193bfe5ad98d9324d43648f12cf8008584c8fb99
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110
111     vftab            = kernel_data->table_elec->data;
112     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_pd();
148
149         /* Start inner kernel loop */
150         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
151         {
152
153             /* Get j neighbor index, and coordinate index */
154             jnrA             = jjnr[jidx];
155             jnrB             = jjnr[jidx+1];
156             j_coord_offsetA  = DIM*jnrA;
157             j_coord_offsetB  = DIM*jnrB;
158
159             /* load j atom coordinates */
160             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
161                                               &jx0,&jy0,&jz0);
162
163             /* Calculate displacement vector */
164             dx00             = _mm_sub_pd(ix0,jx0);
165             dy00             = _mm_sub_pd(iy0,jy0);
166             dz00             = _mm_sub_pd(iz0,jz0);
167
168             /* Calculate squared distance and things based on it */
169             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
170
171             rinv00           = gmx_mm_invsqrt_pd(rsq00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             r00              = _mm_mul_pd(rsq00,rinv00);
181
182             /* Compute parameters for interactions between i and j atoms */
183             qq00             = _mm_mul_pd(iq0,jq0);
184
185             /* Calculate table index by multiplying r with table scale and truncate to integer */
186             rt               = _mm_mul_pd(r00,vftabscale);
187             vfitab           = _mm_cvttpd_epi32(rt);
188             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
189             vfitab           = _mm_slli_epi32(vfitab,2);
190
191             /* CUBIC SPLINE TABLE ELECTROSTATICS */
192             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
193             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
194             GMX_MM_TRANSPOSE2_PD(Y,F);
195             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
196             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
197             GMX_MM_TRANSPOSE2_PD(G,H);
198             Heps             = _mm_mul_pd(vfeps,H);
199             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
200             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
201             velec            = _mm_mul_pd(qq00,VV);
202             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
203             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
204
205             /* Update potential sum for this i atom from the interaction with this j atom. */
206             velecsum         = _mm_add_pd(velecsum,velec);
207
208             fscal            = felec;
209
210             /* Calculate temporary vectorial force */
211             tx               = _mm_mul_pd(fscal,dx00);
212             ty               = _mm_mul_pd(fscal,dy00);
213             tz               = _mm_mul_pd(fscal,dz00);
214
215             /* Update vectorial force */
216             fix0             = _mm_add_pd(fix0,tx);
217             fiy0             = _mm_add_pd(fiy0,ty);
218             fiz0             = _mm_add_pd(fiz0,tz);
219
220             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
221
222             /* Inner loop uses 43 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             jnrA             = jjnr[jidx];
229             j_coord_offsetA  = DIM*jnrA;
230
231             /* load j atom coordinates */
232             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
233                                               &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_pd(ix0,jx0);
237             dy00             = _mm_sub_pd(iy0,jy0);
238             dz00             = _mm_sub_pd(iz0,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
242
243             rinv00           = gmx_mm_invsqrt_pd(rsq00);
244
245             /* Load parameters for j particles */
246             jq0              = _mm_load_sd(charge+jnrA+0);
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm_mul_pd(iq0,jq0);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm_mul_pd(r00,vftabscale);
259             vfitab           = _mm_cvttpd_epi32(rt);
260             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
261             vfitab           = _mm_slli_epi32(vfitab,2);
262
263             /* CUBIC SPLINE TABLE ELECTROSTATICS */
264             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_setzero_pd();
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_setzero_pd();
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Heps             = _mm_mul_pd(vfeps,H);
271             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
272             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
273             velec            = _mm_mul_pd(qq00,VV);
274             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
275             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
279             velecsum         = _mm_add_pd(velecsum,velec);
280
281             fscal            = felec;
282
283             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx00);
287             ty               = _mm_mul_pd(fscal,dy00);
288             tz               = _mm_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_pd(fix0,tx);
