dc88f58626735e26a5eb7f75305e9de3a2b1b73a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm_invsqrt_pd(rsq00);
205             rinv10           = gmx_mm_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm_invsqrt_pd(rsq20);
207
208             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
209             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
210             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216
217             fjx0             = _mm_setzero_pd();
218             fjy0             = _mm_setzero_pd();
219             fjz0             = _mm_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_pd(iq0,jq0);
229             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_pd(r00,vftabscale);
234             vfitab           = _mm_cvttpd_epi32(rt);
235             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
236             vfitab           = _mm_slli_epi32(vfitab,3);
237
238             /* COULOMB ELECTROSTATICS */
239             velec            = _mm_mul_pd(qq00,rinv00);
240             felec            = _mm_mul_pd(velec,rinvsq00);
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Heps             = _mm_mul_pd(vfeps,H);
250             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
251             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
252             vvdw6            = _mm_mul_pd(c6_00,VV);
253             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
254             fvdw6            = _mm_mul_pd(c6_00,FF);
255
256             /* CUBIC SPLINE TABLE REPULSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             GMX_MM_TRANSPOSE2_PD(Y,F);
261             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
262             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(G,H);
264             Heps             = _mm_mul_pd(vfeps,H);
265             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
266             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
267             vvdw12           = _mm_mul_pd(c12_00,VV);
268             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
269             fvdw12           = _mm_mul_pd(c12_00,FF);
270             vvdw             = _mm_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velecsum         = _mm_add_pd(velecsum,velec);
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = _mm_add_pd(felec,fvdw);
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx00);
281             ty               = _mm_mul_pd(fscal,dy00);
282             tz               = _mm_mul_pd(fscal,dz00);
283
284             /* Update vectorial force */
285             fix0             = _mm_add_pd(fix0,tx);
286             fiy0             = _mm_add_pd(fiy0,ty);
287             fiz0             = _mm_add_pd(fiz0,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_pd(iq1,jq0);
299
300             /* COULOMB ELECTROSTATICS */
301             velec            = _mm_mul_pd(qq10,rinv10);
302             felec            = _mm_mul_pd(velec,rinvsq10);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velecsum         = _mm_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_pd(fscal,dx10);
311             ty               = _mm_mul_pd(fscal,dy10);
312             tz               = _mm_mul_pd(fscal,dz10);
313
314             /* Update vectorial force */
315             fix1             = _mm_add_pd(fix1,tx);
316             fiy1             = _mm_add_pd(fiy1,ty);
317             fiz1             = _mm_add_pd(fiz1,tz);
318
319             fjx0             = _mm_add_pd(fjx0,tx);
320             fjy0             = _mm_add_pd(fjy0,ty);
321             fjz0             = _mm_add_pd(fjz0,tz);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq20             = _mm_mul_pd(iq2,jq0);
329
330             /* COULOMB ELECTROSTATICS */
331             velec            = _mm_mul_pd(qq20,rinv20);
332             felec            = _mm_mul_pd(velec,rinvsq20);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm_mul_pd(fscal,dx20);
341             ty               = _mm_mul_pd(fscal,dy20);
342             tz               = _mm_mul_pd(fscal,dz20);
343
344             /* Update vectorial force */
345             fix2             = _mm_add_pd(fix2,tx);
346             fiy2             = _mm_add_pd(fiy2,ty);
347             fiz2             = _mm_add_pd(fiz2,tz);
348
349             fjx0             = _mm_add_pd(fjx0,tx);
350             fjy0             = _mm_add_pd(fjy0,ty);
351             fjz0             = _mm_add_pd(fjz0,tz);
352
353             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
354
355             /* Inner loop uses 122 flops */
356         }
357
358         if(jidx<j_index_end)
359         {
360
361             jnrA             = jjnr[jidx];
362             j_coord_offsetA  = DIM*jnrA;
363
364             /* load j atom coordinates */
365             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
366                                               &jx0,&jy0,&jz0);
367
368             /* Calculate displacement vector */
369             dx00             = _mm_sub_pd(ix0,jx0);
370             dy00             = _mm_sub_pd(iy0,jy0);
371             dz00             = _mm_sub_pd(iz0,jz0);
372             dx10             = _mm_sub_pd(ix1,jx0);
373             dy10             = _mm_sub_pd(iy1,jy0);
374             dz10             = _mm_sub_pd(iz1,jz0);
375             dx20             = _mm_sub_pd(ix2,jx0);
376             dy20             = _mm_sub_pd(iy2,jy0);
