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
353             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
354             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
355             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
356             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
357             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
358                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
359             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
360             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
361
362             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_pd(velec,cutoff_mask);
366             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
367             velecsum         = _mm_add_pd(velecsum,velec);
368             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
369             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
370             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
371
372             fscal            = _mm_add_pd(felec,fvdw);
373
374             fscal            = _mm_and_pd(fscal,cutoff_mask);
375
376             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_pd(fscal,dx00);
380             ty               = _mm_mul_pd(fscal,dy00);
381             tz               = _mm_mul_pd(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm_add_pd(fix0,tx);
385             fiy0             = _mm_add_pd(fiy0,ty);
386             fiz0             = _mm_add_pd(fiz0,tz);
387
388             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
389
390             }
391
392             /* Inner loop uses 82 flops */
393         }
394
395         /* End of innermost loop */
396
397         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
398                                               f+i_coord_offset,fshift+i_shift_offset);
399
400         ggid                        = gid[iidx];
401         /* Update potential energies */
402         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
403         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 9 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*82);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_double
420  * Electrostatics interaction: Ewald
421  * VdW interaction:            LJEwald
422  * Geometry:                   Particle-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_double
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      t_forcerec                  * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
436      * just 0 for non-waters.
437      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
438      * jnr indices corresponding to data put in the four positions in the SIMD register.
439      */
440     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
441     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
442     int              jnrA,jnrB;
443     int              j_coord_offsetA,j_coord_offsetB;
444     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
445     real             rcutoff_scalar;
446     real             *shiftvec,*fshift,*x,*f;
447     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
448     int              vdwioffset0;
449     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B;
451     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
454     real             *charge;
455     int              nvdwtype;
456     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
457     int              *vdwtype;
458     real             *vdwparam;
459     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
460     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
461     __m128d           c6grid_00;
462     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
463     real             *vdwgridparam;
464     __m128d           one_half = _mm_set1_pd(0.5);
465     __m128d           minus_one = _mm_set1_pd(-1.0);
466     __m128i          ewitab;
467     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
468     real             *ewtab;
469     __m128d          dummy_mask,cutoff_mask;
470     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
471     __m128d          one     = _mm_set1_pd(1.0);
472     __m128d          two     = _mm_set1_pd(2.0);
473     x                = xx[0];
474     f                = ff[0];
475
476     nri              = nlist->nri;
477     iinr             = nlist->iinr;
478     jindex           = nlist->jindex;
479     jjnr             = nlist->jjnr;
480     shiftidx         = nlist->shift;
481     gid              = nlist->gid;
482     shiftvec         = fr->shift_vec[0];
483     fshift           = fr->fshift[0];
484     facel            = _mm_set1_pd(fr->epsfac);
485     charge           = mdatoms->chargeA;
486     nvdwtype         = fr->ntype;
487     vdwparam         = fr->nbfp;
488     vdwtype          = mdatoms->typeA;
489     vdwgridparam     = fr->ljpme_c6grid;
490     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
491     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
492     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
493
494     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
495     ewtab            = fr->ic->tabq_coul_F;
496     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
497     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
498
499     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
500     rcutoff_scalar   = fr->rcoulomb;
501     rcutoff          = _mm_set1_pd(rcutoff_scalar);
502     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
503
504     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
505     rvdw             = _mm_set1_pd(fr->rvdw);
506
507     /* Avoid stupid compiler warnings */
508     jnrA = jnrB = 0;
509     j_coord_offsetA = 0;
510     j_coord_offsetB = 0;
511
512     outeriter        = 0;
513     inneriter        = 0;
514
515     /* Start outer loop over neighborlists */
516     for(iidx=0; iidx<nri; iidx++)
517     {
518         /* Load shift vector for this list */
519         i_shift_offset   = DIM*shiftidx[iidx];
520
521         /* Load limits for loop over neighbors */
522         j_index_start    = jindex[iidx];
523         j_index_end      = jindex[iidx+1];
524
525         /* Get outer coordinate index */
526         inr              = iinr[iidx];
527         i_coord_offset   = DIM*inr;
528
529         /* Load i particle coords and add shift vector */
530         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
531
532         fix0             = _mm_setzero_pd();
533         fiy0             = _mm_setzero_pd();
534         fiz0             = _mm_setzero_pd();
535
536         /* Load parameters for i particles */
537         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
538         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
539
540         /* Start inner kernel loop */
541         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
542         {
543
544             /* Get j neighbor index, and coordinate index */
545             jnrA             = jjnr[jidx];
546             jnrB             = jjnr[jidx+1];
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549
550             /* load j atom coordinates */
551             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
552                                               &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _mm_sub_pd(ix0,jx0);
