332e47b8dc55d9868f5370110f13af832f5f9b41
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159         fix1             = _mm_setzero_pd();
160         fiy1             = _mm_setzero_pd();
161         fiz1             = _mm_setzero_pd();
162         fix2             = _mm_setzero_pd();
163         fiy2             = _mm_setzero_pd();
164         fiz2             = _mm_setzero_pd();
165         fix3             = _mm_setzero_pd();
166         fiy3             = _mm_setzero_pd();
167         fiz3             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197             dx30             = _mm_sub_pd(ix3,jx0);
198             dy30             = _mm_sub_pd(iy3,jy0);
199             dz30             = _mm_sub_pd(iz3,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
206
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209             rinv30           = gmx_mm_invsqrt_pd(rsq30);
210
211             rinvsq00         = gmx_mm_inv_pd(rsq00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220
221             fjx0             = _mm_setzero_pd();
222             fjy0             = _mm_setzero_pd();
223             fjz0             = _mm_setzero_pd();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             /* Compute parameters for interactions between i and j atoms */
230             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
237             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
238             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
239             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
243
244             fscal            = fvdw;
245
246             /* Calculate temporary vectorial force */
247             tx               = _mm_mul_pd(fscal,dx00);
248             ty               = _mm_mul_pd(fscal,dy00);
249             tz               = _mm_mul_pd(fscal,dz00);
250
251             /* Update vectorial force */
252             fix0             = _mm_add_pd(fix0,tx);
253             fiy0             = _mm_add_pd(fiy0,ty);
254             fiz0             = _mm_add_pd(fiz0,tz);
255
256             fjx0             = _mm_add_pd(fjx0,tx);
257             fjy0             = _mm_add_pd(fjy0,ty);
258             fjz0             = _mm_add_pd(fjz0,tz);
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq10             = _mm_mul_pd(iq1,jq0);
266
267             /* COULOMB ELECTROSTATICS */
268             velec            = _mm_mul_pd(qq10,rinv10);
269             felec            = _mm_mul_pd(velec,rinvsq10);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velecsum         = _mm_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_pd(fscal,dx10);
278             ty               = _mm_mul_pd(fscal,dy10);
279             tz               = _mm_mul_pd(fscal,dz10);
280
281             /* Update vectorial force */
282             fix1             = _mm_add_pd(fix1,tx);
283             fiy1             = _mm_add_pd(fiy1,ty);
284             fiz1             = _mm_add_pd(fiz1,tz);
285
286             fjx0             = _mm_add_pd(fjx0,tx);
287             fjy0             = _mm_add_pd(fjy0,ty);
288             fjz0             = _mm_add_pd(fjz0,tz);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq20             = _mm_mul_pd(iq2,jq0);
296
297             /* COULOMB ELECTROSTATICS */
298             velec            = _mm_mul_pd(qq20,rinv20);
299             felec            = _mm_mul_pd(velec,rinvsq20);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velecsum         = _mm_add_pd(velecsum,velec);
303
304             fscal            = felec;
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_pd(fscal,dx20);
308             ty               = _mm_mul_pd(fscal,dy20);
309             tz               = _mm_mul_pd(fscal,dz20);
310
311             /* Update vectorial force */
312             fix2             = _mm_add_pd(fix2,tx);
313             fiy2             = _mm_add_pd(fiy2,ty);
314             fiz2             = _mm_add_pd(fiz2,tz);
315
316             fjx0             = _mm_add_pd(fjx0,tx);
317             fjy0             = _mm_add_pd(fjy0,ty);
318             fjz0             = _mm_add_pd(fjz0,tz);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq30             = _mm_mul_pd(iq3,jq0);
326
327             /* COULOMB ELECTROSTATICS */
328             velec            = _mm_mul_pd(qq30,rinv30);
329             felec            = _mm_mul_pd(velec,rinvsq30);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm_add_pd(velecsum,velec);
333
334             fscal            = felec;
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm_mul_pd(fscal,dx30);
338             ty               = _mm_mul_pd(fscal,dy30);
339             tz               = _mm_mul_pd(fscal,dz30);
340
341             /* Update vectorial force */
342             fix3             = _mm_add_pd(fix3,tx);
343             fiy3             = _mm_add_pd(fiy3,ty);
344             fiz3             = _mm_add_pd(fiz3,tz);
345
346             fjx0             = _mm_add_pd(fjx0,tx);
347             fjy0             = _mm_add_pd(fjy0,ty);
348             fjz0             = _mm_add_pd(fjz0,tz);
349
350             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
351
352             /* Inner loop uses 119 flops */
353         }
354
355         if(jidx<j_index_end)
356         {
357
358             jnrA             = jjnr[jidx];
