Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
128     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
129     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161         fix1             = _mm_setzero_pd();
162         fiy1             = _mm_setzero_pd();
163         fiz1             = _mm_setzero_pd();
164         fix2             = _mm_setzero_pd();
165         fiy2             = _mm_setzero_pd();
166         fiz2             = _mm_setzero_pd();
167         fix3             = _mm_setzero_pd();
168         fiy3             = _mm_setzero_pd();
169         fiz3             = _mm_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193             dx10             = _mm_sub_pd(ix1,jx0);
194             dy10             = _mm_sub_pd(iy1,jy0);
195             dz10             = _mm_sub_pd(iz1,jz0);
196             dx20             = _mm_sub_pd(ix2,jx0);
197             dy20             = _mm_sub_pd(iy2,jy0);
198             dz20             = _mm_sub_pd(iz2,jz0);
199             dx30             = _mm_sub_pd(ix3,jx0);
200             dy30             = _mm_sub_pd(iy3,jy0);
201             dz30             = _mm_sub_pd(iz3,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
207             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
208
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211             rinv30           = gmx_mm_invsqrt_pd(rsq30);
212
213             rinvsq00         = gmx_mm_inv_pd(rsq00);
214             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
215             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
216             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             /* Compute parameters for interactions between i and j atoms */
232             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* LENNARD-JONES DISPERSION/REPULSION */
236
237             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
238             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
239             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
240             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
241             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
245
246             fscal            = fvdw;
247
248             /* Calculate temporary vectorial force */
249             tx               = _mm_mul_pd(fscal,dx00);
250             ty               = _mm_mul_pd(fscal,dy00);
251             tz               = _mm_mul_pd(fscal,dz00);
252
253             /* Update vectorial force */
254             fix0             = _mm_add_pd(fix0,tx);
255             fiy0             = _mm_add_pd(fiy0,ty);
256             fiz0             = _mm_add_pd(fiz0,tz);
257
258             fjx0             = _mm_add_pd(fjx0,tx);
259             fjy0             = _mm_add_pd(fjy0,ty);
260             fjz0             = _mm_add_pd(fjz0,tz);
261
262             /**************************
263              * CALCULATE INTERACTIONS *
264              **************************/
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq10             = _mm_mul_pd(iq1,jq0);
268
269             /* COULOMB ELECTROSTATICS */
270             velec            = _mm_mul_pd(qq10,rinv10);
271             felec            = _mm_mul_pd(velec,rinvsq10);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velecsum         = _mm_add_pd(velecsum,velec);
275
276             fscal            = felec;
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx10);
280             ty               = _mm_mul_pd(fscal,dy10);
281             tz               = _mm_mul_pd(fscal,dz10);
282
283             /* Update vectorial force */
284             fix1             = _mm_add_pd(fix1,tx);
285             fiy1             = _mm_add_pd(fiy1,ty);
286             fiz1             = _mm_add_pd(fiz1,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq20             = _mm_mul_pd(iq2,jq0);
298
299             /* COULOMB ELECTROSTATICS */
300             velec            = _mm_mul_pd(qq20,rinv20);
301             felec            = _mm_mul_pd(velec,rinvsq20);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_pd(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_pd(fscal,dx20);
310             ty               = _mm_mul_pd(fscal,dy20);
311             tz               = _mm_mul_pd(fscal,dz20);
312
313             /* Update vectorial force */
314             fix2             = _mm_add_pd(fix2,tx);
315             fiy2             = _mm_add_pd(fiy2,ty);
316             fiz2             = _mm_add_pd(fiz2,tz);
317
318             fjx0             = _mm_add_pd(fjx0,tx);
319             fjy0             = _mm_add_pd(fjy0,ty);
320             fjz0             = _mm_add_pd(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq30             = _mm_mul_pd(iq3,jq0);
328
329             /* COULOMB ELECTROSTATICS */
330             velec            = _mm_mul_pd(qq30,rinv30);
331             felec            = _mm_mul_pd(velec,rinvsq30);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_pd(fscal,dx30);
340             ty               = _mm_mul_pd(fscal,dy30);
341             tz               = _mm_mul_pd(fscal,dz30);
342
343             /* Update vectorial force */
344             fix3             = _mm_add_pd(fix3,tx);
345             fiy3             = _mm_add_pd(fiy3,ty);
346             fiz3             = _mm_add_pd(fiz3,tz);
347
