Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = sse2_invsqrt_d(rsq00);
204             rinv10           = sse2_invsqrt_d(rsq10);
205             rinv20           = sse2_invsqrt_d(rsq20);
206
207             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
208             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
209             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
213             vdwjidx0A        = 2*vdwtype[jnrA+0];
214             vdwjidx0B        = 2*vdwtype[jnrB+0];
215
216             fjx0             = _mm_setzero_pd();
217             fjy0             = _mm_setzero_pd();
218             fjz0             = _mm_setzero_pd();
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm_mul_pd(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_pd(iq0,jq0);
228             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm_mul_pd(r00,vftabscale);
233             vfitab           = _mm_cvttpd_epi32(rt);
234             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
235             vfitab           = _mm_slli_epi32(vfitab,3);
236
237             /* COULOMB ELECTROSTATICS */
238             velec            = _mm_mul_pd(qq00,rinv00);
239             felec            = _mm_mul_pd(velec,rinvsq00);
240
241             /* CUBIC SPLINE TABLE DISPERSION */
242             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
243             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
244             GMX_MM_TRANSPOSE2_PD(Y,F);
245             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
246             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
247             GMX_MM_TRANSPOSE2_PD(G,H);
248             Heps             = _mm_mul_pd(vfeps,H);
249             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
250             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
251             vvdw6            = _mm_mul_pd(c6_00,VV);
252             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
253             fvdw6            = _mm_mul_pd(c6_00,FF);
254
255             /* CUBIC SPLINE TABLE REPULSION */
256             vfitab           = _mm_add_epi32(vfitab,ifour);
257             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             GMX_MM_TRANSPOSE2_PD(Y,F);
260             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
261             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(G,H);
263             Heps             = _mm_mul_pd(vfeps,H);
264             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
265             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
266             vvdw12           = _mm_mul_pd(c12_00,VV);
267             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
268             fvdw12           = _mm_mul_pd(c12_00,FF);
269             vvdw             = _mm_add_pd(vvdw12,vvdw6);
270             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velecsum         = _mm_add_pd(velecsum,velec);
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = _mm_add_pd(felec,fvdw);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx00);
280             ty               = _mm_mul_pd(fscal,dy00);
281             tz               = _mm_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm_add_pd(fix0,tx);
285             fiy0             = _mm_add_pd(fiy0,ty);
286             fiz0             = _mm_add_pd(fiz0,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             /* Compute parameters for interactions between i and j atoms */
297             qq10             = _mm_mul_pd(iq1,jq0);
298
299             /* COULOMB ELECTROSTATICS */
300             velec            = _mm_mul_pd(qq10,rinv10);
301             felec            = _mm_mul_pd(velec,rinvsq10);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_pd(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_pd(fscal,dx10);
310             ty               = _mm_mul_pd(fscal,dy10);
311             tz               = _mm_mul_pd(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm_add_pd(fix1,tx);
315             fiy1             = _mm_add_pd(fiy1,ty);
316             fiz1             = _mm_add_pd(fiz1,tz);
317
318             fjx0             = _mm_add_pd(fjx0,tx);
319             fjy0             = _mm_add_pd(fjy0,ty);
320             fjz0             = _mm_add_pd(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq20             = _mm_mul_pd(iq2,jq0);
328
329             /* COULOMB ELECTROSTATICS */
330             velec            = _mm_mul_pd(qq20,rinv20);
331             felec            = _mm_mul_pd(velec,rinvsq20);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_pd(fscal,dx20);
340             ty               = _mm_mul_pd(fscal,dy20);
341             tz               = _mm_mul_pd(fscal,dz20);
342
343             /* Update vectorial force */
344             fix2             = _mm_add_pd(fix2,tx);
345             fiy2             = _mm_add_pd(fiy2,ty);
346             fiz2             = _mm_add_pd(fiz2,tz);
347
348             fjx0             = _mm_add_pd(fjx0,tx);
349             fjy0             = _mm_add_pd(fjy0,ty);
350             fjz0             = _mm_add_pd(fjz0,tz);
351
352             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
353
354             /* Inner loop uses 122 flops */
355         }
356
357         if(jidx<j_index_end)
358         {
359
360             jnrA             = jjnr[jidx];
361             j_coord_offsetA  = DIM*jnrA;
362
363             /* load j atom coordinates */
364             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