359             j_coord_offsetA  = DIM*jnrA;
360
361             /* load j atom coordinates */
362             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
363                                               &jx0,&jy0,&jz0);
364
365             /* Calculate displacement vector */
366             dx00             = _mm_sub_pd(ix0,jx0);
367             dy00             = _mm_sub_pd(iy0,jy0);
368             dz00             = _mm_sub_pd(iz0,jz0);
369             dx10             = _mm_sub_pd(ix1,jx0);
370             dy10             = _mm_sub_pd(iy1,jy0);
371             dz10             = _mm_sub_pd(iz1,jz0);
372             dx20             = _mm_sub_pd(ix2,jx0);
373             dy20             = _mm_sub_pd(iy2,jy0);
374             dz20             = _mm_sub_pd(iz2,jz0);
375             dx30             = _mm_sub_pd(ix3,jx0);
376             dy30             = _mm_sub_pd(iy3,jy0);
377             dz30             = _mm_sub_pd(iz3,jz0);
378
379             /* Calculate squared distance and things based on it */
380             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
381             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
382             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
383             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
384
385             rinv10           = gmx_mm_invsqrt_pd(rsq10);
386             rinv20           = gmx_mm_invsqrt_pd(rsq20);
387             rinv30           = gmx_mm_invsqrt_pd(rsq30);
388
389             rinvsq00         = gmx_mm_inv_pd(rsq00);
390             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
391             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
392             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
393
394             /* Load parameters for j particles */
395             jq0              = _mm_load_sd(charge+jnrA+0);
396             vdwjidx0A        = 2*vdwtype[jnrA+0];
397
398             fjx0             = _mm_setzero_pd();
399             fjy0             = _mm_setzero_pd();
400             fjz0             = _mm_setzero_pd();
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             /* Compute parameters for interactions between i and j atoms */
407             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
408
409             /* LENNARD-JONES DISPERSION/REPULSION */
410
411             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
412             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
413             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
414             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
415             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
419             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
420
421             fscal            = fvdw;
422
423             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm_mul_pd(fscal,dx00);
427             ty               = _mm_mul_pd(fscal,dy00);
428             tz               = _mm_mul_pd(fscal,dz00);
429
430             /* Update vectorial force */
431             fix0             = _mm_add_pd(fix0,tx);
432             fiy0             = _mm_add_pd(fiy0,ty);
433             fiz0             = _mm_add_pd(fiz0,tz);
434
435             fjx0             = _mm_add_pd(fjx0,tx);
436             fjy0             = _mm_add_pd(fjy0,ty);
437             fjz0             = _mm_add_pd(fjz0,tz);
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq10             = _mm_mul_pd(iq1,jq0);
445
446             /* COULOMB ELECTROSTATICS */
447             velec            = _mm_mul_pd(qq10,rinv10);
448             felec            = _mm_mul_pd(velec,rinvsq10);
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
452             velecsum         = _mm_add_pd(velecsum,velec);
453
454             fscal            = felec;
455
456             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
457
458             /* Calculate temporary vectorial force */
459             tx               = _mm_mul_pd(fscal,dx10);
460             ty               = _mm_mul_pd(fscal,dy10);
461             tz               = _mm_mul_pd(fscal,dz10);
462
463             /* Update vectorial force */
464             fix1             = _mm_add_pd(fix1,tx);
465             fiy1             = _mm_add_pd(fiy1,ty);
466             fiz1             = _mm_add_pd(fiz1,tz);
467
468             fjx0             = _mm_add_pd(fjx0,tx);
469             fjy0             = _mm_add_pd(fjy0,ty);
470             fjz0             = _mm_add_pd(fjz0,tz);
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             /* Compute parameters for interactions between i and j atoms */
477             qq20             = _mm_mul_pd(iq2,jq0);
478
479             /* COULOMB ELECTROSTATICS */
480             velec            = _mm_mul_pd(qq20,rinv20);
481             felec            = _mm_mul_pd(velec,rinvsq20);
482
483             /* Update potential sum for this i atom from the interaction with this j atom. */
484             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
485             velecsum         = _mm_add_pd(velecsum,velec);
486
487             fscal            = felec;
488
489             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm_mul_pd(fscal,dx20);
493             ty               = _mm_mul_pd(fscal,dy20);
494             tz               = _mm_mul_pd(fscal,dz20);
