Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->ic->epsfac);
106     charge           = mdatoms->chargeA;
107
108     vftab            = kernel_data->table_elec->data;
109     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
135
136         fix0             = _mm_setzero_pd();
137         fiy0             = _mm_setzero_pd();
138         fiz0             = _mm_setzero_pd();
139
140         /* Load parameters for i particles */
141         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_pd();
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
148         {
149
150             /* Get j neighbor index, and coordinate index */
151             jnrA             = jjnr[jidx];
152             jnrB             = jjnr[jidx+1];
153             j_coord_offsetA  = DIM*jnrA;
154             j_coord_offsetB  = DIM*jnrB;
155
156             /* load j atom coordinates */
157             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
158                                               &jx0,&jy0,&jz0);
159
160             /* Calculate displacement vector */
161             dx00             = _mm_sub_pd(ix0,jx0);
162             dy00             = _mm_sub_pd(iy0,jy0);
163             dz00             = _mm_sub_pd(iz0,jz0);
164
165             /* Calculate squared distance and things based on it */
166             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
167
168             rinv00           = sse2_invsqrt_d(rsq00);
169
170             /* Load parameters for j particles */
171             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
172
173             /**************************
174              * CALCULATE INTERACTIONS *
175              **************************/
176
177             r00              = _mm_mul_pd(rsq00,rinv00);
178
179             /* Compute parameters for interactions between i and j atoms */
180             qq00             = _mm_mul_pd(iq0,jq0);
181
182             /* Calculate table index by multiplying r with table scale and truncate to integer */
183             rt               = _mm_mul_pd(r00,vftabscale);
184             vfitab           = _mm_cvttpd_epi32(rt);
185             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
186             vfitab           = _mm_slli_epi32(vfitab,2);
187
188             /* CUBIC SPLINE TABLE ELECTROSTATICS */
189             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
190             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
191             GMX_MM_TRANSPOSE2_PD(Y,F);
192             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
193             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
194             GMX_MM_TRANSPOSE2_PD(G,H);
195             Heps             = _mm_mul_pd(vfeps,H);
196             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
197             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
198             velec            = _mm_mul_pd(qq00,VV);
199             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
200             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
201
202             /* Update potential sum for this i atom from the interaction with this j atom. */
203             velecsum         = _mm_add_pd(velecsum,velec);
204
205             fscal            = felec;
206
207             /* Calculate temporary vectorial force */
208             tx               = _mm_mul_pd(fscal,dx00);
209             ty               = _mm_mul_pd(fscal,dy00);
210             tz               = _mm_mul_pd(fscal,dz00);
211
212             /* Update vectorial force */
213             fix0             = _mm_add_pd(fix0,tx);
214             fiy0             = _mm_add_pd(fiy0,ty);
215             fiz0             = _mm_add_pd(fiz0,tz);
216
217             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
218
219             /* Inner loop uses 43 flops */
220         }
221
222         if(jidx<j_index_end)
223         {
224
225             jnrA             = jjnr[jidx];
226             j_coord_offsetA  = DIM*jnrA;
227
228             /* load j atom coordinates */
229             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
230                                               &jx0,&jy0,&jz0);
231
232             /* Calculate displacement vector */
233             dx00             = _mm_sub_pd(ix0,jx0);
234             dy00             = _mm_sub_pd(iy0,jy0);
235             dz00             = _mm_sub_pd(iz0,jz0);
236
237             /* Calculate squared distance and things based on it */
238             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
239
240             rinv00           = sse2_invsqrt_d(rsq00);
241
242             /* Load parameters for j particles */
243             jq0              = _mm_load_sd(charge+jnrA+0);
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm_mul_pd(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm_mul_pd(iq0,jq0);
253
254             /* Calculate table index by multiplying r with table scale and truncate to integer */
255             rt               = _mm_mul_pd(r00,vftabscale);
256             vfitab           = _mm_cvttpd_epi32(rt);
257             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
258             vfitab           = _mm_slli_epi32(vfitab,2);
259
260             /* CUBIC SPLINE TABLE ELECTROSTATICS */
261             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
262             F                = _mm_setzero_pd();
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_setzero_pd();