365                                               &jx0,&jy0,&jz0);
366
367             /* Calculate displacement vector */
368             dx00             = _mm_sub_pd(ix0,jx0);
369             dy00             = _mm_sub_pd(iy0,jy0);
370             dz00             = _mm_sub_pd(iz0,jz0);
371             dx10             = _mm_sub_pd(ix1,jx0);
372             dy10             = _mm_sub_pd(iy1,jy0);
373             dz10             = _mm_sub_pd(iz1,jz0);
374             dx20             = _mm_sub_pd(ix2,jx0);
375             dy20             = _mm_sub_pd(iy2,jy0);
376             dz20             = _mm_sub_pd(iz2,jz0);
377
378             /* Calculate squared distance and things based on it */
379             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
380             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
381             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
382
383             rinv00           = sse2_invsqrt_d(rsq00);
384             rinv10           = sse2_invsqrt_d(rsq10);
385             rinv20           = sse2_invsqrt_d(rsq20);
386
387             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
388             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
389             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
390
391             /* Load parameters for j particles */
392             jq0              = _mm_load_sd(charge+jnrA+0);
393             vdwjidx0A        = 2*vdwtype[jnrA+0];
394
395             fjx0             = _mm_setzero_pd();
396             fjy0             = _mm_setzero_pd();
397             fjz0             = _mm_setzero_pd();
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             r00              = _mm_mul_pd(rsq00,rinv00);
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq00             = _mm_mul_pd(iq0,jq0);
407             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
408
409             /* Calculate table index by multiplying r with table scale and truncate to integer */
410             rt               = _mm_mul_pd(r00,vftabscale);
411             vfitab           = _mm_cvttpd_epi32(rt);
412             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
413             vfitab           = _mm_slli_epi32(vfitab,3);
414
415             /* COULOMB ELECTROSTATICS */
416             velec            = _mm_mul_pd(qq00,rinv00);
417             felec            = _mm_mul_pd(velec,rinvsq00);
418
419             /* CUBIC SPLINE TABLE DISPERSION */
420             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
421             F                = _mm_setzero_pd();
422             GMX_MM_TRANSPOSE2_PD(Y,F);
423             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
424             H                = _mm_setzero_pd();
425             GMX_MM_TRANSPOSE2_PD(G,H);
426             Heps             = _mm_mul_pd(vfeps,H);
427             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
428             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
429             vvdw6            = _mm_mul_pd(c6_00,VV);
430             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
431             fvdw6            = _mm_mul_pd(c6_00,FF);
432
433             /* CUBIC SPLINE TABLE REPULSION */
434             vfitab           = _mm_add_epi32(vfitab,ifour);
435             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
436             F                = _mm_setzero_pd();
437             GMX_MM_TRANSPOSE2_PD(Y,F);
438             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
439             H                = _mm_setzero_pd();
440             GMX_MM_TRANSPOSE2_PD(G,H);
441             Heps             = _mm_mul_pd(vfeps,H);
442             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
443             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
444             vvdw12           = _mm_mul_pd(c12_00,VV);
445             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
446             fvdw12           = _mm_mul_pd(c12_00,FF);
447             vvdw             = _mm_add_pd(vvdw12,vvdw6);
448             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
452             velecsum         = _mm_add_pd(velecsum,velec);
453             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
454             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
455
456             fscal            = _mm_add_pd(felec,fvdw);
457
458             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_pd(fscal,dx00);
462             ty               = _mm_mul_pd(fscal,dy00);
463             tz               = _mm_mul_pd(fscal,dz00);
464
465             /* Update vectorial force */
466             fix0             = _mm_add_pd(fix0,tx);
467             fiy0             = _mm_add_pd(fiy0,ty);
468             fiz0             = _mm_add_pd(fiz0,tz);
469
470             fjx0             = _mm_add_pd(fjx0,tx);
471             fjy0             = _mm_add_pd(fjy0,ty);
472             fjz0             = _mm_add_pd(fjz0,tz);
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             /* Compute parameters for interactions between i and j atoms */
479             qq10             = _mm_mul_pd(iq1,jq0);
480
481             /* COULOMB ELECTROSTATICS */
482             velec            = _mm_mul_pd(qq10,rinv10);
483             felec            = _mm_mul_pd(velec,rinvsq10);
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
487             velecsum         = _mm_add_pd(velecsum,velec);
488
489             fscal            = felec;
490
