Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_pd(rsq00);
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209
210             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
211             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
212             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218
219             fjx0             = _mm_setzero_pd();
220             fjy0             = _mm_setzero_pd();
221             fjz0             = _mm_setzero_pd();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm_mul_pd(iq0,jq0);
231             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
232                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_pd(r00,vftabscale);
236             vfitab           = _mm_cvttpd_epi32(rt);
237             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
238             vfitab           = _mm_slli_epi32(vfitab,3);
239
240             /* COULOMB ELECTROSTATICS */
241             velec            = _mm_mul_pd(qq00,rinv00);
242             felec            = _mm_mul_pd(velec,rinvsq00);
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
246             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
247             GMX_MM_TRANSPOSE2_PD(Y,F);
248             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
249             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
250             GMX_MM_TRANSPOSE2_PD(G,H);
251             Heps             = _mm_mul_pd(vfeps,H);
252             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
253             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
254             vvdw6            = _mm_mul_pd(c6_00,VV);
255             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
256             fvdw6            = _mm_mul_pd(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             GMX_MM_TRANSPOSE2_PD(Y,F);
263             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
264             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
265             GMX_MM_TRANSPOSE2_PD(G,H);
266             Heps             = _mm_mul_pd(vfeps,H);
267             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
268             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
269             vvdw12           = _mm_mul_pd(c12_00,VV);
270             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
271             fvdw12           = _mm_mul_pd(c12_00,FF);
272             vvdw             = _mm_add_pd(vvdw12,vvdw6);
273             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm_add_pd(velecsum,velec);
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = _mm_add_pd(felec,fvdw);
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_pd(fscal,dx00);
283             ty               = _mm_mul_pd(fscal,dy00);
284             tz               = _mm_mul_pd(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm_add_pd(fix0,tx);
288             fiy0             = _mm_add_pd(fiy0,ty);
289             fiz0             = _mm_add_pd(fiz0,tz);
290
291             fjx0             = _mm_add_pd(fjx0,tx);
292             fjy0             = _mm_add_pd(fjy0,ty);
293             fjz0             = _mm_add_pd(fjz0,tz);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_pd(iq1,jq0);
301
302             /* COULOMB ELECTROSTATICS */
303             velec            = _mm_mul_pd(qq10,rinv10);
304             felec            = _mm_mul_pd(velec,rinvsq10);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_pd(fscal,dx10);
313             ty               = _mm_mul_pd(fscal,dy10);
314             tz               = _mm_mul_pd(fscal,dz10);
315
316             /* Update vectorial force */
317             fix1             = _mm_add_pd(fix1,tx);
318             fiy1             = _mm_add_pd(fiy1,ty);
319             fiz1             = _mm_add_pd(fiz1,tz);
320
321             fjx0             = _mm_add_pd(fjx0,tx);
322             fjy0             = _mm_add_pd(fjy0,ty);
323             fjz0             = _mm_add_pd(fjz0,tz);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq20             = _mm_mul_pd(iq2,jq0);
331
332             /* COULOMB ELECTROSTATICS */
333             velec            = _mm_mul_pd(qq20,rinv20);
334             felec            = _mm_mul_pd(velec,rinvsq20);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm_add_pd(velecsum,velec);
338
339             fscal            = felec;
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm_mul_pd(fscal,dx20);
343             ty               = _mm_mul_pd(fscal,dy20);
344             tz               = _mm_mul_pd(fscal,dz20);
345
346             /* Update vectorial force */
347             fix2             = _mm_add_pd(fix2,tx);
348             fiy2             = _mm_add_pd(fiy2,ty);
349             fiz2             = _mm_add_pd(fiz2,tz);
350
351             fjx0             = _mm_add_pd(fjx0,tx);
352             fjy0             = _mm_add_pd(fjy0,ty);
353             fjz0             = _mm_add_pd(fjz0,tz);
354
355             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
356
357             /* Inner loop uses 122 flops */
358         }
359
360         if(jidx<j_index_end)
361         {
362
363             jnrA             = jjnr[jidx];
364             j_coord_offsetA  = DIM*jnrA;
365
366             /* load j atom coordinates */
367             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
368                                               &jx0,&jy0,&jz0);
369
370             /* Calculate displacement vector */
371             dx00             = _mm_sub_pd(ix0,jx0);
