Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
123     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
124     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
135
136     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
137     rvdw             = _mm_set1_pd(fr->rvdw);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167
168         /* Load parameters for i particles */
169         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199
200             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (gmx_mm_any_lt(rsq00,rcutoff2))
212             {
213
214             r00              = _mm_mul_pd(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm_mul_pd(iq0,jq0);
218             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
220
221             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
222                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
223
224             /* EWALD ELECTROSTATICS */
225
226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
227             ewrt             = _mm_mul_pd(r00,ewtabscale);
228             ewitab           = _mm_cvttpd_epi32(ewrt);
229             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
230             ewitab           = _mm_slli_epi32(ewitab,2);
231             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
232             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
233             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
234             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
235             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
236             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
237             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
238             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
239             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
240             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
241
242             /* Analytical LJ-PME */
243             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
245             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
246             exponent         = gmx_simd_exp_d(ewcljrsq);
247             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
248             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
249             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
250             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
251             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
252             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
253                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
254             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
256
257             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_and_pd(velec,cutoff_mask);
261             velecsum         = _mm_add_pd(velecsum,velec);
262             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm_add_pd(felec,fvdw);
266
267             fscal            = _mm_and_pd(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_pd(fscal,dx00);
271             ty               = _mm_mul_pd(fscal,dy00);
272             tz               = _mm_mul_pd(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_pd(fix0,tx);
276             fiy0             = _mm_add_pd(fiy0,ty);
277             fiz0             = _mm_add_pd(fiz0,tz);
278
279             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
280
281             }
282
283             /* Inner loop uses 82 flops */
284         }
285
286         if(jidx<j_index_end)
287         {
288
289             jnrA             = jjnr[jidx];
290             j_coord_offsetA  = DIM*jnrA;
291
292             /* load j atom coordinates */
293             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
294                                               &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm_sub_pd(ix0,jx0);
298             dy00             = _mm_sub_pd(iy0,jy0);
299             dz00             = _mm_sub_pd(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
303
304             rinv00           = gmx_mm_invsqrt_pd(rsq00);
305
306             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             jq0              = _mm_load_sd(charge+jnrA+0);
310             vdwjidx0A        = 2*vdwtype[jnrA+0];
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq00,rcutoff2))
317             {
318
319             r00              = _mm_mul_pd(rsq00,rinv00);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq00             = _mm_mul_pd(iq0,jq0);
323             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
324
325             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm_mul_pd(r00,ewtabscale);
331             ewitab           = _mm_cvttpd_epi32(ewrt);
332             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
337             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
338             ewtabFn          = _mm_setzero_pd();
339             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
340             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
341             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
342             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
343             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
344
345             /* Analytical LJ-PME */
346             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
347             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
348             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
349             exponent         = gmx_simd_exp_d(ewcljrsq);
350             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
351             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
352             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
353             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
354             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
355             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
356                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
357             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
358             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
359
360             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _mm_and_pd(velec,cutoff_mask);
364             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
365             velecsum         = _mm_add_pd(velecsum,velec);
366             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
367             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
368             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
369
370             fscal            = _mm_add_pd(felec,fvdw);
371
372             fscal            = _mm_and_pd(fscal,cutoff_mask);
373
374             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx00);
378             ty               = _mm_mul_pd(fscal,dy00);
379             tz               = _mm_mul_pd(fscal,dz00);
380
381             /* Update vectorial force */
382             fix0             = _mm_add_pd(fix0,tx);
383             fiy0             = _mm_add_pd(fiy0,ty);
384             fiz0             = _mm_add_pd(fiz0,tz);
385
386             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
387
388             }
389
390             /* Inner loop uses 82 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
401         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
402
403         /* Increment number of inner iterations */
404         inneriter                  += j_index_end - j_index_start;
405
406         /* Outer loop uses 9 flops */
407     }
408
409     /* Increment number of outer iterations */
410     outeriter        += nri;
411
412     /* Update outer/inner flops */
413
414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*82);
415 }
416 /*
417  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_double
418  * Electrostatics interaction: Ewald
419  * VdW interaction:            LJEwald
420  * Geometry:                   Particle-Particle
421  * Calculate force/pot:        Force
422  */
423 void
424 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_double
425                     (t_nblist                    * gmx_restrict       nlist,
426                      rvec                        * gmx_restrict          xx,
427                      rvec                        * gmx_restrict          ff,
428                      t_forcerec                  * gmx_restrict          fr,
429                      t_mdatoms                   * gmx_restrict     mdatoms,
430                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
431                      t_nrnb                      * gmx_restrict        nrnb)
432 {
433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
434      * just 0 for non-waters.