495
496             /* Update vectorial force */
497             fix2             = _mm_add_pd(fix2,tx);
498             fiy2             = _mm_add_pd(fiy2,ty);
499             fiz2             = _mm_add_pd(fiz2,tz);
500
501             fjx0             = _mm_add_pd(fjx0,tx);
502             fjy0             = _mm_add_pd(fjy0,ty);
503             fjz0             = _mm_add_pd(fjz0,tz);
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq30             = _mm_mul_pd(iq3,jq0);
511
512             /* COULOMB ELECTROSTATICS */
513             velec            = _mm_mul_pd(qq30,rinv30);
514             felec            = _mm_mul_pd(velec,rinvsq30);
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
518             velecsum         = _mm_add_pd(velecsum,velec);
519
520             fscal            = felec;
521
522             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm_mul_pd(fscal,dx30);
526             ty               = _mm_mul_pd(fscal,dy30);
527             tz               = _mm_mul_pd(fscal,dz30);
528
529             /* Update vectorial force */
530             fix3             = _mm_add_pd(fix3,tx);
531             fiy3             = _mm_add_pd(fiy3,ty);
532             fiz3             = _mm_add_pd(fiz3,tz);
533
534             fjx0             = _mm_add_pd(fjx0,tx);
535             fjy0             = _mm_add_pd(fjy0,ty);
536             fjz0             = _mm_add_pd(fjz0,tz);
537
538             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
539
540             /* Inner loop uses 119 flops */
541         }
542
543         /* End of innermost loop */
544
545         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
546                                               f+i_coord_offset,fshift+i_shift_offset);
547
548         ggid                        = gid[iidx];
549         /* Update potential energies */
550         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
551         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
552
553         /* Increment number of inner iterations */
554         inneriter                  += j_index_end - j_index_start;
555
556         /* Outer loop uses 26 flops */
557     }
558
559     /* Increment number of outer iterations */
560     outeriter        += nri;
561
562     /* Update outer/inner flops */
563
564     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*119);
565 }
566 /*
567  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
568  * Electrostatics interaction: Coulomb
569  * VdW interaction:            LennardJones
570  * Geometry:                   Water4-Particle
571  * Calculate force/pot:        Force
572  */
573 void
574 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_double
575                     (t_nblist                    * gmx_restrict       nlist,
576                      rvec                        * gmx_restrict          xx,
577                      rvec                        * gmx_restrict          ff,
578                      t_forcerec                  * gmx_restrict          fr,
579                      t_mdatoms                   * gmx_restrict     mdatoms,
580                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
581                      t_nrnb                      * gmx_restrict        nrnb)
582 {
583     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
584      * just 0 for non-waters.
585      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
586      * jnr indices corresponding to data put in the four positions in the SIMD register.
587      */
588     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
589     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
590     int              jnrA,jnrB;
591     int              j_coord_offsetA,j_coord_offsetB;
592     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
593     real             rcutoff_scalar;
594     real             *shiftvec,*fshift,*x,*f;
595     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
596     int              vdwioffset0;
597     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
598     int              vdwioffset1;
599     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
600     int              vdwioffset2;
601     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
602     int              vdwioffset3;
603     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
604     int              vdwjidx0A,vdwjidx0B;
605     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
606     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
607     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
608     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
609     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
610     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
611     real             *charge;
612     int              nvdwtype;
613     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
614     int              *vdwtype;
615     real             *vdwparam;
616     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
617     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
618     __m128d          dummy_mask,cutoff_mask;
619     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
620     __m128d          one     = _mm_set1_pd(1.0);
621     __m128d          two     = _mm_set1_pd(2.0);