491             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
492
493             /* Calculate temporary vectorial force */
494             tx               = _mm_mul_pd(fscal,dx10);
495             ty               = _mm_mul_pd(fscal,dy10);
496             tz               = _mm_mul_pd(fscal,dz10);
497
498             /* Update vectorial force */
499             fix1             = _mm_add_pd(fix1,tx);
500             fiy1             = _mm_add_pd(fiy1,ty);
501             fiz1             = _mm_add_pd(fiz1,tz);
502
503             fjx0             = _mm_add_pd(fjx0,tx);
504             fjy0             = _mm_add_pd(fjy0,ty);
505             fjz0             = _mm_add_pd(fjz0,tz);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq20             = _mm_mul_pd(iq2,jq0);
513
514             /* COULOMB ELECTROSTATICS */
515             velec            = _mm_mul_pd(qq20,rinv20);
516             felec            = _mm_mul_pd(velec,rinvsq20);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm_mul_pd(fscal,dx20);
528             ty               = _mm_mul_pd(fscal,dy20);
529             tz               = _mm_mul_pd(fscal,dz20);
530
531             /* Update vectorial force */
532             fix2             = _mm_add_pd(fix2,tx);
533             fiy2             = _mm_add_pd(fiy2,ty);
534             fiz2             = _mm_add_pd(fiz2,tz);
535
536             fjx0             = _mm_add_pd(fjx0,tx);
537             fjy0             = _mm_add_pd(fjy0,ty);
538             fjz0             = _mm_add_pd(fjz0,tz);
539
540             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
541
542             /* Inner loop uses 122 flops */
543         }
544
545         /* End of innermost loop */
546
547         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
548                                               f+i_coord_offset,fshift+i_shift_offset);
549
550         ggid                        = gid[iidx];
551         /* Update potential energies */
552         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
553         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
554
555         /* Increment number of inner iterations */
556         inneriter                  += j_index_end - j_index_start;
557
558         /* Outer loop uses 20 flops */
559     }
560
561     /* Increment number of outer iterations */
562     outeriter        += nri;
563
564     /* Update outer/inner flops */
565
566     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*122);
567 }
568 /*
569  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
570  * Electrostatics interaction: Coulomb
571  * VdW interaction:            CubicSplineTable
572  * Geometry:                   Water3-Particle
573  * Calculate force/pot:        Force
574  */
575 void
576 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
577                     (t_nblist                    * gmx_restrict       nlist,
578                      rvec                        * gmx_restrict          xx,
579                      rvec                        * gmx_restrict          ff,
580                      struct t_forcerec           * gmx_restrict          fr,
581                      t_mdatoms                   * gmx_restrict     mdatoms,
582                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
583                      t_nrnb                      * gmx_restrict        nrnb)
584 {
585     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
586      * just 0 for non-waters.
587      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
588      * jnr indices corresponding to data put in the four positions in the SIMD register.
589      */
590     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
591     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
592     int              jnrA,jnrB;
593     int              j_coord_offsetA,j_coord_offsetB;
594     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
595     real             rcutoff_scalar;
596     real             *shiftvec,*fshift,*x,*f;
597     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
598     int              vdwioffset0;
599     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
600     int              vdwioffset1;
601     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
602     int              vdwioffset2;
603     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
604     int              vdwjidx0A,vdwjidx0B;
605     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
606     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
607     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
608     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
609     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
610     real             *charge;
611     int              nvdwtype;
612     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
613     int              *vdwtype;
614     real             *vdwparam;
615     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
616     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
617     __m128i          vfitab;
618     __m128i          ifour       = _mm_set1_epi32(4);
619     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
620     real             *vftab;
621     __m128d          dummy_mask,cutoff_mask;
622     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
623     __m128d          one     = _mm_set1_pd(1.0);
624     __m128d          two     = _mm_set1_pd(2.0);
625     x                = xx[0];
626     f                = ff[0];
627