435      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
436      * jnr indices corresponding to data put in the four positions in the SIMD register.
437      */
438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
440     int              jnrA,jnrB;
441     int              j_coord_offsetA,j_coord_offsetB;
442     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
443     real             rcutoff_scalar;
444     real             *shiftvec,*fshift,*x,*f;
445     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B;
449     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
452     real             *charge;
453     int              nvdwtype;
454     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
455     int              *vdwtype;
456     real             *vdwparam;
457     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
458     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
459     __m128d           c6grid_00;
460     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
461     real             *vdwgridparam;
462     __m128d           one_half = _mm_set1_pd(0.5);
463     __m128d           minus_one = _mm_set1_pd(-1.0);
464     __m128i          ewitab;
465     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
466     real             *ewtab;
467     __m128d          dummy_mask,cutoff_mask;
468     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
469     __m128d          one     = _mm_set1_pd(1.0);
470     __m128d          two     = _mm_set1_pd(2.0);
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     facel            = _mm_set1_pd(fr->epsfac);
483     charge           = mdatoms->chargeA;
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487     vdwgridparam     = fr->ljpme_c6grid;
488     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
489     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
490     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
491
492     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
493     ewtab            = fr->ic->tabq_coul_F;
494     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
495     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
496
497     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
498     rcutoff_scalar   = fr->rcoulomb;
499     rcutoff          = _mm_set1_pd(rcutoff_scalar);
500     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
501
502     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
503     rvdw             = _mm_set1_pd(fr->rvdw);
504
505     /* Avoid stupid compiler warnings */
506     jnrA = jnrB = 0;
507     j_coord_offsetA = 0;
508     j_coord_offsetB = 0;
509
510     outeriter        = 0;
511     inneriter        = 0;
512
513     /* Start outer loop over neighborlists */
514     for(iidx=0; iidx<nri; iidx++)
515     {
516         /* Load shift vector for this list */
517         i_shift_offset   = DIM*shiftidx[iidx];
518
519         /* Load limits for loop over neighbors */
520         j_index_start    = jindex[iidx];
521         j_index_end      = jindex[iidx+1];
522
523         /* Get outer coordinate index */
524         inr              = iinr[iidx];
525         i_coord_offset   = DIM*inr;
526
527         /* Load i particle coords and add shift vector */
528         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
529
530         fix0             = _mm_setzero_pd();
531         fiy0             = _mm_setzero_pd();
532         fiz0             = _mm_setzero_pd();
533
534         /* Load parameters for i particles */
535         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
536         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
537
538         /* Start inner kernel loop */
539         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
540         {
541
542             /* Get j neighbor index, and coordinate index */
543             jnrA             = jjnr[jidx];
544             jnrB             = jjnr[jidx+1];
545             j_coord_offsetA  = DIM*jnrA;
546             j_coord_offsetB  = DIM*jnrB;
547
548             /* load j atom coordinates */
549             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
550                                               &jx0,&jy0,&jz0);
551
552             /* Calculate displacement vector */
553             dx00             = _mm_sub_pd(ix0,jx0);
554             dy00             = _mm_sub_pd(iy0,jy0);
555             dz00             = _mm_sub_pd(iz0,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
559
560             rinv00           = gmx_mm_invsqrt_pd(rsq00);
561
562             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
563
564             /* Load parameters for j particles */
565             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
566             vdwjidx0A        = 2*vdwtype[jnrA+0];
567             vdwjidx0B        = 2*vdwtype[jnrB+0];
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             if (gmx_mm_any_lt(rsq00,rcutoff2))
574             {
575
576             r00              = _mm_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq00             = _mm_mul_pd(iq0,jq0);
580             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
581                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
582
583             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
584                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
585
586             /* EWALD ELECTROSTATICS */
587
588             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
589             ewrt             = _mm_mul_pd(r00,ewtabscale);
590             ewitab           = _mm_cvttpd_epi32(ewrt);
591             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
592             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