622     x                = xx[0];
623     f                = ff[0];
624
625     nri              = nlist->nri;
626     iinr             = nlist->iinr;
627     jindex           = nlist->jindex;
628     jjnr             = nlist->jjnr;
629     shiftidx         = nlist->shift;
630     gid              = nlist->gid;
631     shiftvec         = fr->shift_vec[0];
632     fshift           = fr->fshift[0];
633     facel            = _mm_set1_pd(fr->epsfac);
634     charge           = mdatoms->chargeA;
635     nvdwtype         = fr->ntype;
636     vdwparam         = fr->nbfp;
637     vdwtype          = mdatoms->typeA;
638
639     /* Setup water-specific parameters */
640     inr              = nlist->iinr[0];
641     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
642     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
643     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
644     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
645
646     /* Avoid stupid compiler warnings */
647     jnrA = jnrB = 0;
648     j_coord_offsetA = 0;
649     j_coord_offsetB = 0;
650
651     outeriter        = 0;
652     inneriter        = 0;
653
654     /* Start outer loop over neighborlists */
655     for(iidx=0; iidx<nri; iidx++)
656     {
657         /* Load shift vector for this list */
658         i_shift_offset   = DIM*shiftidx[iidx];
659
660         /* Load limits for loop over neighbors */
661         j_index_start    = jindex[iidx];
662         j_index_end      = jindex[iidx+1];
663
664         /* Get outer coordinate index */
665         inr              = iinr[iidx];
666         i_coord_offset   = DIM*inr;
667
668         /* Load i particle coords and add shift vector */
669         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
670                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
671
672         fix0             = _mm_setzero_pd();
673         fiy0             = _mm_setzero_pd();
674         fiz0             = _mm_setzero_pd();
675         fix1             = _mm_setzero_pd();
676         fiy1             = _mm_setzero_pd();
677         fiz1             = _mm_setzero_pd();
678         fix2             = _mm_setzero_pd();
679         fiy2             = _mm_setzero_pd();
680         fiz2             = _mm_setzero_pd();
681         fix3             = _mm_setzero_pd();
682         fiy3             = _mm_setzero_pd();
683         fiz3             = _mm_setzero_pd();
684
685         /* Start inner kernel loop */
686         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
687         {
688
689             /* Get j neighbor index, and coordinate index */
690             jnrA             = jjnr[jidx];
691             jnrB             = jjnr[jidx+1];
692             j_coord_offsetA  = DIM*jnrA;
693             j_coord_offsetB  = DIM*jnrB;
694
695             /* load j atom coordinates */
696             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
697                                               &jx0,&jy0,&jz0);
698
699             /* Calculate displacement vector */
700             dx00             = _mm_sub_pd(ix0,jx0);
701             dy00             = _mm_sub_pd(iy0,jy0);
702             dz00             = _mm_sub_pd(iz0,jz0);
703             dx10             = _mm_sub_pd(ix1,jx0);
704             dy10             = _mm_sub_pd(iy1,jy0);
705             dz10             = _mm_sub_pd(iz1,jz0);
706             dx20             = _mm_sub_pd(ix2,jx0);
707             dy20             = _mm_sub_pd(iy2,jy0);
708             dz20             = _mm_sub_pd(iz2,jz0);
709             dx30             = _mm_sub_pd(ix3,jx0);
710             dy30             = _mm_sub_pd(iy3,jy0);
711             dz30             = _mm_sub_pd(iz3,jz0);
712
713             /* Calculate squared distance and things based on it */
714             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
715             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
716             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
717             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
718
719             rinv10           = gmx_mm_invsqrt_pd(rsq10);
720             rinv20           = gmx_mm_invsqrt_pd(rsq20);
721             rinv30           = gmx_mm_invsqrt_pd(rsq30);
722
723             rinvsq00         = gmx_mm_inv_pd(rsq00);
724             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
725             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
726             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
727
728             /* Load parameters for j particles */
729             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
730             vdwjidx0A        = 2*vdwtype[jnrA+0];
731             vdwjidx0B        = 2*vdwtype[jnrB+0];
732
733             fjx0             = _mm_setzero_pd();
734             fjy0             = _mm_setzero_pd();
735             fjz0             = _mm_setzero_pd();
736
737             /**************************
738              * CALCULATE INTERACTIONS *
739              **************************/
740
741             /* Compute parameters for interactions between i and j atoms */
742             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
743                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
744
745             /* LENNARD-JONES DISPERSION/REPULSION */
746