377             dz20             = _mm_sub_pd(iz2,jz0);
378
379             /* Calculate squared distance and things based on it */
380             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
381             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
382             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
383
384             rinv00           = gmx_mm_invsqrt_pd(rsq00);
385             rinv10           = gmx_mm_invsqrt_pd(rsq10);
386             rinv20           = gmx_mm_invsqrt_pd(rsq20);
387
388             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
389             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
390             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
391
392             /* Load parameters for j particles */
393             jq0              = _mm_load_sd(charge+jnrA+0);
394             vdwjidx0A        = 2*vdwtype[jnrA+0];
395
396             fjx0             = _mm_setzero_pd();
397             fjy0             = _mm_setzero_pd();
398             fjz0             = _mm_setzero_pd();
399
400             /**************************
401              * CALCULATE INTERACTIONS *
402              **************************/
403
404             r00              = _mm_mul_pd(rsq00,rinv00);
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq00             = _mm_mul_pd(iq0,jq0);
408             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
409
410             /* Calculate table index by multiplying r with table scale and truncate to integer */
411             rt               = _mm_mul_pd(r00,vftabscale);
412             vfitab           = _mm_cvttpd_epi32(rt);
413             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
414             vfitab           = _mm_slli_epi32(vfitab,3);
415
416             /* COULOMB ELECTROSTATICS */
417             velec            = _mm_mul_pd(qq00,rinv00);
418             felec            = _mm_mul_pd(velec,rinvsq00);
419
420             /* CUBIC SPLINE TABLE DISPERSION */
421             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
422             F                = _mm_setzero_pd();
423             GMX_MM_TRANSPOSE2_PD(Y,F);
424             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
425             H                = _mm_setzero_pd();
426             GMX_MM_TRANSPOSE2_PD(G,H);
427             Heps             = _mm_mul_pd(vfeps,H);
428             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
429             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
430             vvdw6            = _mm_mul_pd(c6_00,VV);
431             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
432             fvdw6            = _mm_mul_pd(c6_00,FF);
433
434             /* CUBIC SPLINE TABLE REPULSION */
435             vfitab           = _mm_add_epi32(vfitab,ifour);
436             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
437             F                = _mm_setzero_pd();
438             GMX_MM_TRANSPOSE2_PD(Y,F);
439             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
440             H                = _mm_setzero_pd();
441             GMX_MM_TRANSPOSE2_PD(G,H);
442             Heps             = _mm_mul_pd(vfeps,H);
443             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
444             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
445             vvdw12           = _mm_mul_pd(c12_00,VV);
446             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
447             fvdw12           = _mm_mul_pd(c12_00,FF);
448             vvdw             = _mm_add_pd(vvdw12,vvdw6);
449             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
450
451             /* Update potential sum for this i atom from the interaction with this j atom. */
452             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
453             velecsum         = _mm_add_pd(velecsum,velec);
454             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
455             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
456
457             fscal            = _mm_add_pd(felec,fvdw);
458
459             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_pd(fscal,dx00);
463             ty               = _mm_mul_pd(fscal,dy00);
464             tz               = _mm_mul_pd(fscal,dz00);
465
466             /* Update vectorial force */
467             fix0             = _mm_add_pd(fix0,tx);
468             fiy0             = _mm_add_pd(fiy0,ty);
469             fiz0             = _mm_add_pd(fiz0,tz);
470
471             fjx0             = _mm_add_pd(fjx0,tx);
472             fjy0             = _mm_add_pd(fjy0,ty);
473             fjz0             = _mm_add_pd(fjz0,tz);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq10             = _mm_mul_pd(iq1,jq0);
481
482             /* COULOMB ELECTROSTATICS */
483             velec            = _mm_mul_pd(qq10,rinv10);
484             felec            = _mm_mul_pd(velec,rinvsq10);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
488             velecsum         = _mm_add_pd(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm_mul_pd(fscal,dx10);
496             ty               = _mm_mul_pd(fscal,dy10);
497             tz               = _mm_mul_pd(fscal,dz10);
498
499             /* Update vectorial force */
500             fix1             = _mm_add_pd(fix1,tx);
501             fiy1             = _mm_add_pd(fiy1,ty);
502             fiz1             = _mm_add_pd(fiz1,tz);
503
504             fjx0             = _mm_add_pd(fjx0,tx);
