af876a35e291ef3dbde619a9dc9faea7a051f3fa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172         fix3             = _mm_setzero_pd();
173         fiy3             = _mm_setzero_pd();
174         fiz3             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
213
214             rinv10           = gmx_mm_invsqrt_pd(rsq10);
215             rinv20           = gmx_mm_invsqrt_pd(rsq20);
216             rinv30           = gmx_mm_invsqrt_pd(rsq30);
217
218             rinvsq00         = gmx_mm_inv_pd(rsq00);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _mm_setzero_pd();
226             fjy0             = _mm_setzero_pd();
227             fjz0             = _mm_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             /* Compute parameters for interactions between i and j atoms */
234             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
236
237             /* LENNARD-JONES DISPERSION/REPULSION */
238
239             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
240             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
241             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
242             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
243             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = fvdw;
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             fjx0             = _mm_add_pd(fjx0,tx);
261             fjy0             = _mm_add_pd(fjy0,ty);
262             fjz0             = _mm_add_pd(fjz0,tz);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             r10              = _mm_mul_pd(rsq10,rinv10);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq10             = _mm_mul_pd(iq1,jq0);
272
273             /* Calculate table index by multiplying r with table scale and truncate to integer */
274             rt               = _mm_mul_pd(r10,vftabscale);
275             vfitab           = _mm_cvttpd_epi32(rt);
276             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
277             vfitab           = _mm_slli_epi32(vfitab,2);
278
279             /* CUBIC SPLINE TABLE ELECTROSTATICS */
280             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             GMX_MM_TRANSPOSE2_PD(Y,F);
283             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
284             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
285             GMX_MM_TRANSPOSE2_PD(G,H);
286             Heps             = _mm_mul_pd(vfeps,H);
287             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
288             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
289             velec            = _mm_mul_pd(qq10,VV);
290             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm_add_pd(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_pd(fscal,dx10);
300             ty               = _mm_mul_pd(fscal,dy10);
301             tz               = _mm_mul_pd(fscal,dz10);
302
303             /* Update vectorial force */
304             fix1             = _mm_add_pd(fix1,tx);
305             fiy1             = _mm_add_pd(fiy1,ty);
306             fiz1             = _mm_add_pd(fiz1,tz);
307
308             fjx0             = _mm_add_pd(fjx0,tx);
309             fjy0             = _mm_add_pd(fjy0,ty);
310             fjz0             = _mm_add_pd(fjz0,tz);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r20              = _mm_mul_pd(rsq20,rinv20);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_pd(iq2,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_pd(r20,vftabscale);
323             vfitab           = _mm_cvttpd_epi32(rt);
324             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
325             vfitab           = _mm_slli_epi32(vfitab,2);
326
327             /* CUBIC SPLINE TABLE ELECTROSTATICS */
328             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
329             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
330             GMX_MM_TRANSPOSE2_PD(Y,F);
331             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
332             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
333             GMX_MM_TRANSPOSE2_PD(G,H);
334             Heps             = _mm_mul_pd(vfeps,H);
335             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
336             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
337             velec            = _mm_mul_pd(qq20,VV);
338             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
339             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r30              = _mm_mul_pd(rsq30,rinv30);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq30             = _mm_mul_pd(iq3,jq0);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_pd(r30,vftabscale);
371             vfitab           = _mm_cvttpd_epi32(rt);
372             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
373             vfitab           = _mm_slli_epi32(vfitab,2);
374
375             /* CUBIC SPLINE TABLE ELECTROSTATICS */
376             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
377             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
378             GMX_MM_TRANSPOSE2_PD(Y,F);
379             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
380             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(G,H);
382             Heps             = _mm_mul_pd(vfeps,H);
383             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
384             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
