Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwNone_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
116     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
117     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
143                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
144
145         fix1             = _mm_setzero_pd();
146         fiy1             = _mm_setzero_pd();
147         fiz1             = _mm_setzero_pd();
148         fix2             = _mm_setzero_pd();
149         fiy2             = _mm_setzero_pd();
150         fiz2             = _mm_setzero_pd();
151         fix3             = _mm_setzero_pd();
152         fiy3             = _mm_setzero_pd();
153         fiz3             = _mm_setzero_pd();
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx10             = _mm_sub_pd(ix1,jx0);
174             dy10             = _mm_sub_pd(iy1,jy0);
175             dz10             = _mm_sub_pd(iz1,jz0);
176             dx20             = _mm_sub_pd(ix2,jx0);
177             dy20             = _mm_sub_pd(iy2,jy0);
178             dz20             = _mm_sub_pd(iz2,jz0);
179             dx30             = _mm_sub_pd(ix3,jx0);
180             dy30             = _mm_sub_pd(iy3,jy0);
181             dz30             = _mm_sub_pd(iz3,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
185             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
186             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
187
188             rinv10           = gmx_mm_invsqrt_pd(rsq10);
189             rinv20           = gmx_mm_invsqrt_pd(rsq20);
190             rinv30           = gmx_mm_invsqrt_pd(rsq30);
191
192             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
193             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
194             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198
199             fjx0             = _mm_setzero_pd();
200             fjy0             = _mm_setzero_pd();
201             fjz0             = _mm_setzero_pd();
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq10             = _mm_mul_pd(iq1,jq0);
209
210             /* COULOMB ELECTROSTATICS */
211             velec            = _mm_mul_pd(qq10,rinv10);
212             felec            = _mm_mul_pd(velec,rinvsq10);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             velecsum         = _mm_add_pd(velecsum,velec);
216
217             fscal            = felec;
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_pd(fscal,dx10);
221             ty               = _mm_mul_pd(fscal,dy10);
222             tz               = _mm_mul_pd(fscal,dz10);
223
224             /* Update vectorial force */
225             fix1             = _mm_add_pd(fix1,tx);
226             fiy1             = _mm_add_pd(fiy1,ty);
227             fiz1             = _mm_add_pd(fiz1,tz);
228
229             fjx0             = _mm_add_pd(fjx0,tx);
230             fjy0             = _mm_add_pd(fjy0,ty);
231             fjz0             = _mm_add_pd(fjz0,tz);
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq20             = _mm_mul_pd(iq2,jq0);
239
240             /* COULOMB ELECTROSTATICS */
241             velec            = _mm_mul_pd(qq20,rinv20);
242             felec            = _mm_mul_pd(velec,rinvsq20);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246
247             fscal            = felec;
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm_mul_pd(fscal,dx20);
251             ty               = _mm_mul_pd(fscal,dy20);
252             tz               = _mm_mul_pd(fscal,dz20);
253
254             /* Update vectorial force */
255             fix2             = _mm_add_pd(fix2,tx);
256             fiy2             = _mm_add_pd(fiy2,ty);
257             fiz2             = _mm_add_pd(fiz2,tz);
258
259             fjx0             = _mm_add_pd(fjx0,tx);
260             fjy0             = _mm_add_pd(fjy0,ty);
261             fjz0             = _mm_add_pd(fjz0,tz);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq30             = _mm_mul_pd(iq3,jq0);
269
270             /* COULOMB ELECTROSTATICS */
271             velec            = _mm_mul_pd(qq30,rinv30);
272             felec            = _mm_mul_pd(velec,rinvsq30);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_pd(velecsum,velec);
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx30);
281             ty               = _mm_mul_pd(fscal,dy30);
282             tz               = _mm_mul_pd(fscal,dz30);
283
284             /* Update vectorial force */
285             fix3             = _mm_add_pd(fix3,tx);
286             fiy3             = _mm_add_pd(fiy3,ty);
287             fiz3             = _mm_add_pd(fiz3,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
294
295             /* Inner loop uses 87 flops */
296         }
297
298         if(jidx<j_index_end)
299         {
300
301             jnrA             = jjnr[jidx];
302             j_coord_offsetA  = DIM*jnrA;
303
304             /* load j atom coordinates */
305             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
306                                               &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx10             = _mm_sub_pd(ix1,jx0);
310             dy10             = _mm_sub_pd(iy1,jy0);
311             dz10             = _mm_sub_pd(iz1,jz0);
312             dx20             = _mm_sub_pd(ix2,jx0);
313             dy20             = _mm_sub_pd(iy2,jy0);
314             dz20             = _mm_sub_pd(iz2,jz0);
315             dx30             = _mm_sub_pd(ix3,jx0);
316             dy30             = _mm_sub_pd(iy3,jy0);
317             dz30             = _mm_sub_pd(iz3,jz0);
318
319             /* Calculate squared distance and things based on it */
320             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