348             fjx0             = _mm_add_pd(fjx0,tx);
349             fjy0             = _mm_add_pd(fjy0,ty);
350             fjz0             = _mm_add_pd(fjz0,tz);
351
352             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
353
354             /* Inner loop uses 119 flops */
355         }
356
357         if(jidx<j_index_end)
358         {
359
360             jnrA             = jjnr[jidx];
361             j_coord_offsetA  = DIM*jnrA;
362
363             /* load j atom coordinates */
364             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
365                                               &jx0,&jy0,&jz0);
366
367             /* Calculate displacement vector */
368             dx00             = _mm_sub_pd(ix0,jx0);
369             dy00             = _mm_sub_pd(iy0,jy0);
370             dz00             = _mm_sub_pd(iz0,jz0);
371             dx10             = _mm_sub_pd(ix1,jx0);
372             dy10             = _mm_sub_pd(iy1,jy0);
373             dz10             = _mm_sub_pd(iz1,jz0);
374             dx20             = _mm_sub_pd(ix2,jx0);
375             dy20             = _mm_sub_pd(iy2,jy0);
376             dz20             = _mm_sub_pd(iz2,jz0);
377             dx30             = _mm_sub_pd(ix3,jx0);
378             dy30             = _mm_sub_pd(iy3,jy0);
379             dz30             = _mm_sub_pd(iz3,jz0);
380
381             /* Calculate squared distance and things based on it */
382             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
383             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
384             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
385             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
386
387             rinv10           = gmx_mm_invsqrt_pd(rsq10);
388             rinv20           = gmx_mm_invsqrt_pd(rsq20);
389             rinv30           = gmx_mm_invsqrt_pd(rsq30);
390
391             rinvsq00         = gmx_mm_inv_pd(rsq00);
392             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
393             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
394             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
395
396             /* Load parameters for j particles */
397             jq0              = _mm_load_sd(charge+jnrA+0);
398             vdwjidx0A        = 2*vdwtype[jnrA+0];
399
400             fjx0             = _mm_setzero_pd();
401             fjy0             = _mm_setzero_pd();
402             fjz0             = _mm_setzero_pd();
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             /* Compute parameters for interactions between i and j atoms */
409             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
410
411             /* LENNARD-JONES DISPERSION/REPULSION */
412
413             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
414             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
415             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
416             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
417             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
421             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
422
423             fscal            = fvdw;
424
425             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_pd(fscal,dx00);
429             ty               = _mm_mul_pd(fscal,dy00);
430             tz               = _mm_mul_pd(fscal,dz00);
431
432             /* Update vectorial force */
433             fix0             = _mm_add_pd(fix0,tx);
434             fiy0             = _mm_add_pd(fiy0,ty);
435             fiz0             = _mm_add_pd(fiz0,tz);
436
437             fjx0             = _mm_add_pd(fjx0,tx);
438             fjy0             = _mm_add_pd(fjy0,ty);
439             fjz0             = _mm_add_pd(fjz0,tz);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq10             = _mm_mul_pd(iq1,jq0);
447
448             /* COULOMB ELECTROSTATICS */
449             velec            = _mm_mul_pd(qq10,rinv10);
450             felec            = _mm_mul_pd(velec,rinvsq10);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
454             velecsum         = _mm_add_pd(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_pd(fscal,dx10);
462             ty               = _mm_mul_pd(fscal,dy10);
463             tz               = _mm_mul_pd(fscal,dz10);
464
465             /* Update vectorial force */
466             fix1             = _mm_add_pd(fix1,tx);
467             fiy1             = _mm_add_pd(fiy1,ty);
468             fiz1             = _mm_add_pd(fiz1,tz);
469
470             fjx0             = _mm_add_pd(fjx0,tx);
471             fjy0             = _mm_add_pd(fjy0,ty);
472             fjz0             = _mm_add_pd(fjz0,tz);
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             /* Compute parameters for interactions between i and j atoms */
479             qq20             = _mm_mul_pd(iq2,jq0);
480
481             /* COULOMB ELECTROSTATICS */
482             velec            = _mm_mul_pd(qq20,rinv20);
483             felec            = _mm_mul_pd(velec,rinvsq20);
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
487             velecsum         = _mm_add_pd(velecsum,velec);
488
489             fscal            = felec;
490
491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm_mul_pd(fscal,dx20);