628     nri              = nlist->nri;
629     iinr             = nlist->iinr;
630     jindex           = nlist->jindex;
631     jjnr             = nlist->jjnr;
632     shiftidx         = nlist->shift;
633     gid              = nlist->gid;
634     shiftvec         = fr->shift_vec[0];
635     fshift           = fr->fshift[0];
636     facel            = _mm_set1_pd(fr->ic->epsfac);
637     charge           = mdatoms->chargeA;
638     nvdwtype         = fr->ntype;
639     vdwparam         = fr->nbfp;
640     vdwtype          = mdatoms->typeA;
641
642     vftab            = kernel_data->table_vdw->data;
643     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
644
645     /* Setup water-specific parameters */
646     inr              = nlist->iinr[0];
647     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
648     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
649     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
650     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
651
652     /* Avoid stupid compiler warnings */
653     jnrA = jnrB = 0;
654     j_coord_offsetA = 0;
655     j_coord_offsetB = 0;
656
657     outeriter        = 0;
658     inneriter        = 0;
659
660     /* Start outer loop over neighborlists */
661     for(iidx=0; iidx<nri; iidx++)
662     {
663         /* Load shift vector for this list */
664         i_shift_offset   = DIM*shiftidx[iidx];
665
666         /* Load limits for loop over neighbors */
667         j_index_start    = jindex[iidx];
668         j_index_end      = jindex[iidx+1];
669
670         /* Get outer coordinate index */
671         inr              = iinr[iidx];
672         i_coord_offset   = DIM*inr;
673
674         /* Load i particle coords and add shift vector */
675         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
676                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
677
678         fix0             = _mm_setzero_pd();
679         fiy0             = _mm_setzero_pd();
680         fiz0             = _mm_setzero_pd();
681         fix1             = _mm_setzero_pd();
682         fiy1             = _mm_setzero_pd();
683         fiz1             = _mm_setzero_pd();
684         fix2             = _mm_setzero_pd();
685         fiy2             = _mm_setzero_pd();
686         fiz2             = _mm_setzero_pd();
687
688         /* Start inner kernel loop */
689         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
690         {
691
692             /* Get j neighbor index, and coordinate index */
693             jnrA             = jjnr[jidx];
694             jnrB             = jjnr[jidx+1];
695             j_coord_offsetA  = DIM*jnrA;
696             j_coord_offsetB  = DIM*jnrB;
697
698             /* load j atom coordinates */
699             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
700                                               &jx0,&jy0,&jz0);
701
702             /* Calculate displacement vector */
703             dx00             = _mm_sub_pd(ix0,jx0);
704             dy00             = _mm_sub_pd(iy0,jy0);
705             dz00             = _mm_sub_pd(iz0,jz0);
706             dx10             = _mm_sub_pd(ix1,jx0);
707             dy10             = _mm_sub_pd(iy1,jy0);
708             dz10             = _mm_sub_pd(iz1,jz0);
709             dx20             = _mm_sub_pd(ix2,jx0);
710             dy20             = _mm_sub_pd(iy2,jy0);
711             dz20             = _mm_sub_pd(iz2,jz0);
712
713             /* Calculate squared distance and things based on it */
714             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
715             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
716             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
717
718             rinv00           = sse2_invsqrt_d(rsq00);
719             rinv10           = sse2_invsqrt_d(rsq10);
720             rinv20           = sse2_invsqrt_d(rsq20);
721
722             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
723             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
724             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
725
726             /* Load parameters for j particles */
727             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
728             vdwjidx0A        = 2*vdwtype[jnrA+0];
729             vdwjidx0B        = 2*vdwtype[jnrB+0];
730
731             fjx0             = _mm_setzero_pd();
732             fjy0             = _mm_setzero_pd();
733             fjz0             = _mm_setzero_pd();
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             r00              = _mm_mul_pd(rsq00,rinv00);
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq00             = _mm_mul_pd(iq0,jq0);
743             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
744                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
745
746             /* Calculate table index by multiplying r with table scale and truncate to integer */
747             rt               = _mm_mul_pd(r00,vftabscale);
748             vfitab           = _mm_cvttpd_epi32(rt);
749             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
750             vfitab           = _mm_slli_epi32(vfitab,3);
751
752             /* COULOMB ELECTROSTATICS */
753             velec            = _mm_mul_pd(qq00,rinv00);
754             felec            = _mm_mul_pd(velec,rinvsq00);
755
756             /* CUBIC SPLINE TABLE DISPERSION */
757             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
758             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