321             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
322             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
323
324             rinv10           = gmx_mm_invsqrt_pd(rsq10);
325             rinv20           = gmx_mm_invsqrt_pd(rsq20);
326             rinv30           = gmx_mm_invsqrt_pd(rsq30);
327
328             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
329             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
330             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
331
332             /* Load parameters for j particles */
333             jq0              = _mm_load_sd(charge+jnrA+0);
334
335             fjx0             = _mm_setzero_pd();
336             fjy0             = _mm_setzero_pd();
337             fjz0             = _mm_setzero_pd();
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq10             = _mm_mul_pd(iq1,jq0);
345
346             /* COULOMB ELECTROSTATICS */
347             velec            = _mm_mul_pd(qq10,rinv10);
348             felec            = _mm_mul_pd(velec,rinvsq10);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
352             velecsum         = _mm_add_pd(velecsum,velec);
353
354             fscal            = felec;
355
356             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
357
358             /* Calculate temporary vectorial force */
359             tx               = _mm_mul_pd(fscal,dx10);
360             ty               = _mm_mul_pd(fscal,dy10);
361             tz               = _mm_mul_pd(fscal,dz10);
362
363             /* Update vectorial force */
364             fix1             = _mm_add_pd(fix1,tx);
365             fiy1             = _mm_add_pd(fiy1,ty);
366             fiz1             = _mm_add_pd(fiz1,tz);
367
368             fjx0             = _mm_add_pd(fjx0,tx);
369             fjy0             = _mm_add_pd(fjy0,ty);
370             fjz0             = _mm_add_pd(fjz0,tz);
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm_mul_pd(iq2,jq0);
378
379             /* COULOMB ELECTROSTATICS */
380             velec            = _mm_mul_pd(qq20,rinv20);
381             felec            = _mm_mul_pd(velec,rinvsq20);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
385             velecsum         = _mm_add_pd(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_pd(fscal,dx20);
393             ty               = _mm_mul_pd(fscal,dy20);
394             tz               = _mm_mul_pd(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm_add_pd(fix2,tx);
398             fiy2             = _mm_add_pd(fiy2,ty);
399             fiz2             = _mm_add_pd(fiz2,tz);
400
401             fjx0             = _mm_add_pd(fjx0,tx);
402             fjy0             = _mm_add_pd(fjy0,ty);
403             fjz0             = _mm_add_pd(fjz0,tz);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq30             = _mm_mul_pd(iq3,jq0);
411
412             /* COULOMB ELECTROSTATICS */
413             velec            = _mm_mul_pd(qq30,rinv30);
414             felec            = _mm_mul_pd(velec,rinvsq30);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
418             velecsum         = _mm_add_pd(velecsum,velec);
419
420             fscal            = felec;
421
422             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
423
424             /* Calculate temporary vectorial force */
425             tx               = _mm_mul_pd(fscal,dx30);
426             ty               = _mm_mul_pd(fscal,dy30);
427             tz               = _mm_mul_pd(fscal,dz30);
428
429             /* Update vectorial force */
430             fix3             = _mm_add_pd(fix3,tx);
431             fiy3             = _mm_add_pd(fiy3,ty);
432             fiz3             = _mm_add_pd(fiz3,tz);
433
434             fjx0             = _mm_add_pd(fjx0,tx);
435             fjy0             = _mm_add_pd(fjy0,ty);
436             fjz0             = _mm_add_pd(fjz0,tz);
437
438             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 87 flops */
441         }
442
443         /* End of innermost loop */
444
445         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
446                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
447
448         ggid                        = gid[iidx];
449         /* Update potential energies */
450         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
451
452         /* Increment number of inner iterations */
453         inneriter                  += j_index_end - j_index_start;
454
455         /* Outer loop uses 19 flops */
456     }
457
458     /* Increment number of outer iterations */
459     outeriter        += nri;
460
461     /* Update outer/inner flops */
462
463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*87);
464 }
465 /*
466  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse2_double
467  * Electrostatics interaction: Coulomb
468  * VdW interaction:            None
469  * Geometry:                   Water4-Particle
470  * Calculate force/pot:        Force
471  */
472 void
473 nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse2_double
474                     (t_nblist                    * gmx_restrict       nlist,
475                      rvec                        * gmx_restrict          xx,
476                      rvec                        * gmx_restrict          ff,
477                      t_forcerec                  * gmx_restrict          fr,
478                      t_mdatoms                   * gmx_restrict     mdatoms,
479                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
480                      t_nrnb                      * gmx_restrict        nrnb)
481 {
482     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
483      * just 0 for non-waters.