505             fjy0             = _mm_add_pd(fjy0,ty);
506             fjz0             = _mm_add_pd(fjz0,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq20             = _mm_mul_pd(iq2,jq0);
514
515             /* COULOMB ELECTROSTATICS */
516             velec            = _mm_mul_pd(qq20,rinv20);
517             felec            = _mm_mul_pd(velec,rinvsq20);
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm_mul_pd(fscal,dx20);
529             ty               = _mm_mul_pd(fscal,dy20);
530             tz               = _mm_mul_pd(fscal,dz20);
531
532             /* Update vectorial force */
533             fix2             = _mm_add_pd(fix2,tx);
534             fiy2             = _mm_add_pd(fiy2,ty);
535             fiz2             = _mm_add_pd(fiz2,tz);
536
537             fjx0             = _mm_add_pd(fjx0,tx);
538             fjy0             = _mm_add_pd(fjy0,ty);
539             fjz0             = _mm_add_pd(fjz0,tz);
540
541             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
542
543             /* Inner loop uses 122 flops */
544         }
545
546         /* End of innermost loop */
547
548         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
549                                               f+i_coord_offset,fshift+i_shift_offset);
550
551         ggid                        = gid[iidx];
552         /* Update potential energies */
553         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
554         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
555
556         /* Increment number of inner iterations */
557         inneriter                  += j_index_end - j_index_start;
558
559         /* Outer loop uses 20 flops */
560     }
561
562     /* Increment number of outer iterations */
563     outeriter        += nri;
564
565     /* Update outer/inner flops */
566
567     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*122);
568 }
569 /*
570  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
571  * Electrostatics interaction: Coulomb
572  * VdW interaction:            CubicSplineTable
573  * Geometry:                   Water3-Particle
574  * Calculate force/pot:        Force
575  */
576 void
577 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
578                     (t_nblist                    * gmx_restrict       nlist,
579                      rvec                        * gmx_restrict          xx,
580                      rvec                        * gmx_restrict          ff,
581                      t_forcerec                  * gmx_restrict          fr,
582                      t_mdatoms                   * gmx_restrict     mdatoms,
583                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
584                      t_nrnb                      * gmx_restrict        nrnb)
585 {
586     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
587      * just 0 for non-waters.
588      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
589      * jnr indices corresponding to data put in the four positions in the SIMD register.
590      */
591     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
592     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
593     int              jnrA,jnrB;
594     int              j_coord_offsetA,j_coord_offsetB;
595     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
596     real             rcutoff_scalar;
597     real             *shiftvec,*fshift,*x,*f;
598     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
599     int              vdwioffset0;
600     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
601     int              vdwioffset1;
602     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
603     int              vdwioffset2;
604     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
605     int              vdwjidx0A,vdwjidx0B;
606     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
607     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
608     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
609     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
610     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
611     real             *charge;
612     int              nvdwtype;
613     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
614     int              *vdwtype;
615     real             *vdwparam;
616     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
617     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
618     __m128i          vfitab;
619     __m128i          ifour       = _mm_set1_epi32(4);
620     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
621     real             *vftab;
622     __m128d          dummy_mask,cutoff_mask;
623     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
624     __m128d          one     = _mm_set1_pd(1.0);
625     __m128d          two     = _mm_set1_pd(2.0);
626     x                = xx[0];
627     f                = ff[0];
628
629     nri              = nlist->nri;
630     iinr             = nlist->iinr;
631     jindex           = nlist->jindex;
632     jjnr             = nlist->jjnr;
633     shiftidx         = nlist->shift;
634     gid              = nlist->gid;
635     shiftvec         = fr->shift_vec[0];
636     fshift           = fr->fshift[0];
637     facel            = _mm_set1_pd(fr->epsfac);
638     charge           = mdatoms->chargeA;
639     nvdwtype         = fr->ntype;
640     vdwparam         = fr->nbfp;
641     vdwtype          = mdatoms->typeA;