385             velec            = _mm_mul_pd(qq30,VV);
386             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
387             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_pd(fscal,dx30);
396             ty               = _mm_mul_pd(fscal,dy30);
397             tz               = _mm_mul_pd(fscal,dz30);
398
399             /* Update vectorial force */
400             fix3             = _mm_add_pd(fix3,tx);
401             fiy3             = _mm_add_pd(fiy3,ty);
402             fiz3             = _mm_add_pd(fiz3,tz);
403
404             fjx0             = _mm_add_pd(fjx0,tx);
405             fjy0             = _mm_add_pd(fjy0,ty);
406             fjz0             = _mm_add_pd(fjz0,tz);
407
408             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
409
410             /* Inner loop uses 164 flops */
411         }
412
413         if(jidx<j_index_end)
414         {
415
416             jnrA             = jjnr[jidx];
417             j_coord_offsetA  = DIM*jnrA;
418
419             /* load j atom coordinates */
420             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
421                                               &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx00             = _mm_sub_pd(ix0,jx0);
425             dy00             = _mm_sub_pd(iy0,jy0);
426             dz00             = _mm_sub_pd(iz0,jz0);
427             dx10             = _mm_sub_pd(ix1,jx0);
428             dy10             = _mm_sub_pd(iy1,jy0);
429             dz10             = _mm_sub_pd(iz1,jz0);
430             dx20             = _mm_sub_pd(ix2,jx0);
431             dy20             = _mm_sub_pd(iy2,jy0);
432             dz20             = _mm_sub_pd(iz2,jz0);
433             dx30             = _mm_sub_pd(ix3,jx0);
434             dy30             = _mm_sub_pd(iy3,jy0);
435             dz30             = _mm_sub_pd(iz3,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
441             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
442
443             rinv10           = gmx_mm_invsqrt_pd(rsq10);
444             rinv20           = gmx_mm_invsqrt_pd(rsq20);
445             rinv30           = gmx_mm_invsqrt_pd(rsq30);
446
447             rinvsq00         = gmx_mm_inv_pd(rsq00);
448
449             /* Load parameters for j particles */
450             jq0              = _mm_load_sd(charge+jnrA+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452
453             fjx0             = _mm_setzero_pd();
454             fjy0             = _mm_setzero_pd();
455             fjz0             = _mm_setzero_pd();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
463
464             /* LENNARD-JONES DISPERSION/REPULSION */
465
466             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
467             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
468             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
469             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
470             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
474             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
475
476             fscal            = fvdw;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx00);
482             ty               = _mm_mul_pd(fscal,dy00);
483             tz               = _mm_mul_pd(fscal,dz00);
484
485             /* Update vectorial force */
486             fix0             = _mm_add_pd(fix0,tx);
487             fiy0             = _mm_add_pd(fiy0,ty);
488             fiz0             = _mm_add_pd(fiz0,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r10              = _mm_mul_pd(rsq10,rinv10);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq10             = _mm_mul_pd(iq1,jq0);
502
503             /* Calculate table index by multiplying r with table scale and truncate to integer */
504             rt               = _mm_mul_pd(r10,vftabscale);
505             vfitab           = _mm_cvttpd_epi32(rt);
506             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
507             vfitab           = _mm_slli_epi32(vfitab,2);
508
509             /* CUBIC SPLINE TABLE ELECTROSTATICS */
510             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
511             F                = _mm_setzero_pd();
512             GMX_MM_TRANSPOSE2_PD(Y,F);
513             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
514             H                = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(G,H);
516             Heps             = _mm_mul_pd(vfeps,H);
517             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
518             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
519             velec            = _mm_mul_pd(qq10,VV);
520             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
521             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
525             velecsum         = _mm_add_pd(velecsum,velec);
526
527             fscal            = felec;
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx10);
533             ty               = _mm_mul_pd(fscal,dy10);
534             tz               = _mm_mul_pd(fscal,dz10);
535
536             /* Update vectorial force */
537             fix1             = _mm_add_pd(fix1,tx);
538             fiy1             = _mm_add_pd(fiy1,ty);
539             fiz1             = _mm_add_pd(fiz1,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r20              = _mm_mul_pd(rsq20,rinv20);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq20             = _mm_mul_pd(iq2,jq0);
553