747             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
748             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
749
750             fscal            = fvdw;
751
752             /* Calculate temporary vectorial force */
753             tx               = _mm_mul_pd(fscal,dx00);
754             ty               = _mm_mul_pd(fscal,dy00);
755             tz               = _mm_mul_pd(fscal,dz00);
756
757             /* Update vectorial force */
758             fix0             = _mm_add_pd(fix0,tx);
759             fiy0             = _mm_add_pd(fiy0,ty);
760             fiz0             = _mm_add_pd(fiz0,tz);
761
762             fjx0             = _mm_add_pd(fjx0,tx);
763             fjy0             = _mm_add_pd(fjy0,ty);
764             fjz0             = _mm_add_pd(fjz0,tz);
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq10             = _mm_mul_pd(iq1,jq0);
772
773             /* COULOMB ELECTROSTATICS */
774             velec            = _mm_mul_pd(qq10,rinv10);
775             felec            = _mm_mul_pd(velec,rinvsq10);
776
777             fscal            = felec;
778
779             /* Calculate temporary vectorial force */
780             tx               = _mm_mul_pd(fscal,dx10);
781             ty               = _mm_mul_pd(fscal,dy10);
782             tz               = _mm_mul_pd(fscal,dz10);
783
784             /* Update vectorial force */
785             fix1             = _mm_add_pd(fix1,tx);
786             fiy1             = _mm_add_pd(fiy1,ty);
787             fiz1             = _mm_add_pd(fiz1,tz);
788
789             fjx0             = _mm_add_pd(fjx0,tx);
790             fjy0             = _mm_add_pd(fjy0,ty);
791             fjz0             = _mm_add_pd(fjz0,tz);
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq20             = _mm_mul_pd(iq2,jq0);
799
800             /* COULOMB ELECTROSTATICS */
801             velec            = _mm_mul_pd(qq20,rinv20);
802             felec            = _mm_mul_pd(velec,rinvsq20);
803
804             fscal            = felec;
805
806             /* Calculate temporary vectorial force */
807             tx               = _mm_mul_pd(fscal,dx20);
808             ty               = _mm_mul_pd(fscal,dy20);
809             tz               = _mm_mul_pd(fscal,dz20);
810
811             /* Update vectorial force */
812             fix2             = _mm_add_pd(fix2,tx);
813             fiy2             = _mm_add_pd(fiy2,ty);
814             fiz2             = _mm_add_pd(fiz2,tz);
815
816             fjx0             = _mm_add_pd(fjx0,tx);
817             fjy0             = _mm_add_pd(fjy0,ty);
818             fjz0             = _mm_add_pd(fjz0,tz);
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq30             = _mm_mul_pd(iq3,jq0);
826
827             /* COULOMB ELECTROSTATICS */
828             velec            = _mm_mul_pd(qq30,rinv30);
829             felec            = _mm_mul_pd(velec,rinvsq30);
830
831             fscal            = felec;
832
833             /* Calculate temporary vectorial force */
834             tx               = _mm_mul_pd(fscal,dx30);
835             ty               = _mm_mul_pd(fscal,dy30);
836             tz               = _mm_mul_pd(fscal,dz30);
837
838             /* Update vectorial force */
839             fix3             = _mm_add_pd(fix3,tx);
840             fiy3             = _mm_add_pd(fiy3,ty);
841             fiz3             = _mm_add_pd(fiz3,tz);
842
843             fjx0             = _mm_add_pd(fjx0,tx);
844             fjy0             = _mm_add_pd(fjy0,ty);
845             fjz0             = _mm_add_pd(fjz0,tz);
846
847             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
848
849             /* Inner loop uses 111 flops */
850         }
851
852         if(jidx<j_index_end)
853         {
854
855             jnrA             = jjnr[jidx];
856             j_coord_offsetA  = DIM*jnrA;
857
858             /* load j atom coordinates */
859             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
860                                               &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx00             = _mm_sub_pd(ix0,jx0);
864             dy00             = _mm_sub_pd(iy0,jy0);
865             dz00             = _mm_sub_pd(iz0,jz0);
866             dx10             = _mm_sub_pd(ix1,jx0);
867             dy10             = _mm_sub_pd(iy1,jy0);
868             dz10             = _mm_sub_pd(iz1,jz0);
869             dx20             = _mm_sub_pd(ix2,jx0);
870             dy20             = _mm_sub_pd(iy2,jy0);
871             dz20             = _mm_sub_pd(iz2,jz0);
872             dx30             = _mm_sub_pd(ix3,jx0);
873             dy30             = _mm_sub_pd(iy3,jy0);
874             dz30             = _mm_sub_pd(iz3,jz0);
875
876             /* Calculate squared distance and things based on it */
877             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
878             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
879             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
880             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
881
882             rinv10           = gmx_mm_invsqrt_pd(rsq10);
883             rinv20           = gmx_mm_invsqrt_pd(rsq20);
884             rinv30           = gmx_mm_invsqrt_pd(rsq30);
885
886             rinvsq00         = gmx_mm_inv_pd(rsq00);