642
643     vftab            = kernel_data->table_vdw->data;
644     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
645
646     /* Setup water-specific parameters */
647     inr              = nlist->iinr[0];
648     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
649     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
650     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
651     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
652
653     /* Avoid stupid compiler warnings */
654     jnrA = jnrB = 0;
655     j_coord_offsetA = 0;
656     j_coord_offsetB = 0;
657
658     outeriter        = 0;
659     inneriter        = 0;
660
661     /* Start outer loop over neighborlists */
662     for(iidx=0; iidx<nri; iidx++)
663     {
664         /* Load shift vector for this list */
665         i_shift_offset   = DIM*shiftidx[iidx];
666
667         /* Load limits for loop over neighbors */
668         j_index_start    = jindex[iidx];
669         j_index_end      = jindex[iidx+1];
670
671         /* Get outer coordinate index */
672         inr              = iinr[iidx];
673         i_coord_offset   = DIM*inr;
674
675         /* Load i particle coords and add shift vector */
676         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
677                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
678
679         fix0             = _mm_setzero_pd();
680         fiy0             = _mm_setzero_pd();
681         fiz0             = _mm_setzero_pd();
682         fix1             = _mm_setzero_pd();
683         fiy1             = _mm_setzero_pd();
684         fiz1             = _mm_setzero_pd();
685         fix2             = _mm_setzero_pd();
686         fiy2             = _mm_setzero_pd();
687         fiz2             = _mm_setzero_pd();
688
689         /* Start inner kernel loop */
690         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
691         {
692
693             /* Get j neighbor index, and coordinate index */
694             jnrA             = jjnr[jidx];
695             jnrB             = jjnr[jidx+1];
696             j_coord_offsetA  = DIM*jnrA;
697             j_coord_offsetB  = DIM*jnrB;
698
699             /* load j atom coordinates */
700             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
701                                               &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx00             = _mm_sub_pd(ix0,jx0);
705             dy00             = _mm_sub_pd(iy0,jy0);
706             dz00             = _mm_sub_pd(iz0,jz0);
707             dx10             = _mm_sub_pd(ix1,jx0);
708             dy10             = _mm_sub_pd(iy1,jy0);
709             dz10             = _mm_sub_pd(iz1,jz0);
710             dx20             = _mm_sub_pd(ix2,jx0);
711             dy20             = _mm_sub_pd(iy2,jy0);
712             dz20             = _mm_sub_pd(iz2,jz0);
713
714             /* Calculate squared distance and things based on it */
715             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
716             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
717             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
718
719             rinv00           = gmx_mm_invsqrt_pd(rsq00);
720             rinv10           = gmx_mm_invsqrt_pd(rsq10);
721             rinv20           = gmx_mm_invsqrt_pd(rsq20);
722
723             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
724             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
725             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
726
727             /* Load parameters for j particles */
728             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
729             vdwjidx0A        = 2*vdwtype[jnrA+0];
730             vdwjidx0B        = 2*vdwtype[jnrB+0];
731
732             fjx0             = _mm_setzero_pd();
733             fjy0             = _mm_setzero_pd();
734             fjz0             = _mm_setzero_pd();
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             r00              = _mm_mul_pd(rsq00,rinv00);
741
742             /* Compute parameters for interactions between i and j atoms */
743             qq00             = _mm_mul_pd(iq0,jq0);
744             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
745                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
746
747             /* Calculate table index by multiplying r with table scale and truncate to integer */
748             rt               = _mm_mul_pd(r00,vftabscale);
749             vfitab           = _mm_cvttpd_epi32(rt);
750             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
751             vfitab           = _mm_slli_epi32(vfitab,3);
752
753             /* COULOMB ELECTROSTATICS */
754             velec            = _mm_mul_pd(qq00,rinv00);
755             felec            = _mm_mul_pd(velec,rinvsq00);
756
757             /* CUBIC SPLINE TABLE DISPERSION */
758             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
759             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
760             GMX_MM_TRANSPOSE2_PD(Y,F);
761             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
762             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
763             GMX_MM_TRANSPOSE2_PD(G,H);
764             Heps             = _mm_mul_pd(vfeps,H);
765             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
766             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