495             ty               = _mm_mul_pd(fscal,dy20);
496             tz               = _mm_mul_pd(fscal,dz20);
497
498             /* Update vectorial force */
499             fix2             = _mm_add_pd(fix2,tx);
500             fiy2             = _mm_add_pd(fiy2,ty);
501             fiz2             = _mm_add_pd(fiz2,tz);
502
503             fjx0             = _mm_add_pd(fjx0,tx);
504             fjy0             = _mm_add_pd(fjy0,ty);
505             fjz0             = _mm_add_pd(fjz0,tz);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq30             = _mm_mul_pd(iq3,jq0);
513
514             /* COULOMB ELECTROSTATICS */
515             velec            = _mm_mul_pd(qq30,rinv30);
516             felec            = _mm_mul_pd(velec,rinvsq30);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_pd(fscal,dx30);
528             ty               = _mm_mul_pd(fscal,dy30);
529             tz               = _mm_mul_pd(fscal,dz30);
530
531             /* Update vectorial force */
532             fix3             = _mm_add_pd(fix3,tx);
533             fiy3             = _mm_add_pd(fiy3,ty);
534             fiz3             = _mm_add_pd(fiz3,tz);
535
536             fjx0             = _mm_add_pd(fjx0,tx);
537             fjy0             = _mm_add_pd(fjy0,ty);
538             fjz0             = _mm_add_pd(fjz0,tz);
539
540             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
541
542             /* Inner loop uses 119 flops */
543         }
544
545         /* End of innermost loop */
546
547         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
548                                               f+i_coord_offset,fshift+i_shift_offset);
549
550         ggid                        = gid[iidx];
551         /* Update potential energies */
552         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
553         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
554
555         /* Increment number of inner iterations */
556         inneriter                  += j_index_end - j_index_start;
557
558         /* Outer loop uses 26 flops */
559     }
560
561     /* Increment number of outer iterations */
562     outeriter        += nri;
563
564     /* Update outer/inner flops */
565
566     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*119);
567 }
568 /*
569  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
570  * Electrostatics interaction: Coulomb
571  * VdW interaction:            LennardJones
572  * Geometry:                   Water4-Particle
573  * Calculate force/pot:        Force
574  */
575 void
576 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
577                     (t_nblist                    * gmx_restrict       nlist,
578                      rvec                        * gmx_restrict          xx,
579                      rvec                        * gmx_restrict          ff,
580                      t_forcerec                  * gmx_restrict          fr,
581                      t_mdatoms                   * gmx_restrict     mdatoms,
582                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
583                      t_nrnb                      * gmx_restrict        nrnb)
584 {
585     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
586      * just 0 for non-waters.
587      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
588      * jnr indices corresponding to data put in the four positions in the SIMD register.
589      */
590     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
591     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
592     int              jnrA,jnrB;
593     int              j_coord_offsetA,j_coord_offsetB;
594     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
595     real             rcutoff_scalar;
596     real             *shiftvec,*fshift,*x,*f;
597     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
598     int              vdwioffset0;
599     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
600     int              vdwioffset1;
601     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
602     int              vdwioffset2;
603     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
604     int              vdwioffset3;
605     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
606     int              vdwjidx0A,vdwjidx0B;
607     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
608     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
609     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
610     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
611     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
612     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
613     real             *charge;
614     int              nvdwtype;
615     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
616     int              *vdwtype;
617     real             *vdwparam;
618     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
619     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
620     __m128d          dummy_mask,cutoff_mask;
621     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
622     __m128d          one     = _mm_set1_pd(1.0);
623     __m128d          two     = _mm_set1_pd(2.0);
624     x                = xx[0];
625     f                = ff[0];
626
627     nri              = nlist->nri;