372             dy00             = _mm_sub_pd(iy0,jy0);
373             dz00             = _mm_sub_pd(iz0,jz0);
374             dx10             = _mm_sub_pd(ix1,jx0);
375             dy10             = _mm_sub_pd(iy1,jy0);
376             dz10             = _mm_sub_pd(iz1,jz0);
377             dx20             = _mm_sub_pd(ix2,jx0);
378             dy20             = _mm_sub_pd(iy2,jy0);
379             dz20             = _mm_sub_pd(iz2,jz0);
380
381             /* Calculate squared distance and things based on it */
382             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
383             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
384             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
385
386             rinv00           = gmx_mm_invsqrt_pd(rsq00);
387             rinv10           = gmx_mm_invsqrt_pd(rsq10);
388             rinv20           = gmx_mm_invsqrt_pd(rsq20);
389
390             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
391             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
392             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
393
394             /* Load parameters for j particles */
395             jq0              = _mm_load_sd(charge+jnrA+0);
396             vdwjidx0A        = 2*vdwtype[jnrA+0];
397
398             fjx0             = _mm_setzero_pd();
399             fjy0             = _mm_setzero_pd();
400             fjz0             = _mm_setzero_pd();
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             r00              = _mm_mul_pd(rsq00,rinv00);
407
408             /* Compute parameters for interactions between i and j atoms */
409             qq00             = _mm_mul_pd(iq0,jq0);
410             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
411
412             /* Calculate table index by multiplying r with table scale and truncate to integer */
413             rt               = _mm_mul_pd(r00,vftabscale);
414             vfitab           = _mm_cvttpd_epi32(rt);
415             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
416             vfitab           = _mm_slli_epi32(vfitab,3);
417
418             /* COULOMB ELECTROSTATICS */
419             velec            = _mm_mul_pd(qq00,rinv00);
420             felec            = _mm_mul_pd(velec,rinvsq00);
421
422             /* CUBIC SPLINE TABLE DISPERSION */
423             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
424             F                = _mm_setzero_pd();
425             GMX_MM_TRANSPOSE2_PD(Y,F);
426             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
427             H                = _mm_setzero_pd();
428             GMX_MM_TRANSPOSE2_PD(G,H);
429             Heps             = _mm_mul_pd(vfeps,H);
430             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
431             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
432             vvdw6            = _mm_mul_pd(c6_00,VV);
433             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
434             fvdw6            = _mm_mul_pd(c6_00,FF);
435
436             /* CUBIC SPLINE TABLE REPULSION */
437             vfitab           = _mm_add_epi32(vfitab,ifour);
438             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
439             F                = _mm_setzero_pd();
440             GMX_MM_TRANSPOSE2_PD(Y,F);
441             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
442             H                = _mm_setzero_pd();
443             GMX_MM_TRANSPOSE2_PD(G,H);
444             Heps             = _mm_mul_pd(vfeps,H);
445             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
446             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
447             vvdw12           = _mm_mul_pd(c12_00,VV);
448             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
449             fvdw12           = _mm_mul_pd(c12_00,FF);
450             vvdw             = _mm_add_pd(vvdw12,vvdw6);
451             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
455             velecsum         = _mm_add_pd(velecsum,velec);
456             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
457             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
458
459             fscal            = _mm_add_pd(felec,fvdw);
460
461             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_pd(fscal,dx00);
465             ty               = _mm_mul_pd(fscal,dy00);
466             tz               = _mm_mul_pd(fscal,dz00);
467
468             /* Update vectorial force */
469             fix0             = _mm_add_pd(fix0,tx);
470             fiy0             = _mm_add_pd(fiy0,ty);
471             fiz0             = _mm_add_pd(fiz0,tz);
472
473             fjx0             = _mm_add_pd(fjx0,tx);
474             fjy0             = _mm_add_pd(fjy0,ty);
475             fjz0             = _mm_add_pd(fjz0,tz);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             /* Compute parameters for interactions between i and j atoms */
482             qq10             = _mm_mul_pd(iq1,jq0);
483
484             /* COULOMB ELECTROSTATICS */
485             velec            = _mm_mul_pd(qq10,rinv10);
486             felec            = _mm_mul_pd(velec,rinvsq10);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
490             velecsum         = _mm_add_pd(velecsum,velec);
491
492             fscal            = felec;
493
494             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_pd(fscal,dx10);
498             ty               = _mm_mul_pd(fscal,dy10);