767             fvdw6            = _mm_mul_pd(c6_00,FF);
768
769             /* CUBIC SPLINE TABLE REPULSION */
770             vfitab           = _mm_add_epi32(vfitab,ifour);
771             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
772             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
773             GMX_MM_TRANSPOSE2_PD(Y,F);
774             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
775             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
776             GMX_MM_TRANSPOSE2_PD(G,H);
777             Heps             = _mm_mul_pd(vfeps,H);
778             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
779             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
780             fvdw12           = _mm_mul_pd(c12_00,FF);
781             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
782
783             fscal            = _mm_add_pd(felec,fvdw);
784
785             /* Calculate temporary vectorial force */
786             tx               = _mm_mul_pd(fscal,dx00);
787             ty               = _mm_mul_pd(fscal,dy00);
788             tz               = _mm_mul_pd(fscal,dz00);
789
790             /* Update vectorial force */
791             fix0             = _mm_add_pd(fix0,tx);
792             fiy0             = _mm_add_pd(fiy0,ty);
793             fiz0             = _mm_add_pd(fiz0,tz);
794
795             fjx0             = _mm_add_pd(fjx0,tx);
796             fjy0             = _mm_add_pd(fjy0,ty);
797             fjz0             = _mm_add_pd(fjz0,tz);
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq10             = _mm_mul_pd(iq1,jq0);
805
806             /* COULOMB ELECTROSTATICS */
807             velec            = _mm_mul_pd(qq10,rinv10);
808             felec            = _mm_mul_pd(velec,rinvsq10);
809
810             fscal            = felec;
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm_mul_pd(fscal,dx10);
814             ty               = _mm_mul_pd(fscal,dy10);
815             tz               = _mm_mul_pd(fscal,dz10);
816
817             /* Update vectorial force */
818             fix1             = _mm_add_pd(fix1,tx);
819             fiy1             = _mm_add_pd(fiy1,ty);
820             fiz1             = _mm_add_pd(fiz1,tz);
821
822             fjx0             = _mm_add_pd(fjx0,tx);
823             fjy0             = _mm_add_pd(fjy0,ty);
824             fjz0             = _mm_add_pd(fjz0,tz);
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             /* Compute parameters for interactions between i and j atoms */
831             qq20             = _mm_mul_pd(iq2,jq0);
832
833             /* COULOMB ELECTROSTATICS */
834             velec            = _mm_mul_pd(qq20,rinv20);
835             felec            = _mm_mul_pd(velec,rinvsq20);
836
837             fscal            = felec;
838
839             /* Calculate temporary vectorial force */
840             tx               = _mm_mul_pd(fscal,dx20);
841             ty               = _mm_mul_pd(fscal,dy20);
842             tz               = _mm_mul_pd(fscal,dz20);
843
844             /* Update vectorial force */
845             fix2             = _mm_add_pd(fix2,tx);
846             fiy2             = _mm_add_pd(fiy2,ty);
847             fiz2             = _mm_add_pd(fiz2,tz);
848
849             fjx0             = _mm_add_pd(fjx0,tx);
850             fjy0             = _mm_add_pd(fjy0,ty);
851             fjz0             = _mm_add_pd(fjz0,tz);
852
853             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
854
855             /* Inner loop uses 111 flops */
856         }
857
858         if(jidx<j_index_end)
859         {
860
861             jnrA             = jjnr[jidx];
862             j_coord_offsetA  = DIM*jnrA;
863
864             /* load j atom coordinates */
865             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
866                                               &jx0,&jy0,&jz0);
867
868             /* Calculate displacement vector */
869             dx00             = _mm_sub_pd(ix0,jx0);
870             dy00             = _mm_sub_pd(iy0,jy0);
871             dz00             = _mm_sub_pd(iz0,jz0);
872             dx10             = _mm_sub_pd(ix1,jx0);
873             dy10             = _mm_sub_pd(iy1,jy0);
874             dz10             = _mm_sub_pd(iz1,jz0);
875             dx20             = _mm_sub_pd(ix2,jx0);
876             dy20             = _mm_sub_pd(iy2,jy0);
877             dz20             = _mm_sub_pd(iz2,jz0);
878
879             /* Calculate squared distance and things based on it */
880             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
881             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
882             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
883
884             rinv00           = gmx_mm_invsqrt_pd(rsq00);
885             rinv10           = gmx_mm_invsqrt_pd(rsq10);
886             rinv20           = gmx_mm_invsqrt_pd(rsq20);
887
888             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
889             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
890             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
891
892             /* Load parameters for j particles */
893             jq0              = _mm_load_sd(charge+jnrA+0);
894             vdwjidx0A        = 2*vdwtype[jnrA+0];
895
896             fjx0             = _mm_setzero_pd();
897             fjy0             = _mm_setzero_pd();
898             fjz0             = _mm_setzero_pd();