554             /* Calculate table index by multiplying r with table scale and truncate to integer */
555             rt               = _mm_mul_pd(r20,vftabscale);
556             vfitab           = _mm_cvttpd_epi32(rt);
557             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
558             vfitab           = _mm_slli_epi32(vfitab,2);
559
560             /* CUBIC SPLINE TABLE ELECTROSTATICS */
561             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
562             F                = _mm_setzero_pd();
563             GMX_MM_TRANSPOSE2_PD(Y,F);
564             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
565             H                = _mm_setzero_pd();
566             GMX_MM_TRANSPOSE2_PD(G,H);
567             Heps             = _mm_mul_pd(vfeps,H);
568             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
569             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
570             velec            = _mm_mul_pd(qq20,VV);
571             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
572             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
576             velecsum         = _mm_add_pd(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_pd(fscal,dx20);
584             ty               = _mm_mul_pd(fscal,dy20);
585             tz               = _mm_mul_pd(fscal,dz20);
586
587             /* Update vectorial force */
588             fix2             = _mm_add_pd(fix2,tx);
589             fiy2             = _mm_add_pd(fiy2,ty);
590             fiz2             = _mm_add_pd(fiz2,tz);
591
592             fjx0             = _mm_add_pd(fjx0,tx);
593             fjy0             = _mm_add_pd(fjy0,ty);
594             fjz0             = _mm_add_pd(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r30              = _mm_mul_pd(rsq30,rinv30);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq30             = _mm_mul_pd(iq3,jq0);
604
605             /* Calculate table index by multiplying r with table scale and truncate to integer */
606             rt               = _mm_mul_pd(r30,vftabscale);
607             vfitab           = _mm_cvttpd_epi32(rt);
608             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
609             vfitab           = _mm_slli_epi32(vfitab,2);
610
611             /* CUBIC SPLINE TABLE ELECTROSTATICS */
612             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
613             F                = _mm_setzero_pd();
614             GMX_MM_TRANSPOSE2_PD(Y,F);
615             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
616             H                = _mm_setzero_pd();
617             GMX_MM_TRANSPOSE2_PD(G,H);
618             Heps             = _mm_mul_pd(vfeps,H);
619             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
620             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
621             velec            = _mm_mul_pd(qq30,VV);
622             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
623             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
627             velecsum         = _mm_add_pd(velecsum,velec);
628
629             fscal            = felec;
630
631             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm_mul_pd(fscal,dx30);
635             ty               = _mm_mul_pd(fscal,dy30);
636             tz               = _mm_mul_pd(fscal,dz30);
637
638             /* Update vectorial force */
639             fix3             = _mm_add_pd(fix3,tx);
640             fiy3             = _mm_add_pd(fiy3,ty);
641             fiz3             = _mm_add_pd(fiz3,tz);
642
643             fjx0             = _mm_add_pd(fjx0,tx);
644             fjy0             = _mm_add_pd(fjy0,ty);
645             fjz0             = _mm_add_pd(fjz0,tz);
646
647             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
648
649             /* Inner loop uses 164 flops */
650         }
651
652         /* End of innermost loop */
653
654         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
655                                               f+i_coord_offset,fshift+i_shift_offset);
656
657         ggid                        = gid[iidx];
658         /* Update potential energies */
659         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
660         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 26 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
674 }
675 /*
676  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
677  * Electrostatics interaction: CubicSplineTable
678  * VdW interaction:            LennardJones
679  * Geometry:                   Water4-Particle
680  * Calculate force/pot:        Force
681  */
682 void
683 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
684                     (t_nblist                    * gmx_restrict       nlist,
685                      rvec                        * gmx_restrict          xx,
686                      rvec                        * gmx_restrict          ff,
687                      t_forcerec                  * gmx_restrict          fr,
688                      t_mdatoms                   * gmx_restrict     mdatoms,
689                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
690                      t_nrnb                      * gmx_restrict        nrnb)
691 {
692     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
693      * just 0 for non-waters.
694      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
695      * jnr indices corresponding to data put in the four positions in the SIMD register.