759             GMX_MM_TRANSPOSE2_PD(Y,F);
760             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
761             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
762             GMX_MM_TRANSPOSE2_PD(G,H);
763             Heps             = _mm_mul_pd(vfeps,H);
764             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
765             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
766             fvdw6            = _mm_mul_pd(c6_00,FF);
767
768             /* CUBIC SPLINE TABLE REPULSION */
769             vfitab           = _mm_add_epi32(vfitab,ifour);
770             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
771             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
772             GMX_MM_TRANSPOSE2_PD(Y,F);
773             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
774             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
775             GMX_MM_TRANSPOSE2_PD(G,H);
776             Heps             = _mm_mul_pd(vfeps,H);
777             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
778             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
779             fvdw12           = _mm_mul_pd(c12_00,FF);
780             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
781
782             fscal            = _mm_add_pd(felec,fvdw);
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm_mul_pd(fscal,dx00);
786             ty               = _mm_mul_pd(fscal,dy00);
787             tz               = _mm_mul_pd(fscal,dz00);
788
789             /* Update vectorial force */
790             fix0             = _mm_add_pd(fix0,tx);
791             fiy0             = _mm_add_pd(fiy0,ty);
792             fiz0             = _mm_add_pd(fiz0,tz);
793
794             fjx0             = _mm_add_pd(fjx0,tx);
795             fjy0             = _mm_add_pd(fjy0,ty);
796             fjz0             = _mm_add_pd(fjz0,tz);
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq10             = _mm_mul_pd(iq1,jq0);
804
805             /* COULOMB ELECTROSTATICS */
806             velec            = _mm_mul_pd(qq10,rinv10);
807             felec            = _mm_mul_pd(velec,rinvsq10);
808
809             fscal            = felec;
810
811             /* Calculate temporary vectorial force */
812             tx               = _mm_mul_pd(fscal,dx10);
813             ty               = _mm_mul_pd(fscal,dy10);
814             tz               = _mm_mul_pd(fscal,dz10);
815
816             /* Update vectorial force */
817             fix1             = _mm_add_pd(fix1,tx);
818             fiy1             = _mm_add_pd(fiy1,ty);
819             fiz1             = _mm_add_pd(fiz1,tz);
820
821             fjx0             = _mm_add_pd(fjx0,tx);
822             fjy0             = _mm_add_pd(fjy0,ty);
823             fjz0             = _mm_add_pd(fjz0,tz);
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             /* Compute parameters for interactions between i and j atoms */
830             qq20             = _mm_mul_pd(iq2,jq0);
831
832             /* COULOMB ELECTROSTATICS */
833             velec            = _mm_mul_pd(qq20,rinv20);
834             felec            = _mm_mul_pd(velec,rinvsq20);
835
836             fscal            = felec;
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm_mul_pd(fscal,dx20);
840             ty               = _mm_mul_pd(fscal,dy20);
841             tz               = _mm_mul_pd(fscal,dz20);
842
843             /* Update vectorial force */
844             fix2             = _mm_add_pd(fix2,tx);
845             fiy2             = _mm_add_pd(fiy2,ty);
846             fiz2             = _mm_add_pd(fiz2,tz);
847
848             fjx0             = _mm_add_pd(fjx0,tx);
849             fjy0             = _mm_add_pd(fjy0,ty);
850             fjz0             = _mm_add_pd(fjz0,tz);
851
852             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
853
854             /* Inner loop uses 111 flops */
855         }
856
857         if(jidx<j_index_end)
858         {
859
860             jnrA             = jjnr[jidx];
861             j_coord_offsetA  = DIM*jnrA;
862
863             /* load j atom coordinates */
864             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm_sub_pd(ix0,jx0);
869             dy00             = _mm_sub_pd(iy0,jy0);
870             dz00             = _mm_sub_pd(iz0,jz0);
871             dx10             = _mm_sub_pd(ix1,jx0);
872             dy10             = _mm_sub_pd(iy1,jy0);
873             dz10             = _mm_sub_pd(iz1,jz0);
874             dx20             = _mm_sub_pd(ix2,jx0);
875             dy20             = _mm_sub_pd(iy2,jy0);
876             dz20             = _mm_sub_pd(iz2,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
880             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
881             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
882
883             rinv00           = sse2_invsqrt_d(rsq00);
884             rinv10           = sse2_invsqrt_d(rsq10);
885             rinv20           = sse2_invsqrt_d(rsq20);
886
887             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
888             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
889             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
890
891             /* Load parameters for j particles */
892             jq0              = _mm_load_sd(charge+jnrA+0);
893             vdwjidx0A        = 2*vdwtype[jnrA+0];
894
895             fjx0             = _mm_setzero_pd();