499             tz               = _mm_mul_pd(fscal,dz10);
500
501             /* Update vectorial force */
502             fix1             = _mm_add_pd(fix1,tx);
503             fiy1             = _mm_add_pd(fiy1,ty);
504             fiz1             = _mm_add_pd(fiz1,tz);
505
506             fjx0             = _mm_add_pd(fjx0,tx);
507             fjy0             = _mm_add_pd(fjy0,ty);
508             fjz0             = _mm_add_pd(fjz0,tz);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq20             = _mm_mul_pd(iq2,jq0);
516
517             /* COULOMB ELECTROSTATICS */
518             velec            = _mm_mul_pd(qq20,rinv20);
519             felec            = _mm_mul_pd(velec,rinvsq20);
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx20);
531             ty               = _mm_mul_pd(fscal,dy20);
532             tz               = _mm_mul_pd(fscal,dz20);
533
534             /* Update vectorial force */
535             fix2             = _mm_add_pd(fix2,tx);
536             fiy2             = _mm_add_pd(fiy2,ty);
537             fiz2             = _mm_add_pd(fiz2,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
544
545             /* Inner loop uses 122 flops */
546         }
547
548         /* End of innermost loop */
549
550         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
551                                               f+i_coord_offset,fshift+i_shift_offset);
552
553         ggid                        = gid[iidx];
554         /* Update potential energies */
555         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
556         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
557
558         /* Increment number of inner iterations */
559         inneriter                  += j_index_end - j_index_start;
560
561         /* Outer loop uses 20 flops */
562     }
563
564     /* Increment number of outer iterations */
565     outeriter        += nri;
566
567     /* Update outer/inner flops */
568
569     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*122);
570 }
571 /*
572  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
573  * Electrostatics interaction: Coulomb
574  * VdW interaction:            CubicSplineTable
575  * Geometry:                   Water3-Particle
576  * Calculate force/pot:        Force
577  */
578 void
579 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse2_double
580                     (t_nblist                    * gmx_restrict       nlist,
581                      rvec                        * gmx_restrict          xx,
582                      rvec                        * gmx_restrict          ff,
583                      t_forcerec                  * gmx_restrict          fr,
584                      t_mdatoms                   * gmx_restrict     mdatoms,
585                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
586                      t_nrnb                      * gmx_restrict        nrnb)
587 {
588     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
589      * just 0 for non-waters.
590      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
591      * jnr indices corresponding to data put in the four positions in the SIMD register.
592      */
593     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
594     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
595     int              jnrA,jnrB;
596     int              j_coord_offsetA,j_coord_offsetB;
597     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
598     real             rcutoff_scalar;
599     real             *shiftvec,*fshift,*x,*f;
600     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
601     int              vdwioffset0;
602     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
603     int              vdwioffset1;
604     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
605     int              vdwioffset2;
606     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
607     int              vdwjidx0A,vdwjidx0B;
608     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
609     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
610     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
611     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
612     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
613     real             *charge;
614     int              nvdwtype;
615     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
616     int              *vdwtype;
617     real             *vdwparam;
618     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
619     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
620     __m128i          vfitab;
621     __m128i          ifour       = _mm_set1_epi32(4);
622     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
623     real             *vftab;
624     __m128d          dummy_mask,cutoff_mask;
625     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
626     __m128d          one     = _mm_set1_pd(1.0);
627     __m128d          two     = _mm_set1_pd(2.0);
628     x                = xx[0];
629     f                = ff[0];
630
631     nri              = nlist->nri;
632     iinr             = nlist->iinr;
633     jindex           = nlist->jindex;
634     jjnr             = nlist->jjnr;
635     shiftidx         = nlist->shift;
636     gid              = nlist->gid;
637     shiftvec         = fr->shift_vec[0];
638     fshift           = fr->fshift[0];
639     facel            = _mm_set1_pd(fr->epsfac);
640     charge           = mdatoms->chargeA;
641     nvdwtype         = fr->ntype;