292             fiy0             = _mm_add_pd(fiy0,ty);
293             fiz0             = _mm_add_pd(fiz0,tz);
294
295             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
296
297             /* Inner loop uses 43 flops */
298         }
299
300         /* End of innermost loop */
301
302         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
303                                               f+i_coord_offset,fshift+i_shift_offset);
304
305         ggid                        = gid[iidx];
306         /* Update potential energies */
307         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
308
309         /* Increment number of inner iterations */
310         inneriter                  += j_index_end - j_index_start;
311
312         /* Outer loop uses 8 flops */
313     }
314
315     /* Increment number of outer iterations */
316     outeriter        += nri;
317
318     /* Update outer/inner flops */
319
320     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*43);
321 }
322 /*
323  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse2_double
324  * Electrostatics interaction: CubicSplineTable
325  * VdW interaction:            None
326  * Geometry:                   Particle-Particle
327  * Calculate force/pot:        Force
328  */
329 void
330 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_sse2_double
331                     (t_nblist                    * gmx_restrict       nlist,
332                      rvec                        * gmx_restrict          xx,
333                      rvec                        * gmx_restrict          ff,
334                      t_forcerec                  * gmx_restrict          fr,
335                      t_mdatoms                   * gmx_restrict     mdatoms,
336                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
337                      t_nrnb                      * gmx_restrict        nrnb)
338 {
339     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
340      * just 0 for non-waters.
341      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
342      * jnr indices corresponding to data put in the four positions in the SIMD register.
343      */
344     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
345     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
346     int              jnrA,jnrB;
347     int              j_coord_offsetA,j_coord_offsetB;
348     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
349     real             rcutoff_scalar;
350     real             *shiftvec,*fshift,*x,*f;
351     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
352     int              vdwioffset0;
353     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
354     int              vdwjidx0A,vdwjidx0B;
355     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
356     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
357     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
358     real             *charge;
359     __m128i          vfitab;
360     __m128i          ifour       = _mm_set1_epi32(4);
361     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
362     real             *vftab;
363     __m128d          dummy_mask,cutoff_mask;
364     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
365     __m128d          one     = _mm_set1_pd(1.0);
366     __m128d          two     = _mm_set1_pd(2.0);
367     x                = xx[0];
368     f                = ff[0];
369
370     nri              = nlist->nri;
371     iinr             = nlist->iinr;
372     jindex           = nlist->jindex;
373     jjnr             = nlist->jjnr;
374     shiftidx         = nlist->shift;
375     gid              = nlist->gid;
376     shiftvec         = fr->shift_vec[0];
377     fshift           = fr->fshift[0];
378     facel            = _mm_set1_pd(fr->epsfac);
379     charge           = mdatoms->chargeA;
380
381     vftab            = kernel_data->table_elec->data;
382     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
383
384     /* Avoid stupid compiler warnings */
385     jnrA = jnrB = 0;
386     j_coord_offsetA = 0;
387     j_coord_offsetB = 0;
388
389     outeriter        = 0;
390     inneriter        = 0;
391
392     /* Start outer loop over neighborlists */
393     for(iidx=0; iidx<nri; iidx++)
394     {
395         /* Load shift vector for this list */
396         i_shift_offset   = DIM*shiftidx[iidx];
397
398         /* Load limits for loop over neighbors */
399         j_index_start    = jindex[iidx];
400         j_index_end      = jindex[iidx+1];
401
402         /* Get outer coordinate index */
403         inr              = iinr[iidx];
404         i_coord_offset   = DIM*inr;
405
406         /* Load i particle coords and add shift vector */
407         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
408
409         fix0             = _mm_setzero_pd();
410         fiy0             = _mm_setzero_pd();
411         fiz0             = _mm_setzero_pd();
412
413         /* Load parameters for i particles */
414         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
415
416         /* Start inner kernel loop */
417         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
418         {
419
420             /* Get j neighbor index, and coordinate index */
421             jnrA             = jjnr[jidx];
422             jnrB             = jjnr[jidx+1];
