Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     nvdwtype         = fr->ntype;
97     vdwparam         = fr->nbfp;
98     vdwtype          = mdatoms->typeA;
99
100     /* Avoid stupid compiler warnings */
101     jnrA = jnrB = 0;
102     j_coord_offsetA = 0;
103     j_coord_offsetB = 0;
104
105     outeriter        = 0;
106     inneriter        = 0;
107
108     /* Start outer loop over neighborlists */
109     for(iidx=0; iidx<nri; iidx++)
110     {
111         /* Load shift vector for this list */
112         i_shift_offset   = DIM*shiftidx[iidx];
113
114         /* Load limits for loop over neighbors */
115         j_index_start    = jindex[iidx];
116         j_index_end      = jindex[iidx+1];
117
118         /* Get outer coordinate index */
119         inr              = iinr[iidx];
120         i_coord_offset   = DIM*inr;
121
122         /* Load i particle coords and add shift vector */
123         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
124
125         fix0             = _mm_setzero_pd();
126         fiy0             = _mm_setzero_pd();
127         fiz0             = _mm_setzero_pd();
128
129         /* Load parameters for i particles */
130         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
131         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133         /* Reset potential sums */
134         velecsum         = _mm_setzero_pd();
135         vvdwsum          = _mm_setzero_pd();
136
137         /* Start inner kernel loop */
138         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
139         {
140
141             /* Get j neighbor index, and coordinate index */
142             jnrA             = jjnr[jidx];
143             jnrB             = jjnr[jidx+1];
144             j_coord_offsetA  = DIM*jnrA;
145             j_coord_offsetB  = DIM*jnrB;
146             
147             /* load j atom coordinates */
148             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
149                                               &jx0,&jy0,&jz0);
150             
151             /* Calculate displacement vector */
152             dx00             = _mm_sub_pd(ix0,jx0);
153             dy00             = _mm_sub_pd(iy0,jy0);
154             dz00             = _mm_sub_pd(iz0,jz0);
155
156             /* Calculate squared distance and things based on it */
157             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
158
159             rinv00           = gmx_mm_invsqrt_pd(rsq00);
160
161             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
162
163             /* Load parameters for j particles */
164             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
165             vdwjidx0A        = 2*vdwtype[jnrA+0];
166             vdwjidx0B        = 2*vdwtype[jnrB+0];
167
168             /**************************
169              * CALCULATE INTERACTIONS *
170              **************************/
171
172             /* Compute parameters for interactions between i and j atoms */
173             qq00             = _mm_mul_pd(iq0,jq0);
174             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
175                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
176
177             /* COULOMB ELECTROSTATICS */
178             velec            = _mm_mul_pd(qq00,rinv00);
179             felec            = _mm_mul_pd(velec,rinvsq00);
180
181             /* LENNARD-JONES DISPERSION/REPULSION */
182
183             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
184             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
185             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
186             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
187             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
188
189             /* Update potential sum for this i atom from the interaction with this j atom. */
190             velecsum         = _mm_add_pd(velecsum,velec);
191             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
192
193             fscal            = _mm_add_pd(felec,fvdw);
194
195             /* Calculate temporary vectorial force */
196             tx               = _mm_mul_pd(fscal,dx00);
197             ty               = _mm_mul_pd(fscal,dy00);
198             tz               = _mm_mul_pd(fscal,dz00);
199
200             /* Update vectorial force */
201             fix0             = _mm_add_pd(fix0,tx);
202             fiy0             = _mm_add_pd(fiy0,ty);
203             fiz0             = _mm_add_pd(fiz0,tz);
204
205             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
206
207             /* Inner loop uses 40 flops */
208         }
209
210         if(jidx<j_index_end)
211         {
212
213             jnrA             = jjnr[jidx];
214             j_coord_offsetA  = DIM*jnrA;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
218                                               &jx0,&jy0,&jz0);
219             
220             /* Calculate displacement vector */
221             dx00             = _mm_sub_pd(ix0,jx0);
222             dy00             = _mm_sub_pd(iy0,jy0);
223             dz00             = _mm_sub_pd(iz0,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
227
228             rinv00           = gmx_mm_invsqrt_pd(rsq00);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231
232             /* Load parameters for j particles */
233             jq0              = _mm_load_sd(charge+jnrA+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm_mul_pd(iq0,jq0);
242             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
243
244             /* COULOMB ELECTROSTATICS */