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Heps             = _mm_mul_pd(vfeps,H);
268             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
269             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
270             velec            = _mm_mul_pd(qq00,VV);
271             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
272             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
276             velecsum         = _mm_add_pd(velecsum,velec);
277
278             fscal            = felec;
279
280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx00);
284             ty               = _mm_mul_pd(fscal,dy00);
285             tz               = _mm_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_pd(fix0,tx);
289             fiy0             = _mm_add_pd(fiy0,ty);
290             fiz0             = _mm_add_pd(fiz0,tz);
291
292             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
293
294             /* Inner loop uses 43 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
300                                               f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
305
306         /* Increment number of inner iterations */
307         inneriter                  += j_index_end - j_index_start;
308
309         /* Outer loop uses 8 flops */
310     }
311
312     /* Increment number of outer iterations */
313     outeriter        += nri;
314
315     /* Update outer/inner flops */
316
317     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*43);
318 }
319 /*
320  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse2_double
321  * Electrostatics interaction: CubicSplineTable
322  * VdW interaction:            None
323  * Geometry:                   Particle-Particle
324  * Calculate force/pot:        Force
325  */
326 void
327 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse2_double
328                     (t_nblist                    * gmx_restrict       nlist,
329                      rvec                        * gmx_restrict          xx,
330                      rvec                        * gmx_restrict          ff,
331                      struct t_forcerec           * gmx_restrict          fr,
332                      t_mdatoms                   * gmx_restrict     mdatoms,
333                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
334                      t_nrnb                      * gmx_restrict        nrnb)
335 {
336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
337      * just 0 for non-waters.
338      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
339      * jnr indices corresponding to data put in the four positions in the SIMD register.
340      */
341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
343     int              jnrA,jnrB;
344     int              j_coord_offsetA,j_coord_offsetB;
345     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
346     real             rcutoff_scalar;
347     real             *shiftvec,*fshift,*x,*f;
348     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
349     int              vdwioffset0;
350     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
351     int              vdwjidx0A,vdwjidx0B;
352     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
353     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
354     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
355     real             *charge;
356     __m128i          vfitab;
357     __m128i          ifour       = _mm_set1_epi32(4);
358     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
359     real             *vftab;
360     __m128d          dummy_mask,cutoff_mask;
361     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
362     __m128d          one     = _mm_set1_pd(1.0);
363     __m128d          two     = _mm_set1_pd(2.0);
364     x                = xx[0];
365     f                = ff[0];
366
367     nri              = nlist->nri;
368     iinr             = nlist->iinr;
369     jindex           = nlist->jindex;
370     jjnr             = nlist->jjnr;
371     shiftidx         = nlist->shift;
372     gid              = nlist->gid;
373     shiftvec         = fr->shift_vec[0];
374     fshift           = fr->fshift[0];
375     facel            = _mm_set1_pd(fr->ic->epsfac);
376     charge           = mdatoms->chargeA;
377
378     vftab            = kernel_data->table_elec->data;
379     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
380
381     /* Avoid stupid compiler warnings */
382     jnrA = jnrB = 0;
383     j_coord_offsetA = 0;
384     j_coord_offsetB = 0;
385
386     outeriter        = 0;
387     inneriter        = 0;
388
389     /* Start outer loop over neighborlists */
390     for(iidx=0; iidx<nri; iidx++)
391     {
392         /* Load shift vector for this list */
393         i_shift_offset   = DIM*shiftidx[iidx];
394
395         /* Load limits for loop over neighbors */
396         j_index_start    = jindex[iidx];
397         j_index_end      = jindex[iidx+1];
398
399         /* Get outer coordinate index */
400         inr              = iinr[iidx];
401         i_coord_offset   = DIM*inr;
402
403         /* Load i particle coords and add shift vector */
404         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
405
406         fix0             = _mm_setzero_pd();
407         fiy0             = _mm_setzero_pd();
408         fiz0             = _mm_setzero_pd();
409
410         /* Load parameters for i particles */