484      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
485      * jnr indices corresponding to data put in the four positions in the SIMD register.
486      */
487     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
488     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
489     int              jnrA,jnrB;
490     int              j_coord_offsetA,j_coord_offsetB;
491     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
492     real             rcutoff_scalar;
493     real             *shiftvec,*fshift,*x,*f;
494     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
495     int              vdwioffset1;
496     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
497     int              vdwioffset2;
498     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
499     int              vdwioffset3;
500     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
501     int              vdwjidx0A,vdwjidx0B;
502     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
503     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
504     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
505     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
506     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
507     real             *charge;
508     __m128d          dummy_mask,cutoff_mask;
509     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
510     __m128d          one     = _mm_set1_pd(1.0);
511     __m128d          two     = _mm_set1_pd(2.0);
512     x                = xx[0];
513     f                = ff[0];
514
515     nri              = nlist->nri;
516     iinr             = nlist->iinr;
517     jindex           = nlist->jindex;
518     jjnr             = nlist->jjnr;
519     shiftidx         = nlist->shift;
520     gid              = nlist->gid;
521     shiftvec         = fr->shift_vec[0];
522     fshift           = fr->fshift[0];
523     facel            = _mm_set1_pd(fr->epsfac);
524     charge           = mdatoms->chargeA;
525
526     /* Setup water-specific parameters */
527     inr              = nlist->iinr[0];
528     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
529     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
530     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
531
532     /* Avoid stupid compiler warnings */
533     jnrA = jnrB = 0;
534     j_coord_offsetA = 0;
535     j_coord_offsetB = 0;
536
537     outeriter        = 0;
538     inneriter        = 0;
539
540     /* Start outer loop over neighborlists */
541     for(iidx=0; iidx<nri; iidx++)
542     {
543         /* Load shift vector for this list */
544         i_shift_offset   = DIM*shiftidx[iidx];
545
546         /* Load limits for loop over neighbors */
547         j_index_start    = jindex[iidx];
548         j_index_end      = jindex[iidx+1];
549
550         /* Get outer coordinate index */
551         inr              = iinr[iidx];
552         i_coord_offset   = DIM*inr;
553
554         /* Load i particle coords and add shift vector */
555         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
556                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
557
558         fix1             = _mm_setzero_pd();
559         fiy1             = _mm_setzero_pd();
560         fiz1             = _mm_setzero_pd();
561         fix2             = _mm_setzero_pd();
562         fiy2             = _mm_setzero_pd();
563         fiz2             = _mm_setzero_pd();
564         fix3             = _mm_setzero_pd();
565         fiy3             = _mm_setzero_pd();
566         fiz3             = _mm_setzero_pd();
567
568         /* Start inner kernel loop */
569         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrA             = jjnr[jidx];
574             jnrB             = jjnr[jidx+1];
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577
578             /* load j atom coordinates */
579             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
580                                               &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx10             = _mm_sub_pd(ix1,jx0);
584             dy10             = _mm_sub_pd(iy1,jy0);
585             dz10             = _mm_sub_pd(iz1,jz0);
586             dx20             = _mm_sub_pd(ix2,jx0);
587             dy20             = _mm_sub_pd(iy2,jy0);
588             dz20             = _mm_sub_pd(iz2,jz0);
589             dx30             = _mm_sub_pd(ix3,jx0);
590             dy30             = _mm_sub_pd(iy3,jy0);
591             dz30             = _mm_sub_pd(iz3,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
595             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