628     iinr             = nlist->iinr;
629     jindex           = nlist->jindex;
630     jjnr             = nlist->jjnr;
631     shiftidx         = nlist->shift;
632     gid              = nlist->gid;
633     shiftvec         = fr->shift_vec[0];
634     fshift           = fr->fshift[0];
635     facel            = _mm_set1_pd(fr->epsfac);
636     charge           = mdatoms->chargeA;
637     nvdwtype         = fr->ntype;
638     vdwparam         = fr->nbfp;
639     vdwtype          = mdatoms->typeA;
640
641     /* Setup water-specific parameters */
642     inr              = nlist->iinr[0];
643     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
644     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
645     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
646     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
647
648     /* Avoid stupid compiler warnings */
649     jnrA = jnrB = 0;
650     j_coord_offsetA = 0;
651     j_coord_offsetB = 0;
652
653     outeriter        = 0;
654     inneriter        = 0;
655
656     /* Start outer loop over neighborlists */
657     for(iidx=0; iidx<nri; iidx++)
658     {
659         /* Load shift vector for this list */
660         i_shift_offset   = DIM*shiftidx[iidx];
661
662         /* Load limits for loop over neighbors */
663         j_index_start    = jindex[iidx];
664         j_index_end      = jindex[iidx+1];
665
666         /* Get outer coordinate index */
667         inr              = iinr[iidx];
668         i_coord_offset   = DIM*inr;
669
670         /* Load i particle coords and add shift vector */
671         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
672                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
673
674         fix0             = _mm_setzero_pd();
675         fiy0             = _mm_setzero_pd();
676         fiz0             = _mm_setzero_pd();
677         fix1             = _mm_setzero_pd();
678         fiy1             = _mm_setzero_pd();
679         fiz1             = _mm_setzero_pd();
680         fix2             = _mm_setzero_pd();
681         fiy2             = _mm_setzero_pd();
682         fiz2             = _mm_setzero_pd();
683         fix3             = _mm_setzero_pd();
684         fiy3             = _mm_setzero_pd();
685         fiz3             = _mm_setzero_pd();
686
687         /* Start inner kernel loop */
688         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
689         {
690
691             /* Get j neighbor index, and coordinate index */
692             jnrA             = jjnr[jidx];
693             jnrB             = jjnr[jidx+1];
694             j_coord_offsetA  = DIM*jnrA;
695             j_coord_offsetB  = DIM*jnrB;
696
697             /* load j atom coordinates */
698             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
699                                               &jx0,&jy0,&jz0);
700
701             /* Calculate displacement vector */
702             dx00             = _mm_sub_pd(ix0,jx0);
703             dy00             = _mm_sub_pd(iy0,jy0);
704             dz00             = _mm_sub_pd(iz0,jz0);
705             dx10             = _mm_sub_pd(ix1,jx0);
706             dy10             = _mm_sub_pd(iy1,jy0);
707             dz10             = _mm_sub_pd(iz1,jz0);
708             dx20             = _mm_sub_pd(ix2,jx0);
709             dy20             = _mm_sub_pd(iy2,jy0);
710             dz20             = _mm_sub_pd(iz2,jz0);
711             dx30             = _mm_sub_pd(ix3,jx0);
712             dy30             = _mm_sub_pd(iy3,jy0);
713             dz30             = _mm_sub_pd(iz3,jz0);
714
715             /* Calculate squared distance and things based on it */
716             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
717             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
718             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
719             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
720
721             rinv10           = gmx_mm_invsqrt_pd(rsq10);
722             rinv20           = gmx_mm_invsqrt_pd(rsq20);
723             rinv30           = gmx_mm_invsqrt_pd(rsq30);
724
725             rinvsq00         = gmx_mm_inv_pd(rsq00);
726             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
727             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
728             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
729
730             /* Load parameters for j particles */
731             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
732             vdwjidx0A        = 2*vdwtype[jnrA+0];
733             vdwjidx0B        = 2*vdwtype[jnrB+0];
734
735             fjx0             = _mm_setzero_pd();
736             fjy0             = _mm_setzero_pd();
737             fjz0             = _mm_setzero_pd();
738
739             /**************************
740              * CALCULATE INTERACTIONS *
741              **************************/
742
743             /* Compute parameters for interactions between i and j atoms */
744             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
745                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
746
747             /* LENNARD-JONES DISPERSION/REPULSION */
748
749             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
750             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