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r00              = _mm_mul_pd(rsq00,rinv00);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq00             = _mm_mul_pd(iq0,jq0);
908             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
909
910             /* Calculate table index by multiplying r with table scale and truncate to integer */
911             rt               = _mm_mul_pd(r00,vftabscale);
912             vfitab           = _mm_cvttpd_epi32(rt);
913             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
914             vfitab           = _mm_slli_epi32(vfitab,3);
915
916             /* COULOMB ELECTROSTATICS */
917             velec            = _mm_mul_pd(qq00,rinv00);
918             felec            = _mm_mul_pd(velec,rinvsq00);
919
920             /* CUBIC SPLINE TABLE DISPERSION */
921             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
922             F                = _mm_setzero_pd();
923             GMX_MM_TRANSPOSE2_PD(Y,F);
924             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
925             H                = _mm_setzero_pd();
926             GMX_MM_TRANSPOSE2_PD(G,H);
927             Heps             = _mm_mul_pd(vfeps,H);
928             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
929             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
930             fvdw6            = _mm_mul_pd(c6_00,FF);
931
932             /* CUBIC SPLINE TABLE REPULSION */
933             vfitab           = _mm_add_epi32(vfitab,ifour);
934             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
935             F                = _mm_setzero_pd();
936             GMX_MM_TRANSPOSE2_PD(Y,F);
937             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
938             H                = _mm_setzero_pd();
939             GMX_MM_TRANSPOSE2_PD(G,H);
940             Heps             = _mm_mul_pd(vfeps,H);
941             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
942             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
943             fvdw12           = _mm_mul_pd(c12_00,FF);
944             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
945
946             fscal            = _mm_add_pd(felec,fvdw);
947
948             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_pd(fscal,dx00);
952             ty               = _mm_mul_pd(fscal,dy00);
953             tz               = _mm_mul_pd(fscal,dz00);
954
955             /* Update vectorial force */
956             fix0             = _mm_add_pd(fix0,tx);
957             fiy0             = _mm_add_pd(fiy0,ty);
958             fiz0             = _mm_add_pd(fiz0,tz);
959
960             fjx0             = _mm_add_pd(fjx0,tx);
961             fjy0             = _mm_add_pd(fjy0,ty);
962             fjz0             = _mm_add_pd(fjz0,tz);
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq10             = _mm_mul_pd(iq1,jq0);
970
971             /* COULOMB ELECTROSTATICS */
972             velec            = _mm_mul_pd(qq10,rinv10);
973             felec            = _mm_mul_pd(velec,rinvsq10);
974
975             fscal            = felec;
976
977             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
978
979             /* Calculate temporary vectorial force */
980             tx               = _mm_mul_pd(fscal,dx10);
981             ty               = _mm_mul_pd(fscal,dy10);
982             tz               = _mm_mul_pd(fscal,dz10);
983
984             /* Update vectorial force */
985             fix1             = _mm_add_pd(fix1,tx);
986             fiy1             = _mm_add_pd(fiy1,ty);
987             fiz1             = _mm_add_pd(fiz1,tz);
988
989             fjx0             = _mm_add_pd(fjx0,tx);
990             fjy0             = _mm_add_pd(fjy0,ty);
991             fjz0             = _mm_add_pd(fjz0,tz);
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq20             = _mm_mul_pd(iq2,jq0);
999
1000             /* COULOMB ELECTROSTATICS */
1001             velec            = _mm_mul_pd(qq20,rinv20);
1002             felec            = _mm_mul_pd(velec,rinvsq20);
1003
1004             fscal            = felec;
1005
1006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_pd(fscal,dx20);
1010             ty               = _mm_mul_pd(fscal,dy20);
1011             tz               = _mm_mul_pd(fscal,dz20);
1012
1013             /* Update vectorial force */
1014             fix2             = _mm_add_pd(fix2,tx);
1015             fiy2             = _mm_add_pd(fiy2,ty);
1016             fiz2             = _mm_add_pd(fiz2,tz);
1017
1018             fjx0             = _mm_add_pd(fjx0,tx);
1019             fjy0             = _mm_add_pd(fjy0,ty);
1020             fjz0             = _mm_add_pd(fjz0,tz);
1021
1022             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1023
1024             /* Inner loop uses 111 flops */
1025         }
1026
1027         /* End of innermost loop */
1028
1029         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1030                                               f+i_coord_offset,fshift+i_shift_offset);
1031
1032         /* Increment number of inner iterations */
1033         inneriter                  += j_index_end - j_index_start;
1034
1035         /* Outer loop uses 18 flops */
1036     }
1037
1038     /* Increment number of outer iterations */
1039     outeriter        += nri;
1040
1041     /* Update outer/inner flops */
1042
1043     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1044 }