245             velec            = _mm_mul_pd(qq00,rinv00);
246             felec            = _mm_mul_pd(velec,rinvsq00);
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
252             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
253             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
254             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm_add_pd(felec,fvdw);
263
264             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm_mul_pd(fscal,dx00);
268             ty               = _mm_mul_pd(fscal,dy00);
269             tz               = _mm_mul_pd(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm_add_pd(fix0,tx);
273             fiy0             = _mm_add_pd(fiy0,ty);
274             fiz0             = _mm_add_pd(fiz0,tz);
275
276             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
277
278             /* Inner loop uses 40 flops */
279         }
280
281         /* End of innermost loop */
282
283         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
284                                               f+i_coord_offset,fshift+i_shift_offset);
285
286         ggid                        = gid[iidx];
287         /* Update potential energies */
288         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
289         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
290
291         /* Increment number of inner iterations */
292         inneriter                  += j_index_end - j_index_start;
293
294         /* Outer loop uses 9 flops */
295     }
296
297     /* Increment number of outer iterations */
298     outeriter        += nri;
299
300     /* Update outer/inner flops */
301
302     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*40);
303 }
304 /*
305  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_double
306  * Electrostatics interaction: Coulomb
307  * VdW interaction:            LennardJones
308  * Geometry:                   Particle-Particle
309  * Calculate force/pot:        Force
310  */
311 void
312 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_double
313                     (t_nblist * gmx_restrict                nlist,
314                      rvec * gmx_restrict                    xx,
315                      rvec * gmx_restrict                    ff,
316                      t_forcerec * gmx_restrict              fr,
317                      t_mdatoms * gmx_restrict               mdatoms,
318                      nb_kernel_data_t * gmx_restrict        kernel_data,
319                      t_nrnb * gmx_restrict                  nrnb)
320 {
321     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
322      * just 0 for non-waters.
323      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
324      * jnr indices corresponding to data put in the four positions in the SIMD register.
325      */
326     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
327     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
328     int              jnrA,jnrB;
329     int              j_coord_offsetA,j_coord_offsetB;
330     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
331     real             rcutoff_scalar;
332     real             *shiftvec,*fshift,*x,*f;
333     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
334     int              vdwioffset0;
335     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
336     int              vdwjidx0A,vdwjidx0B;
337     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
338     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
339     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
340     real             *charge;
341     int              nvdwtype;
342     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
343     int              *vdwtype;
344     real             *vdwparam;
345     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
346     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
347     __m128d          dummy_mask,cutoff_mask;
348     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
349     __m128d          one     = _mm_set1_pd(1.0);
350     __m128d          two     = _mm_set1_pd(2.0);
351     x                = xx[0];
352     f                = ff[0];
353
354     nri              = nlist->nri;
355     iinr             = nlist->iinr;
356     jindex           = nlist->jindex;
357     jjnr             = nlist->jjnr;
358     shiftidx         = nlist->shift;
359     gid              = nlist->gid;
360     shiftvec         = fr->shift_vec[0];
361     fshift           = fr->fshift[0];
362     facel            = _mm_set1_pd(fr->epsfac);
363     charge           = mdatoms->chargeA;
364     nvdwtype         = fr->ntype;
365     vdwparam         = fr->nbfp;
366     vdwtype          = mdatoms->typeA;
367
368     /* Avoid stupid compiler warnings */
369     jnrA = jnrB = 0;
370     j_coord_offsetA = 0;
371     j_coord_offsetB = 0;
372
373     outeriter        = 0;
374     inneriter        = 0;
375
376     /* Start outer loop over neighborlists */
377     for(iidx=0; iidx<nri; iidx++)
378     {
379         /* Load shift vector for this list */
380         i_shift_offset   = DIM*shiftidx[iidx];
381
382         /* Load limits for loop over neighbors */
383         j_index_start    = jindex[iidx];
384         j_index_end      = jindex[iidx+1];
385
386         /* Get outer coordinate index */
387         inr              = iinr[iidx];
388         i_coord_offset   = DIM*inr;
389
390         /* Load i particle coords and add shift vector */
391         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
392
393         fix0             = _mm_setzero_pd();