751
752             fscal            = fvdw;
753
754             /* Calculate temporary vectorial force */
755             tx               = _mm_mul_pd(fscal,dx00);
756             ty               = _mm_mul_pd(fscal,dy00);
757             tz               = _mm_mul_pd(fscal,dz00);
758
759             /* Update vectorial force */
760             fix0             = _mm_add_pd(fix0,tx);
761             fiy0             = _mm_add_pd(fiy0,ty);
762             fiz0             = _mm_add_pd(fiz0,tz);
763
764             fjx0             = _mm_add_pd(fjx0,tx);
765             fjy0             = _mm_add_pd(fjy0,ty);
766             fjz0             = _mm_add_pd(fjz0,tz);
767
768             /**************************
769              * CALCULATE INTERACTIONS *
770              **************************/
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq10             = _mm_mul_pd(iq1,jq0);
774
775             /* COULOMB ELECTROSTATICS */
776             velec            = _mm_mul_pd(qq10,rinv10);
777             felec            = _mm_mul_pd(velec,rinvsq10);
778
779             fscal            = felec;
780
781             /* Calculate temporary vectorial force */
782             tx               = _mm_mul_pd(fscal,dx10);
783             ty               = _mm_mul_pd(fscal,dy10);
784             tz               = _mm_mul_pd(fscal,dz10);
785
786             /* Update vectorial force */
787             fix1             = _mm_add_pd(fix1,tx);
788             fiy1             = _mm_add_pd(fiy1,ty);
789             fiz1             = _mm_add_pd(fiz1,tz);
790
791             fjx0             = _mm_add_pd(fjx0,tx);
792             fjy0             = _mm_add_pd(fjy0,ty);
793             fjz0             = _mm_add_pd(fjz0,tz);
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq20             = _mm_mul_pd(iq2,jq0);
801
802             /* COULOMB ELECTROSTATICS */
803             velec            = _mm_mul_pd(qq20,rinv20);
804             felec            = _mm_mul_pd(velec,rinvsq20);
805
806             fscal            = felec;
807
808             /* Calculate temporary vectorial force */
809             tx               = _mm_mul_pd(fscal,dx20);
810             ty               = _mm_mul_pd(fscal,dy20);
811             tz               = _mm_mul_pd(fscal,dz20);
812
813             /* Update vectorial force */
814             fix2             = _mm_add_pd(fix2,tx);
815             fiy2             = _mm_add_pd(fiy2,ty);
816             fiz2             = _mm_add_pd(fiz2,tz);
817
818             fjx0             = _mm_add_pd(fjx0,tx);
819             fjy0             = _mm_add_pd(fjy0,ty);
820             fjz0             = _mm_add_pd(fjz0,tz);
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             /* Compute parameters for interactions between i and j atoms */
827             qq30             = _mm_mul_pd(iq3,jq0);
828
829             /* COULOMB ELECTROSTATICS */
830             velec            = _mm_mul_pd(qq30,rinv30);
831             felec            = _mm_mul_pd(velec,rinvsq30);
832
833             fscal            = felec;
834
835             /* Calculate temporary vectorial force */
836             tx               = _mm_mul_pd(fscal,dx30);
837             ty               = _mm_mul_pd(fscal,dy30);
838             tz               = _mm_mul_pd(fscal,dz30);
839
840             /* Update vectorial force */
841             fix3             = _mm_add_pd(fix3,tx);
842             fiy3             = _mm_add_pd(fiy3,ty);
843             fiz3             = _mm_add_pd(fiz3,tz);
844
845             fjx0             = _mm_add_pd(fjx0,tx);
846             fjy0             = _mm_add_pd(fjy0,ty);
847             fjz0             = _mm_add_pd(fjz0,tz);
848
849             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
850
851             /* Inner loop uses 111 flops */
852         }
853
854         if(jidx<j_index_end)
855         {
856
857             jnrA             = jjnr[jidx];
858             j_coord_offsetA  = DIM*jnrA;
859
860             /* load j atom coordinates */
861             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
862                                               &jx0,&jy0,&jz0);
863
864             /* Calculate displacement vector */
865             dx00             = _mm_sub_pd(ix0,jx0);
866             dy00             = _mm_sub_pd(iy0,jy0);
867             dz00             = _mm_sub_pd(iz0,jz0);
868             dx10             = _mm_sub_pd(ix1,jx0);
869             dy10             = _mm_sub_pd(iy1,jy0);
870             dz10             = _mm_sub_pd(iz1,jz0);
871             dx20             = _mm_sub_pd(ix2,jx0);
872             dy20             = _mm_sub_pd(iy2,jy0);
873             dz20             = _mm_sub_pd(iz2,jz0);
874             dx30             = _mm_sub_pd(ix3,jx0);
875             dy30             = _mm_sub_pd(iy3,jy0);
876             dz30             = _mm_sub_pd(iz3,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
880             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
881             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
882             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
883
884             rinv10           = gmx_mm_invsqrt_pd(rsq10);
885             rinv20           = gmx_mm_invsqrt_pd(rsq20);
886             rinv30           = gmx_mm_invsqrt_pd(rsq30);
887