887             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
888             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
889             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
890
891             /* Load parameters for j particles */
892             jq0              = _mm_load_sd(charge+jnrA+0);
893             vdwjidx0A        = 2*vdwtype[jnrA+0];
894
895             fjx0             = _mm_setzero_pd();
896             fjy0             = _mm_setzero_pd();
897             fjz0             = _mm_setzero_pd();
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             /* Compute parameters for interactions between i and j atoms */
904             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
905
906             /* LENNARD-JONES DISPERSION/REPULSION */
907
908             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
909             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
910
911             fscal            = fvdw;
912
913             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm_mul_pd(fscal,dx00);
917             ty               = _mm_mul_pd(fscal,dy00);
918             tz               = _mm_mul_pd(fscal,dz00);
919
920             /* Update vectorial force */
921             fix0             = _mm_add_pd(fix0,tx);
922             fiy0             = _mm_add_pd(fiy0,ty);
923             fiz0             = _mm_add_pd(fiz0,tz);
924
925             fjx0             = _mm_add_pd(fjx0,tx);
926             fjy0             = _mm_add_pd(fjy0,ty);
927             fjz0             = _mm_add_pd(fjz0,tz);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq10             = _mm_mul_pd(iq1,jq0);
935
936             /* COULOMB ELECTROSTATICS */
937             velec            = _mm_mul_pd(qq10,rinv10);
938             felec            = _mm_mul_pd(velec,rinvsq10);
939
940             fscal            = felec;
941
942             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
943
944             /* Calculate temporary vectorial force */
945             tx               = _mm_mul_pd(fscal,dx10);
946             ty               = _mm_mul_pd(fscal,dy10);
947             tz               = _mm_mul_pd(fscal,dz10);
948
949             /* Update vectorial force */
950             fix1             = _mm_add_pd(fix1,tx);
951             fiy1             = _mm_add_pd(fiy1,ty);
952             fiz1             = _mm_add_pd(fiz1,tz);
953
954             fjx0             = _mm_add_pd(fjx0,tx);
955             fjy0             = _mm_add_pd(fjy0,ty);
956             fjz0             = _mm_add_pd(fjz0,tz);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq20             = _mm_mul_pd(iq2,jq0);
964
965             /* COULOMB ELECTROSTATICS */
966             velec            = _mm_mul_pd(qq20,rinv20);
967             felec            = _mm_mul_pd(velec,rinvsq20);
968
969             fscal            = felec;
970
971             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
972
973             /* Calculate temporary vectorial force */
974             tx               = _mm_mul_pd(fscal,dx20);
975             ty               = _mm_mul_pd(fscal,dy20);
976             tz               = _mm_mul_pd(fscal,dz20);
977
978             /* Update vectorial force */
979             fix2             = _mm_add_pd(fix2,tx);
980             fiy2             = _mm_add_pd(fiy2,ty);
981             fiz2             = _mm_add_pd(fiz2,tz);
982
983             fjx0             = _mm_add_pd(fjx0,tx);
984             fjy0             = _mm_add_pd(fjy0,ty);
985             fjz0             = _mm_add_pd(fjz0,tz);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq30             = _mm_mul_pd(iq3,jq0);
993
994             /* COULOMB ELECTROSTATICS */
995             velec            = _mm_mul_pd(qq30,rinv30);
996             felec            = _mm_mul_pd(velec,rinvsq30);
997
998             fscal            = felec;
999
1000             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1001
1002             /* Calculate temporary vectorial force */
1003             tx               = _mm_mul_pd(fscal,dx30);
1004             ty               = _mm_mul_pd(fscal,dy30);
1005             tz               = _mm_mul_pd(fscal,dz30);
1006
1007             /* Update vectorial force */
1008             fix3             = _mm_add_pd(fix3,tx);
1009             fiy3             = _mm_add_pd(fiy3,ty);
1010             fiz3             = _mm_add_pd(fiz3,tz);
1011
1012             fjx0             = _mm_add_pd(fjx0,tx);
1013             fjy0             = _mm_add_pd(fjy0,ty);
1014             fjz0             = _mm_add_pd(fjz0,tz);
1015
1016             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1017
1018             /* Inner loop uses 111 flops */
1019         }
1020
1021         /* End of innermost loop */
1022
1023         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1024                                               f+i_coord_offset,fshift+i_shift_offset);
1025
1026         /* Increment number of inner iterations */
1027         inneriter                  += j_index_end - j_index_start;
1028
1029         /* Outer loop uses 24 flops */
1030     }
1031
1032     /* Increment number of outer iterations */
1033     outeriter        += nri;
1034
1035     /* Update outer/inner flops */
1036
1037     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1038 }