556             dy00             = _mm_sub_pd(iy0,jy0);
557             dz00             = _mm_sub_pd(iz0,jz0);
558
559             /* Calculate squared distance and things based on it */
560             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
561
562             rinv00           = gmx_mm_invsqrt_pd(rsq00);
563
564             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
565
566             /* Load parameters for j particles */
567             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
568             vdwjidx0A        = 2*vdwtype[jnrA+0];
569             vdwjidx0B        = 2*vdwtype[jnrB+0];
570
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             if (gmx_mm_any_lt(rsq00,rcutoff2))
576             {
577
578             r00              = _mm_mul_pd(rsq00,rinv00);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq00             = _mm_mul_pd(iq0,jq0);
582             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
583                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
584
585             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
586                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _mm_mul_pd(r00,ewtabscale);
592             ewitab           = _mm_cvttpd_epi32(ewrt);
593             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
594             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
595                                          &ewtabF,&ewtabFn);
596             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
597             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
598
599             /* Analytical LJ-PME */
600             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
601             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
602             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
603             exponent         = gmx_simd_exp_d(ewcljrsq);
604             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
605             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
606             /* f6A = 6 * C6grid * (1 - poly) */
607             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
608             /* f6B = C6grid * exponent * beta^6 */
609             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
610             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
611             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
612
613             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
614
615             fscal            = _mm_add_pd(felec,fvdw);
616
617             fscal            = _mm_and_pd(fscal,cutoff_mask);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_pd(fscal,dx00);
621             ty               = _mm_mul_pd(fscal,dy00);
622             tz               = _mm_mul_pd(fscal,dz00);
623
624             /* Update vectorial force */
625             fix0             = _mm_add_pd(fix0,tx);
626             fiy0             = _mm_add_pd(fiy0,ty);
627             fiz0             = _mm_add_pd(fiz0,tz);
628
629             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
630
631             }
632
633             /* Inner loop uses 62 flops */
634         }
635
636         if(jidx<j_index_end)
637         {
638
639             jnrA             = jjnr[jidx];
640             j_coord_offsetA  = DIM*jnrA;
641
642             /* load j atom coordinates */
643             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
644                                               &jx0,&jy0,&jz0);
645
646             /* Calculate displacement vector */
647             dx00             = _mm_sub_pd(ix0,jx0);
648             dy00             = _mm_sub_pd(iy0,jy0);
649             dz00             = _mm_sub_pd(iz0,jz0);
650
651             /* Calculate squared distance and things based on it */
652             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
653
654             rinv00           = gmx_mm_invsqrt_pd(rsq00);
655
656             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
657
658             /* Load parameters for j particles */
659             jq0              = _mm_load_sd(charge+jnrA+0);
660             vdwjidx0A        = 2*vdwtype[jnrA+0];
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (gmx_mm_any_lt(rsq00,rcutoff2))
667             {
668
669             r00              = _mm_mul_pd(rsq00,rinv00);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq00             = _mm_mul_pd(iq0,jq0);
673             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
674
675             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
676
677             /* EWALD ELECTROSTATICS */
678
679             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
680             ewrt             = _mm_mul_pd(r00,ewtabscale);
681             ewitab           = _mm_cvttpd_epi32(ewrt);
682             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
683             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
684             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
685             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
686
687             /* Analytical LJ-PME */
688             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
689             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
690             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
691             exponent         = gmx_simd_exp_d(ewcljrsq);
692             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
693             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
694             /* f6A = 6 * C6grid * (1 - poly) */
695             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
696             /* f6B = C6grid * exponent * beta^6 */
697             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
698             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
699             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
700
701             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
702
703             fscal            = _mm_add_pd(felec,fvdw);
704
705             fscal            = _mm_and_pd(fscal,cutoff_mask);
706
707             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm_mul_pd(fscal,dx00);
711             ty               = _mm_mul_pd(fscal,dy00);
712             tz               = _mm_mul_pd(fscal,dz00);
713
714             /* Update vectorial force */
715             fix0             = _mm_add_pd(fix0,tx);
716             fiy0             = _mm_add_pd(fiy0,ty);
717             fiz0             = _mm_add_pd(fiz0,tz);
718
719             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
720
721             }
722
723             /* Inner loop uses 62 flops */
724         }
725
726         /* End of innermost loop */
727
728         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
729                                               f+i_coord_offset,fshift+i_shift_offset);
730
731         /* Increment number of inner iterations */
732         inneriter                  += j_index_end - j_index_start;
733
734         /* Outer loop uses 7 flops */
735     }
736
737     /* Increment number of outer iterations */
738     outeriter        += nri;
739
740     /* Update outer/inner flops */
741
742     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
743 }