896             fjy0             = _mm_setzero_pd();
897             fjz0             = _mm_setzero_pd();
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r00              = _mm_mul_pd(rsq00,rinv00);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq00             = _mm_mul_pd(iq0,jq0);
907             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
908
909             /* Calculate table index by multiplying r with table scale and truncate to integer */
910             rt               = _mm_mul_pd(r00,vftabscale);
911             vfitab           = _mm_cvttpd_epi32(rt);
912             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
913             vfitab           = _mm_slli_epi32(vfitab,3);
914
915             /* COULOMB ELECTROSTATICS */
916             velec            = _mm_mul_pd(qq00,rinv00);
917             felec            = _mm_mul_pd(velec,rinvsq00);
918
919             /* CUBIC SPLINE TABLE DISPERSION */
920             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
921             F                = _mm_setzero_pd();
922             GMX_MM_TRANSPOSE2_PD(Y,F);
923             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
924             H                = _mm_setzero_pd();
925             GMX_MM_TRANSPOSE2_PD(G,H);
926             Heps             = _mm_mul_pd(vfeps,H);
927             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
928             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
929             fvdw6            = _mm_mul_pd(c6_00,FF);
930
931             /* CUBIC SPLINE TABLE REPULSION */
932             vfitab           = _mm_add_epi32(vfitab,ifour);
933             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
934             F                = _mm_setzero_pd();
935             GMX_MM_TRANSPOSE2_PD(Y,F);
936             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
937             H                = _mm_setzero_pd();
938             GMX_MM_TRANSPOSE2_PD(G,H);
939             Heps             = _mm_mul_pd(vfeps,H);
940             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
941             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
942             fvdw12           = _mm_mul_pd(c12_00,FF);
943             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
944
945             fscal            = _mm_add_pd(felec,fvdw);
946
947             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_pd(fscal,dx00);
951             ty               = _mm_mul_pd(fscal,dy00);
952             tz               = _mm_mul_pd(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm_add_pd(fix0,tx);
956             fiy0             = _mm_add_pd(fiy0,ty);
957             fiz0             = _mm_add_pd(fiz0,tz);
958
959             fjx0             = _mm_add_pd(fjx0,tx);
960             fjy0             = _mm_add_pd(fjy0,ty);
961             fjz0             = _mm_add_pd(fjz0,tz);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq10             = _mm_mul_pd(iq1,jq0);
969
970             /* COULOMB ELECTROSTATICS */
971             velec            = _mm_mul_pd(qq10,rinv10);
972             felec            = _mm_mul_pd(velec,rinvsq10);
973
974             fscal            = felec;
975
976             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm_mul_pd(fscal,dx10);
980             ty               = _mm_mul_pd(fscal,dy10);
981             tz               = _mm_mul_pd(fscal,dz10);
982
983             /* Update vectorial force */
984             fix1             = _mm_add_pd(fix1,tx);
985             fiy1             = _mm_add_pd(fiy1,ty);
986             fiz1             = _mm_add_pd(fiz1,tz);
987
988             fjx0             = _mm_add_pd(fjx0,tx);
989             fjy0             = _mm_add_pd(fjy0,ty);
990             fjz0             = _mm_add_pd(fjz0,tz);
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             /* Compute parameters for interactions between i and j atoms */
997             qq20             = _mm_mul_pd(iq2,jq0);
998
999             /* COULOMB ELECTROSTATICS */
1000             velec            = _mm_mul_pd(qq20,rinv20);
1001             felec            = _mm_mul_pd(velec,rinvsq20);
1002
1003             fscal            = felec;
1004
1005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_pd(fscal,dx20);
1009             ty               = _mm_mul_pd(fscal,dy20);
1010             tz               = _mm_mul_pd(fscal,dz20);
1011
1012             /* Update vectorial force */
1013             fix2             = _mm_add_pd(fix2,tx);
1014             fiy2             = _mm_add_pd(fiy2,ty);
1015             fiz2             = _mm_add_pd(fiz2,tz);
1016
1017             fjx0             = _mm_add_pd(fjx0,tx);
1018             fjy0             = _mm_add_pd(fjy0,ty);
1019             fjz0             = _mm_add_pd(fjz0,tz);
1020
1021             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1022
1023             /* Inner loop uses 111 flops */
1024         }
1025
1026         /* End of innermost loop */
1027
1028         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1029                                               f+i_coord_offset,fshift+i_shift_offset);
1030
1031         /* Increment number of inner iterations */
1032         inneriter                  += j_index_end - j_index_start;
1033
1034         /* Outer loop uses 18 flops */
1035     }
1036
1037     /* Increment number of outer iterations */
1038     outeriter        += nri;
1039
1040     /* Update outer/inner flops */
1041
1042     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1043 }