642     vdwparam         = fr->nbfp;
643     vdwtype          = mdatoms->typeA;
644
645     vftab            = kernel_data->table_vdw->data;
646     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
647
648     /* Setup water-specific parameters */
649     inr              = nlist->iinr[0];
650     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
651     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
652     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
653     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
654
655     /* Avoid stupid compiler warnings */
656     jnrA = jnrB = 0;
657     j_coord_offsetA = 0;
658     j_coord_offsetB = 0;
659
660     outeriter        = 0;
661     inneriter        = 0;
662
663     /* Start outer loop over neighborlists */
664     for(iidx=0; iidx<nri; iidx++)
665     {
666         /* Load shift vector for this list */
667         i_shift_offset   = DIM*shiftidx[iidx];
668
669         /* Load limits for loop over neighbors */
670         j_index_start    = jindex[iidx];
671         j_index_end      = jindex[iidx+1];
672
673         /* Get outer coordinate index */
674         inr              = iinr[iidx];
675         i_coord_offset   = DIM*inr;
676
677         /* Load i particle coords and add shift vector */
678         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
679                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
680
681         fix0             = _mm_setzero_pd();
682         fiy0             = _mm_setzero_pd();
683         fiz0             = _mm_setzero_pd();
684         fix1             = _mm_setzero_pd();
685         fiy1             = _mm_setzero_pd();
686         fiz1             = _mm_setzero_pd();
687         fix2             = _mm_setzero_pd();
688         fiy2             = _mm_setzero_pd();
689         fiz2             = _mm_setzero_pd();
690
691         /* Start inner kernel loop */
692         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
693         {
694
695             /* Get j neighbor index, and coordinate index */
696             jnrA             = jjnr[jidx];
697             jnrB             = jjnr[jidx+1];
698             j_coord_offsetA  = DIM*jnrA;
699             j_coord_offsetB  = DIM*jnrB;
700
701             /* load j atom coordinates */
702             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
703                                               &jx0,&jy0,&jz0);
704
705             /* Calculate displacement vector */
706             dx00             = _mm_sub_pd(ix0,jx0);
707             dy00             = _mm_sub_pd(iy0,jy0);
708             dz00             = _mm_sub_pd(iz0,jz0);
709             dx10             = _mm_sub_pd(ix1,jx0);
710             dy10             = _mm_sub_pd(iy1,jy0);
711             dz10             = _mm_sub_pd(iz1,jz0);
712             dx20             = _mm_sub_pd(ix2,jx0);
713             dy20             = _mm_sub_pd(iy2,jy0);
714             dz20             = _mm_sub_pd(iz2,jz0);
715
716             /* Calculate squared distance and things based on it */
717             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
718             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
719             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
720
721             rinv00           = gmx_mm_invsqrt_pd(rsq00);
722             rinv10           = gmx_mm_invsqrt_pd(rsq10);
723             rinv20           = gmx_mm_invsqrt_pd(rsq20);
724
725             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
726             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
727             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
728
729             /* Load parameters for j particles */
730             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
731             vdwjidx0A        = 2*vdwtype[jnrA+0];
732             vdwjidx0B        = 2*vdwtype[jnrB+0];
733
734             fjx0             = _mm_setzero_pd();
735             fjy0             = _mm_setzero_pd();
736             fjz0             = _mm_setzero_pd();
737
738             /**************************
739              * CALCULATE INTERACTIONS *
740              **************************/
741
742             r00              = _mm_mul_pd(rsq00,rinv00);
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq00             = _mm_mul_pd(iq0,jq0);
746             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
747                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
748
749             /* Calculate table index by multiplying r with table scale and truncate to integer */
750             rt               = _mm_mul_pd(r00,vftabscale);
751             vfitab           = _mm_cvttpd_epi32(rt);
752             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
753             vfitab           = _mm_slli_epi32(vfitab,3);
754
755             /* COULOMB ELECTROSTATICS */
756             velec            = _mm_mul_pd(qq00,rinv00);
757             felec            = _mm_mul_pd(velec,rinvsq00);
758
759             /* CUBIC SPLINE TABLE DISPERSION */
760             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
761             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
762             GMX_MM_TRANSPOSE2_PD(Y,F);
763             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
764             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
765             GMX_MM_TRANSPOSE2_PD(G,H);
766             Heps             = _mm_mul_pd(vfeps,H);
767             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