394         fiy0             = _mm_setzero_pd();
395         fiz0             = _mm_setzero_pd();
396
397         /* Load parameters for i particles */
398         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
399         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
400
401         /* Start inner kernel loop */
402         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
403         {
404
405             /* Get j neighbor index, and coordinate index */
406             jnrA             = jjnr[jidx];
407             jnrB             = jjnr[jidx+1];
408             j_coord_offsetA  = DIM*jnrA;
409             j_coord_offsetB  = DIM*jnrB;
410             
411             /* load j atom coordinates */
412             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
413                                               &jx0,&jy0,&jz0);
414             
415             /* Calculate displacement vector */
416             dx00             = _mm_sub_pd(ix0,jx0);
417             dy00             = _mm_sub_pd(iy0,jy0);
418             dz00             = _mm_sub_pd(iz0,jz0);
419
420             /* Calculate squared distance and things based on it */
421             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
422
423             rinv00           = gmx_mm_invsqrt_pd(rsq00);
424
425             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
426
427             /* Load parameters for j particles */
428             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
429             vdwjidx0A        = 2*vdwtype[jnrA+0];
430             vdwjidx0B        = 2*vdwtype[jnrB+0];
431
432             /**************************
433              * CALCULATE INTERACTIONS *
434              **************************/
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq00             = _mm_mul_pd(iq0,jq0);
438             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
439                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
440
441             /* COULOMB ELECTROSTATICS */
442             velec            = _mm_mul_pd(qq00,rinv00);
443             felec            = _mm_mul_pd(velec,rinvsq00);
444
445             /* LENNARD-JONES DISPERSION/REPULSION */
446
447             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
448             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
449
450             fscal            = _mm_add_pd(felec,fvdw);
451
452             /* Calculate temporary vectorial force */
453             tx               = _mm_mul_pd(fscal,dx00);
454             ty               = _mm_mul_pd(fscal,dy00);
455             tz               = _mm_mul_pd(fscal,dz00);
456
457             /* Update vectorial force */
458             fix0             = _mm_add_pd(fix0,tx);
459             fiy0             = _mm_add_pd(fiy0,ty);
460             fiz0             = _mm_add_pd(fiz0,tz);
461
462             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
463
464             /* Inner loop uses 34 flops */
465         }
466
467         if(jidx<j_index_end)
468         {
469
470             jnrA             = jjnr[jidx];
471             j_coord_offsetA  = DIM*jnrA;
472
473             /* load j atom coordinates */
474             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
475                                               &jx0,&jy0,&jz0);
476             
477             /* Calculate displacement vector */
478             dx00             = _mm_sub_pd(ix0,jx0);
479             dy00             = _mm_sub_pd(iy0,jy0);
480             dz00             = _mm_sub_pd(iz0,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
484
485             rinv00           = gmx_mm_invsqrt_pd(rsq00);
486
487             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
488
489             /* Load parameters for j particles */
490             jq0              = _mm_load_sd(charge+jnrA+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq00             = _mm_mul_pd(iq0,jq0);
499             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
500
501             /* COULOMB ELECTROSTATICS */
502             velec            = _mm_mul_pd(qq00,rinv00);
503             felec            = _mm_mul_pd(velec,rinvsq00);
504
505             /* LENNARD-JONES DISPERSION/REPULSION */
506
507             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
508             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
509
510             fscal            = _mm_add_pd(felec,fvdw);
511
512             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_pd(fscal,dx00);
516             ty               = _mm_mul_pd(fscal,dy00);
517             tz               = _mm_mul_pd(fscal,dz00);
518
519             /* Update vectorial force */
520             fix0             = _mm_add_pd(fix0,tx);
521             fiy0             = _mm_add_pd(fiy0,ty);
522             fiz0             = _mm_add_pd(fiz0,tz);
523
524             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
525
526             /* Inner loop uses 34 flops */
527         }
528
529         /* End of innermost loop */
530
531         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
532                                               f+i_coord_offset,fshift+i_shift_offset);
533
534         /* Increment number of inner iterations */
535         inneriter                  += j_index_end - j_index_start;
536
537         /* Outer loop uses 7 flops */
538     }
539
540     /* Increment number of outer iterations */
541     outeriter        += nri;
542
543     /* Update outer/inner flops */
544
545     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
546 }