596             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
597
598             rinv10           = gmx_mm_invsqrt_pd(rsq10);
599             rinv20           = gmx_mm_invsqrt_pd(rsq20);
600             rinv30           = gmx_mm_invsqrt_pd(rsq30);
601
602             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
603             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
604             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
605
606             /* Load parameters for j particles */
607             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
608
609             fjx0             = _mm_setzero_pd();
610             fjy0             = _mm_setzero_pd();
611             fjz0             = _mm_setzero_pd();
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq10             = _mm_mul_pd(iq1,jq0);
619
620             /* COULOMB ELECTROSTATICS */
621             velec            = _mm_mul_pd(qq10,rinv10);
622             felec            = _mm_mul_pd(velec,rinvsq10);
623
624             fscal            = felec;
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_pd(fscal,dx10);
628             ty               = _mm_mul_pd(fscal,dy10);
629             tz               = _mm_mul_pd(fscal,dz10);
630
631             /* Update vectorial force */
632             fix1             = _mm_add_pd(fix1,tx);
633             fiy1             = _mm_add_pd(fiy1,ty);
634             fiz1             = _mm_add_pd(fiz1,tz);
635
636             fjx0             = _mm_add_pd(fjx0,tx);
637             fjy0             = _mm_add_pd(fjy0,ty);
638             fjz0             = _mm_add_pd(fjz0,tz);
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq20             = _mm_mul_pd(iq2,jq0);
646
647             /* COULOMB ELECTROSTATICS */
648             velec            = _mm_mul_pd(qq20,rinv20);
649             felec            = _mm_mul_pd(velec,rinvsq20);
650
651             fscal            = felec;
652
653             /* Calculate temporary vectorial force */
654             tx               = _mm_mul_pd(fscal,dx20);
655             ty               = _mm_mul_pd(fscal,dy20);
656             tz               = _mm_mul_pd(fscal,dz20);
657
658             /* Update vectorial force */
659             fix2             = _mm_add_pd(fix2,tx);
660             fiy2             = _mm_add_pd(fiy2,ty);
661             fiz2             = _mm_add_pd(fiz2,tz);
662
663             fjx0             = _mm_add_pd(fjx0,tx);
664             fjy0             = _mm_add_pd(fjy0,ty);
665             fjz0             = _mm_add_pd(fjz0,tz);
666
667             /**************************
668              * CALCULATE INTERACTIONS *
669              **************************/
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq30             = _mm_mul_pd(iq3,jq0);
673
674             /* COULOMB ELECTROSTATICS */
675             velec            = _mm_mul_pd(qq30,rinv30);
676             felec            = _mm_mul_pd(velec,rinvsq30);
677
678             fscal            = felec;
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm_mul_pd(fscal,dx30);
682             ty               = _mm_mul_pd(fscal,dy30);
683             tz               = _mm_mul_pd(fscal,dz30);
684
685             /* Update vectorial force */
686             fix3             = _mm_add_pd(fix3,tx);
687             fiy3             = _mm_add_pd(fiy3,ty);
688             fiz3             = _mm_add_pd(fiz3,tz);
689
690             fjx0             = _mm_add_pd(fjx0,tx);
691             fjy0             = _mm_add_pd(fjy0,ty);
692             fjz0             = _mm_add_pd(fjz0,tz);
693
694             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
695
696             /* Inner loop uses 84 flops */
697         }
698
699         if(jidx<j_index_end)
700         {
701
702             jnrA             = jjnr[jidx];
703             j_coord_offsetA  = DIM*jnrA;
704
705             /* load j atom coordinates */
706             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
707                                               &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx10             = _mm_sub_pd(ix1,jx0);
711             dy10             = _mm_sub_pd(iy1,jy0);
712             dz10             = _mm_sub_pd(iz1,jz0);
713             dx20             = _mm_sub_pd(ix2,jx0);
714             dy20             = _mm_sub_pd(iy2,jy0);
715             dz20             = _mm_sub_pd(iz2,jz0);
716             dx30             = _mm_sub_pd(ix3,jx0);
717             dy30             = _mm_sub_pd(iy3,jy0);
718             dz30             = _mm_sub_pd(iz3,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