888             rinvsq00         = gmx_mm_inv_pd(rsq00);
889             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
890             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
891             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
892
893             /* Load parameters for j particles */
894             jq0              = _mm_load_sd(charge+jnrA+0);
895             vdwjidx0A        = 2*vdwtype[jnrA+0];
896
897             fjx0             = _mm_setzero_pd();
898             fjy0             = _mm_setzero_pd();
899             fjz0             = _mm_setzero_pd();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             /* Compute parameters for interactions between i and j atoms */
906             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
907
908             /* LENNARD-JONES DISPERSION/REPULSION */
909
910             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
911             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
912
913             fscal            = fvdw;
914
915             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
916
917             /* Calculate temporary vectorial force */
918             tx               = _mm_mul_pd(fscal,dx00);
919             ty               = _mm_mul_pd(fscal,dy00);
920             tz               = _mm_mul_pd(fscal,dz00);
921
922             /* Update vectorial force */
923             fix0             = _mm_add_pd(fix0,tx);
924             fiy0             = _mm_add_pd(fiy0,ty);
925             fiz0             = _mm_add_pd(fiz0,tz);
926
927             fjx0             = _mm_add_pd(fjx0,tx);
928             fjy0             = _mm_add_pd(fjy0,ty);
929             fjz0             = _mm_add_pd(fjz0,tz);
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq10             = _mm_mul_pd(iq1,jq0);
937
938             /* COULOMB ELECTROSTATICS */
939             velec            = _mm_mul_pd(qq10,rinv10);
940             felec            = _mm_mul_pd(velec,rinvsq10);
941
942             fscal            = felec;
943
944             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
945
946             /* Calculate temporary vectorial force */
947             tx               = _mm_mul_pd(fscal,dx10);
948             ty               = _mm_mul_pd(fscal,dy10);
949             tz               = _mm_mul_pd(fscal,dz10);
950
951             /* Update vectorial force */
952             fix1             = _mm_add_pd(fix1,tx);
953             fiy1             = _mm_add_pd(fiy1,ty);
954             fiz1             = _mm_add_pd(fiz1,tz);
955
956             fjx0             = _mm_add_pd(fjx0,tx);
957             fjy0             = _mm_add_pd(fjy0,ty);
958             fjz0             = _mm_add_pd(fjz0,tz);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm_mul_pd(iq2,jq0);
966
967             /* COULOMB ELECTROSTATICS */
968             velec            = _mm_mul_pd(qq20,rinv20);
969             felec            = _mm_mul_pd(velec,rinvsq20);
970
971             fscal            = felec;
972
973             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm_mul_pd(fscal,dx20);
977             ty               = _mm_mul_pd(fscal,dy20);
978             tz               = _mm_mul_pd(fscal,dz20);
979
980             /* Update vectorial force */
981             fix2             = _mm_add_pd(fix2,tx);
982             fiy2             = _mm_add_pd(fiy2,ty);
983             fiz2             = _mm_add_pd(fiz2,tz);
984
985             fjx0             = _mm_add_pd(fjx0,tx);
986             fjy0             = _mm_add_pd(fjy0,ty);
987             fjz0             = _mm_add_pd(fjz0,tz);
988
989             /**************************
990              * CALCULATE INTERACTIONS *
991              **************************/
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq30             = _mm_mul_pd(iq3,jq0);
995
996             /* COULOMB ELECTROSTATICS */
997             velec            = _mm_mul_pd(qq30,rinv30);
998             felec            = _mm_mul_pd(velec,rinvsq30);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_pd(fscal,dx30);
1006             ty               = _mm_mul_pd(fscal,dy30);
1007             tz               = _mm_mul_pd(fscal,dz30);
1008
1009             /* Update vectorial force */
1010             fix3             = _mm_add_pd(fix3,tx);
1011             fiy3             = _mm_add_pd(fiy3,ty);
1012             fiz3             = _mm_add_pd(fiz3,tz);
1013
1014             fjx0             = _mm_add_pd(fjx0,tx);
1015             fjy0             = _mm_add_pd(fjy0,ty);
1016             fjz0             = _mm_add_pd(fjz0,tz);
1017
1018             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1019
1020             /* Inner loop uses 111 flops */
1021         }
1022
1023         /* End of innermost loop */
1024
1025         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1026                                               f+i_coord_offset,fshift+i_shift_offset);
1027
1028         /* Increment number of inner iterations */
1029         inneriter                  += j_index_end - j_index_start;
1030
1031         /* Outer loop uses 24 flops */
1032     }
1033
1034     /* Increment number of outer iterations */
1035     outeriter        += nri;
1036
1037     /* Update outer/inner flops */
1038
1039     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1040 }