423             j_coord_offsetA  = DIM*jnrA;
424             j_coord_offsetB  = DIM*jnrB;
425
426             /* load j atom coordinates */
427             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_pd(ix0,jx0);
432             dy00             = _mm_sub_pd(iy0,jy0);
433             dz00             = _mm_sub_pd(iz0,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
437
438             rinv00           = gmx_mm_invsqrt_pd(rsq00);
439
440             /* Load parameters for j particles */
441             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r00              = _mm_mul_pd(rsq00,rinv00);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq00             = _mm_mul_pd(iq0,jq0);
451
452             /* Calculate table index by multiplying r with table scale and truncate to integer */
453             rt               = _mm_mul_pd(r00,vftabscale);
454             vfitab           = _mm_cvttpd_epi32(rt);
455             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
456             vfitab           = _mm_slli_epi32(vfitab,2);
457
458             /* CUBIC SPLINE TABLE ELECTROSTATICS */
459             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
460             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
461             GMX_MM_TRANSPOSE2_PD(Y,F);
462             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
463             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
464             GMX_MM_TRANSPOSE2_PD(G,H);
465             Heps             = _mm_mul_pd(vfeps,H);
466             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
467             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
468             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
469
470             fscal            = felec;
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm_mul_pd(fscal,dx00);
474             ty               = _mm_mul_pd(fscal,dy00);
475             tz               = _mm_mul_pd(fscal,dz00);
476
477             /* Update vectorial force */
478             fix0             = _mm_add_pd(fix0,tx);
479             fiy0             = _mm_add_pd(fiy0,ty);
480             fiz0             = _mm_add_pd(fiz0,tz);
481
482             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
483
484             /* Inner loop uses 39 flops */
485         }
486
487         if(jidx<j_index_end)
488         {
489
490             jnrA             = jjnr[jidx];
491             j_coord_offsetA  = DIM*jnrA;
492
493             /* load j atom coordinates */
494             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
495                                               &jx0,&jy0,&jz0);
496
497             /* Calculate displacement vector */
498             dx00             = _mm_sub_pd(ix0,jx0);
499             dy00             = _mm_sub_pd(iy0,jy0);
500             dz00             = _mm_sub_pd(iz0,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
504
505             rinv00           = gmx_mm_invsqrt_pd(rsq00);
506
507             /* Load parameters for j particles */
508             jq0              = _mm_load_sd(charge+jnrA+0);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r00              = _mm_mul_pd(rsq00,rinv00);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq00             = _mm_mul_pd(iq0,jq0);
518
519             /* Calculate table index by multiplying r with table scale and truncate to integer */
520             rt               = _mm_mul_pd(r00,vftabscale);
521             vfitab           = _mm_cvttpd_epi32(rt);
522             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
523             vfitab           = _mm_slli_epi32(vfitab,2);
524
525             /* CUBIC SPLINE TABLE ELECTROSTATICS */
526             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
527             F                = _mm_setzero_pd();
528             GMX_MM_TRANSPOSE2_PD(Y,F);
529             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
530             H                = _mm_setzero_pd();
531             GMX_MM_TRANSPOSE2_PD(G,H);
532             Heps             = _mm_mul_pd(vfeps,H);
533             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
534             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
535             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
536
537             fscal            = felec;
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx00);
543             ty               = _mm_mul_pd(fscal,dy00);
544             tz               = _mm_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_pd(fix0,tx);
548             fiy0             = _mm_add_pd(fiy0,ty);
549             fiz0             = _mm_add_pd(fiz0,tz);
550
551             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
552
553             /* Inner loop uses 39 flops */
554         }
555
556         /* End of innermost loop */
557
558         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
559                                               f+i_coord_offset,fshift+i_shift_offset);
560
561         /* Increment number of inner iterations */
562         inneriter                  += j_index_end - j_index_start;
563
564         /* Outer loop uses 7 flops */
565     }
566
567     /* Increment number of outer iterations */
568     outeriter        += nri;
569
570     /* Update outer/inner flops */
571
572     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
573 }