722             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
723             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
724
725             rinv10           = gmx_mm_invsqrt_pd(rsq10);
726             rinv20           = gmx_mm_invsqrt_pd(rsq20);
727             rinv30           = gmx_mm_invsqrt_pd(rsq30);
728
729             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
730             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
731             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
732
733             /* Load parameters for j particles */
734             jq0              = _mm_load_sd(charge+jnrA+0);
735
736             fjx0             = _mm_setzero_pd();
737             fjy0             = _mm_setzero_pd();
738             fjz0             = _mm_setzero_pd();
739
740             /**************************
741              * CALCULATE INTERACTIONS *
742              **************************/
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq10             = _mm_mul_pd(iq1,jq0);
746
747             /* COULOMB ELECTROSTATICS */
748             velec            = _mm_mul_pd(qq10,rinv10);
749             felec            = _mm_mul_pd(velec,rinvsq10);
750
751             fscal            = felec;
752
753             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
754
755             /* Calculate temporary vectorial force */
756             tx               = _mm_mul_pd(fscal,dx10);
757             ty               = _mm_mul_pd(fscal,dy10);
758             tz               = _mm_mul_pd(fscal,dz10);
759
760             /* Update vectorial force */
761             fix1             = _mm_add_pd(fix1,tx);
762             fiy1             = _mm_add_pd(fiy1,ty);
763             fiz1             = _mm_add_pd(fiz1,tz);
764
765             fjx0             = _mm_add_pd(fjx0,tx);
766             fjy0             = _mm_add_pd(fjy0,ty);
767             fjz0             = _mm_add_pd(fjz0,tz);
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             /* Compute parameters for interactions between i and j atoms */
774             qq20             = _mm_mul_pd(iq2,jq0);
775
776             /* COULOMB ELECTROSTATICS */
777             velec            = _mm_mul_pd(qq20,rinv20);
778             felec            = _mm_mul_pd(velec,rinvsq20);
779
780             fscal            = felec;
781
782             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm_mul_pd(fscal,dx20);
786             ty               = _mm_mul_pd(fscal,dy20);
787             tz               = _mm_mul_pd(fscal,dz20);
788
789             /* Update vectorial force */
790             fix2             = _mm_add_pd(fix2,tx);
791             fiy2             = _mm_add_pd(fiy2,ty);
792             fiz2             = _mm_add_pd(fiz2,tz);
793
794             fjx0             = _mm_add_pd(fjx0,tx);
795             fjy0             = _mm_add_pd(fjy0,ty);
796             fjz0             = _mm_add_pd(fjz0,tz);
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq30             = _mm_mul_pd(iq3,jq0);
804
805             /* COULOMB ELECTROSTATICS */
806             velec            = _mm_mul_pd(qq30,rinv30);
807             felec            = _mm_mul_pd(velec,rinvsq30);
808
809             fscal            = felec;
810
811             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
812
813             /* Calculate temporary vectorial force */
814             tx               = _mm_mul_pd(fscal,dx30);
815             ty               = _mm_mul_pd(fscal,dy30);
816             tz               = _mm_mul_pd(fscal,dz30);
817
818             /* Update vectorial force */
819             fix3             = _mm_add_pd(fix3,tx);
820             fiy3             = _mm_add_pd(fiy3,ty);
821             fiz3             = _mm_add_pd(fiz3,tz);
822
823             fjx0             = _mm_add_pd(fjx0,tx);
824             fjy0             = _mm_add_pd(fjy0,ty);
825             fjz0             = _mm_add_pd(fjz0,tz);
826
827             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
828
829             /* Inner loop uses 84 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
835                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
836
837         /* Increment number of inner iterations */
838         inneriter                  += j_index_end - j_index_start;
839
840         /* Outer loop uses 18 flops */
841     }
842
843     /* Increment number of outer iterations */
844     outeriter        += nri;
845
846     /* Update outer/inner flops */
847
848     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);
849 }