768             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
769             fvdw6            = _mm_mul_pd(c6_00,FF);
770
771             /* CUBIC SPLINE TABLE REPULSION */
772             vfitab           = _mm_add_epi32(vfitab,ifour);
773             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
774             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
775             GMX_MM_TRANSPOSE2_PD(Y,F);
776             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
777             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
778             GMX_MM_TRANSPOSE2_PD(G,H);
779             Heps             = _mm_mul_pd(vfeps,H);
780             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
781             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
782             fvdw12           = _mm_mul_pd(c12_00,FF);
783             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
784
785             fscal            = _mm_add_pd(felec,fvdw);
786
787             /* Calculate temporary vectorial force */
788             tx               = _mm_mul_pd(fscal,dx00);
789             ty               = _mm_mul_pd(fscal,dy00);
790             tz               = _mm_mul_pd(fscal,dz00);
791
792             /* Update vectorial force */
793             fix0             = _mm_add_pd(fix0,tx);
794             fiy0             = _mm_add_pd(fiy0,ty);
795             fiz0             = _mm_add_pd(fiz0,tz);
796
797             fjx0             = _mm_add_pd(fjx0,tx);
798             fjy0             = _mm_add_pd(fjy0,ty);
799             fjz0             = _mm_add_pd(fjz0,tz);
800
801             /**************************
802              * CALCULATE INTERACTIONS *
803              **************************/
804
805             /* Compute parameters for interactions between i and j atoms */
806             qq10             = _mm_mul_pd(iq1,jq0);
807
808             /* COULOMB ELECTROSTATICS */
809             velec            = _mm_mul_pd(qq10,rinv10);
810             felec            = _mm_mul_pd(velec,rinvsq10);
811
812             fscal            = felec;
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_pd(fscal,dx10);
816             ty               = _mm_mul_pd(fscal,dy10);
817             tz               = _mm_mul_pd(fscal,dz10);
818
819             /* Update vectorial force */
820             fix1             = _mm_add_pd(fix1,tx);
821             fiy1             = _mm_add_pd(fiy1,ty);
822             fiz1             = _mm_add_pd(fiz1,tz);
823
824             fjx0             = _mm_add_pd(fjx0,tx);
825             fjy0             = _mm_add_pd(fjy0,ty);
826             fjz0             = _mm_add_pd(fjz0,tz);
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             /* Compute parameters for interactions between i and j atoms */
833             qq20             = _mm_mul_pd(iq2,jq0);
834
835             /* COULOMB ELECTROSTATICS */
836             velec            = _mm_mul_pd(qq20,rinv20);
837             felec            = _mm_mul_pd(velec,rinvsq20);
838
839             fscal            = felec;
840
841             /* Calculate temporary vectorial force */
842             tx               = _mm_mul_pd(fscal,dx20);
843             ty               = _mm_mul_pd(fscal,dy20);
844             tz               = _mm_mul_pd(fscal,dz20);
845
846             /* Update vectorial force */
847             fix2             = _mm_add_pd(fix2,tx);
848             fiy2             = _mm_add_pd(fiy2,ty);
849             fiz2             = _mm_add_pd(fiz2,tz);
850
851             fjx0             = _mm_add_pd(fjx0,tx);
852             fjy0             = _mm_add_pd(fjy0,ty);
853             fjz0             = _mm_add_pd(fjz0,tz);
854
855             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
856
857             /* Inner loop uses 111 flops */
858         }
859
860         if(jidx<j_index_end)
861         {
862
863             jnrA             = jjnr[jidx];
864             j_coord_offsetA  = DIM*jnrA;
865
866             /* load j atom coordinates */
867             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
868                                               &jx0,&jy0,&jz0);
869
870             /* Calculate displacement vector */
871             dx00             = _mm_sub_pd(ix0,jx0);
872             dy00             = _mm_sub_pd(iy0,jy0);
873             dz00             = _mm_sub_pd(iz0,jz0);
874             dx10             = _mm_sub_pd(ix1,jx0);
875             dy10             = _mm_sub_pd(iy1,jy0);
876             dz10             = _mm_sub_pd(iz1,jz0);
877             dx20             = _mm_sub_pd(ix2,jx0);
878             dy20             = _mm_sub_pd(iy2,jy0);
879             dz20             = _mm_sub_pd(iz2,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
883             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
884             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
885
886             rinv00           = gmx_mm_invsqrt_pd(rsq00);
887             rinv10           = gmx_mm_invsqrt_pd(rsq10);
888             rinv20           = gmx_mm_invsqrt_pd(rsq20);
889
890             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
891             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
892             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
893
894             /* Load parameters for j particles */
895             jq0              = _mm_load_sd(charge+jnrA+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897