593                                          &ewtabF,&ewtabFn);
594             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
595             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
596
597             /* Analytical LJ-PME */
598             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
599             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
600             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
601             exponent         = gmx_simd_exp_d(ewcljrsq);
602             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
603             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
604             /* f6A = 6 * C6grid * (1 - poly) */
605             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
606             /* f6B = C6grid * exponent * beta^6 */
607             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
608             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
609             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
610
611             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
612
613             fscal            = _mm_add_pd(felec,fvdw);
614
615             fscal            = _mm_and_pd(fscal,cutoff_mask);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_pd(fscal,dx00);
619             ty               = _mm_mul_pd(fscal,dy00);
620             tz               = _mm_mul_pd(fscal,dz00);
621
622             /* Update vectorial force */
623             fix0             = _mm_add_pd(fix0,tx);
624             fiy0             = _mm_add_pd(fiy0,ty);
625             fiz0             = _mm_add_pd(fiz0,tz);
626
627             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
628
629             }
630
631             /* Inner loop uses 62 flops */
632         }
633
634         if(jidx<j_index_end)
635         {
636
637             jnrA             = jjnr[jidx];
638             j_coord_offsetA  = DIM*jnrA;
639
640             /* load j atom coordinates */
641             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
642                                               &jx0,&jy0,&jz0);
643
644             /* Calculate displacement vector */
645             dx00             = _mm_sub_pd(ix0,jx0);
646             dy00             = _mm_sub_pd(iy0,jy0);
647             dz00             = _mm_sub_pd(iz0,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
651
652             rinv00           = gmx_mm_invsqrt_pd(rsq00);
653
654             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
655
656             /* Load parameters for j particles */
657             jq0              = _mm_load_sd(charge+jnrA+0);
658             vdwjidx0A        = 2*vdwtype[jnrA+0];
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (gmx_mm_any_lt(rsq00,rcutoff2))
665             {
666
667             r00              = _mm_mul_pd(rsq00,rinv00);
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm_mul_pd(iq0,jq0);
671             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
672
673             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
674
675             /* EWALD ELECTROSTATICS */
676
677             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
678             ewrt             = _mm_mul_pd(r00,ewtabscale);
679             ewitab           = _mm_cvttpd_epi32(ewrt);
680             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
681             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
682             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
683             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
684
685             /* Analytical LJ-PME */
686             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
687             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
688             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
689             exponent         = gmx_simd_exp_d(ewcljrsq);
690             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
691             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
692             /* f6A = 6 * C6grid * (1 - poly) */
693             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
694             /* f6B = C6grid * exponent * beta^6 */
695             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
696             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
697             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
698
699             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
700
701             fscal            = _mm_add_pd(felec,fvdw);
702
703             fscal            = _mm_and_pd(fscal,cutoff_mask);
704
705             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm_mul_pd(fscal,dx00);
709             ty               = _mm_mul_pd(fscal,dy00);
710             tz               = _mm_mul_pd(fscal,dz00);
711
712             /* Update vectorial force */
713             fix0             = _mm_add_pd(fix0,tx);
714             fiy0             = _mm_add_pd(fiy0,ty);
715             fiz0             = _mm_add_pd(fiz0,tz);
716
717             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
718
719             }
720
721             /* Inner loop uses 62 flops */
722         }
723
724         /* End of innermost loop */
725
726         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
727                                               f+i_coord_offset,fshift+i_shift_offset);
728
729         /* Increment number of inner iterations */
730         inneriter                  += j_index_end - j_index_start;
731
732         /* Outer loop uses 7 flops */
733     }
734
735     /* Increment number of outer iterations */
736     outeriter        += nri;
737
738     /* Update outer/inner flops */
739
740     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
741 }