411         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
412
413         /* Start inner kernel loop */
414         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
415         {
416
417             /* Get j neighbor index, and coordinate index */
418             jnrA             = jjnr[jidx];
419             jnrB             = jjnr[jidx+1];
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_pd(ix0,jx0);
429             dy00             = _mm_sub_pd(iy0,jy0);
430             dz00             = _mm_sub_pd(iz0,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
434
435             rinv00           = sse2_invsqrt_d(rsq00);
436
437             /* Load parameters for j particles */
438             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r00              = _mm_mul_pd(rsq00,rinv00);
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq00             = _mm_mul_pd(iq0,jq0);
448
449             /* Calculate table index by multiplying r with table scale and truncate to integer */
450             rt               = _mm_mul_pd(r00,vftabscale);
451             vfitab           = _mm_cvttpd_epi32(rt);
452             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
453             vfitab           = _mm_slli_epi32(vfitab,2);
454
455             /* CUBIC SPLINE TABLE ELECTROSTATICS */
456             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
457             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Heps             = _mm_mul_pd(vfeps,H);
463             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
464             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
465             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
466
467             fscal            = felec;
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm_mul_pd(fscal,dx00);
471             ty               = _mm_mul_pd(fscal,dy00);
472             tz               = _mm_mul_pd(fscal,dz00);
473
474             /* Update vectorial force */
475             fix0             = _mm_add_pd(fix0,tx);
476             fiy0             = _mm_add_pd(fiy0,ty);
477             fiz0             = _mm_add_pd(fiz0,tz);
478
479             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
480
481             /* Inner loop uses 39 flops */
482         }
483
484         if(jidx<j_index_end)
485         {
486
487             jnrA             = jjnr[jidx];
488             j_coord_offsetA  = DIM*jnrA;
489
490             /* load j atom coordinates */
491             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
492                                               &jx0,&jy0,&jz0);
493
494             /* Calculate displacement vector */
495             dx00             = _mm_sub_pd(ix0,jx0);
496             dy00             = _mm_sub_pd(iy0,jy0);
497             dz00             = _mm_sub_pd(iz0,jz0);
498
499             /* Calculate squared distance and things based on it */
500             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
501
502             rinv00           = sse2_invsqrt_d(rsq00);
503
504             /* Load parameters for j particles */
505             jq0              = _mm_load_sd(charge+jnrA+0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r00              = _mm_mul_pd(rsq00,rinv00);
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq00             = _mm_mul_pd(iq0,jq0);
515
516             /* Calculate table index by multiplying r with table scale and truncate to integer */
517             rt               = _mm_mul_pd(r00,vftabscale);
518             vfitab           = _mm_cvttpd_epi32(rt);
519             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
520             vfitab           = _mm_slli_epi32(vfitab,2);
521
522             /* CUBIC SPLINE TABLE ELECTROSTATICS */
523             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
524             F                = _mm_setzero_pd();
525             GMX_MM_TRANSPOSE2_PD(Y,F);
526             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
527             H                = _mm_setzero_pd();
528             GMX_MM_TRANSPOSE2_PD(G,H);
529             Heps             = _mm_mul_pd(vfeps,H);
530             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
531             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
532             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
533
534             fscal            = felec;
535
536             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_pd(fscal,dx00);
540             ty               = _mm_mul_pd(fscal,dy00);
541             tz               = _mm_mul_pd(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm_add_pd(fix0,tx);
545             fiy0             = _mm_add_pd(fiy0,ty);
546             fiz0             = _mm_add_pd(fiz0,tz);
547
548             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
549
550             /* Inner loop uses 39 flops */
551         }
552
553         /* End of innermost loop */
554
555         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
556                                               f+i_coord_offset,fshift+i_shift_offset);
557
558         /* Increment number of inner iterations */
559         inneriter                  += j_index_end - j_index_start;
560
561         /* Outer loop uses 7 flops */
562     }
563
564     /* Increment number of outer iterations */
565     outeriter        += nri;
566
567     /* Update outer/inner flops */
568
569     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
570 }