898             fjx0             = _mm_setzero_pd();
899             fjy0             = _mm_setzero_pd();
900             fjz0             = _mm_setzero_pd();
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r00              = _mm_mul_pd(rsq00,rinv00);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq00             = _mm_mul_pd(iq0,jq0);
910             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
911
912             /* Calculate table index by multiplying r with table scale and truncate to integer */
913             rt               = _mm_mul_pd(r00,vftabscale);
914             vfitab           = _mm_cvttpd_epi32(rt);
915             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
916             vfitab           = _mm_slli_epi32(vfitab,3);
917
918             /* COULOMB ELECTROSTATICS */
919             velec            = _mm_mul_pd(qq00,rinv00);
920             felec            = _mm_mul_pd(velec,rinvsq00);
921
922             /* CUBIC SPLINE TABLE DISPERSION */
923             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
924             F                = _mm_setzero_pd();
925             GMX_MM_TRANSPOSE2_PD(Y,F);
926             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
927             H                = _mm_setzero_pd();
928             GMX_MM_TRANSPOSE2_PD(G,H);
929             Heps             = _mm_mul_pd(vfeps,H);
930             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
931             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
932             fvdw6            = _mm_mul_pd(c6_00,FF);
933
934             /* CUBIC SPLINE TABLE REPULSION */
935             vfitab           = _mm_add_epi32(vfitab,ifour);
936             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
937             F                = _mm_setzero_pd();
938             GMX_MM_TRANSPOSE2_PD(Y,F);
939             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
940             H                = _mm_setzero_pd();
941             GMX_MM_TRANSPOSE2_PD(G,H);
942             Heps             = _mm_mul_pd(vfeps,H);
943             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
944             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
945             fvdw12           = _mm_mul_pd(c12_00,FF);
946             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
947
948             fscal            = _mm_add_pd(felec,fvdw);
949
950             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm_mul_pd(fscal,dx00);
954             ty               = _mm_mul_pd(fscal,dy00);
955             tz               = _mm_mul_pd(fscal,dz00);
956
957             /* Update vectorial force */
958             fix0             = _mm_add_pd(fix0,tx);
959             fiy0             = _mm_add_pd(fiy0,ty);
960             fiz0             = _mm_add_pd(fiz0,tz);
961
962             fjx0             = _mm_add_pd(fjx0,tx);
963             fjy0             = _mm_add_pd(fjy0,ty);
964             fjz0             = _mm_add_pd(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq10             = _mm_mul_pd(iq1,jq0);
972
973             /* COULOMB ELECTROSTATICS */
974             velec            = _mm_mul_pd(qq10,rinv10);
975             felec            = _mm_mul_pd(velec,rinvsq10);
976
977             fscal            = felec;
978
979             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_pd(fscal,dx10);
983             ty               = _mm_mul_pd(fscal,dy10);
984             tz               = _mm_mul_pd(fscal,dz10);
985
986             /* Update vectorial force */
987             fix1             = _mm_add_pd(fix1,tx);
988             fiy1             = _mm_add_pd(fiy1,ty);
989             fiz1             = _mm_add_pd(fiz1,tz);
990
991             fjx0             = _mm_add_pd(fjx0,tx);
992             fjy0             = _mm_add_pd(fjy0,ty);
993             fjz0             = _mm_add_pd(fjz0,tz);
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq20             = _mm_mul_pd(iq2,jq0);
1001
1002             /* COULOMB ELECTROSTATICS */
1003             velec            = _mm_mul_pd(qq20,rinv20);
1004             felec            = _mm_mul_pd(velec,rinvsq20);
1005
1006             fscal            = felec;
1007
1008             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_pd(fscal,dx20);
1012             ty               = _mm_mul_pd(fscal,dy20);
1013             tz               = _mm_mul_pd(fscal,dz20);
1014
1015             /* Update vectorial force */
1016             fix2             = _mm_add_pd(fix2,tx);
1017             fiy2             = _mm_add_pd(fiy2,ty);
1018             fiz2             = _mm_add_pd(fiz2,tz);
1019
1020             fjx0             = _mm_add_pd(fjx0,tx);
1021             fjy0             = _mm_add_pd(fjy0,ty);
1022             fjz0             = _mm_add_pd(fjz0,tz);
1023
1024             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1025
1026             /* Inner loop uses 111 flops */
1027         }
1028
1029         /* End of innermost loop */
1030
1031         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1032                                               f+i_coord_offset,fshift+i_shift_offset);
1033
1034         /* Increment number of inner iterations */
1035         inneriter                  += j_index_end - j_index_start;
1036
1037         /* Outer loop uses 18 flops */
1038     }
1039
1040     /* Increment number of outer iterations */
1041     outeriter        += nri;
1042
1043     /* Update outer/inner flops */
1044
1045     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1046 }