696      */
697     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
698     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
699     int              jnrA,jnrB;
700     int              j_coord_offsetA,j_coord_offsetB;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     int              vdwioffset0;
706     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     int              vdwioffset1;
708     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     int              vdwioffset2;
710     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     int              vdwioffset3;
712     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
713     int              vdwjidx0A,vdwjidx0B;
714     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
719     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
726     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
727     __m128i          vfitab;
728     __m128i          ifour       = _mm_set1_epi32(4);
729     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
730     real             *vftab;
731     __m128d          dummy_mask,cutoff_mask;
732     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
733     __m128d          one     = _mm_set1_pd(1.0);
734     __m128d          two     = _mm_set1_pd(2.0);
735     x                = xx[0];
736     f                = ff[0];
737
738     nri              = nlist->nri;
739     iinr             = nlist->iinr;
740     jindex           = nlist->jindex;
741     jjnr             = nlist->jjnr;
742     shiftidx         = nlist->shift;
743     gid              = nlist->gid;
744     shiftvec         = fr->shift_vec[0];
745     fshift           = fr->fshift[0];
746     facel            = _mm_set1_pd(fr->epsfac);
747     charge           = mdatoms->chargeA;
748     nvdwtype         = fr->ntype;
749     vdwparam         = fr->nbfp;
750     vdwtype          = mdatoms->typeA;
751
752     vftab            = kernel_data->table_elec->data;
753     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
754
755     /* Setup water-specific parameters */
756     inr              = nlist->iinr[0];
757     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
758     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
759     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
760     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
761
762     /* Avoid stupid compiler warnings */
763     jnrA = jnrB = 0;
764     j_coord_offsetA = 0;
765     j_coord_offsetB = 0;
766
767     outeriter        = 0;
768     inneriter        = 0;
769
770     /* Start outer loop over neighborlists */
771     for(iidx=0; iidx<nri; iidx++)
772     {
773         /* Load shift vector for this list */
774         i_shift_offset   = DIM*shiftidx[iidx];
775
776         /* Load limits for loop over neighbors */
777         j_index_start    = jindex[iidx];
778         j_index_end      = jindex[iidx+1];
779
780         /* Get outer coordinate index */
781         inr              = iinr[iidx];
782         i_coord_offset   = DIM*inr;
783
784         /* Load i particle coords and add shift vector */
785         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
786                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
787
788         fix0             = _mm_setzero_pd();
789         fiy0             = _mm_setzero_pd();
790         fiz0             = _mm_setzero_pd();
791         fix1             = _mm_setzero_pd();
792         fiy1             = _mm_setzero_pd();
793         fiz1             = _mm_setzero_pd();
794         fix2             = _mm_setzero_pd();
795         fiy2             = _mm_setzero_pd();
796         fiz2             = _mm_setzero_pd();
797         fix3             = _mm_setzero_pd();
798         fiy3             = _mm_setzero_pd();
799         fiz3             = _mm_setzero_pd();
800
801         /* Start inner kernel loop */
802         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
803         {
804
805             /* Get j neighbor index, and coordinate index */
806             jnrA             = jjnr[jidx];
807             jnrB             = jjnr[jidx+1];
808             j_coord_offsetA  = DIM*jnrA;
809             j_coord_offsetB  = DIM*jnrB;
810
811             /* load j atom coordinates */
812             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
813                                               &jx0,&jy0,&jz0);
814
815             /* Calculate displacement vector */
816             dx00             = _mm_sub_pd(ix0,jx0);
817             dy00             = _mm_sub_pd(iy0,jy0);
818             dz00             = _mm_sub_pd(iz0,jz0);
819             dx10             = _mm_sub_pd(ix1,jx0);
820             dy10             = _mm_sub_pd(iy1,jy0);
821             dz10             = _mm_sub_pd(iz1,jz0);
822             dx20             = _mm_sub_pd(ix2,jx0);
823             dy20             = _mm_sub_pd(iy2,jy0);
824             dz20             = _mm_sub_pd(iz2,jz0);
825             dx30             = _mm_sub_pd(ix3,jx0);
826             dy30             = _mm_sub_pd(iy3,jy0);
827             dz30             = _mm_sub_pd(iz3,jz0);
828
829             /* Calculate squared distance and things based on it */
830             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
831             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
832             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
833             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
834
835             rinv10           = gmx_mm_invsqrt_pd(rsq10);
836             rinv20           = gmx_mm_invsqrt_pd(rsq20);
837             rinv30           = gmx_mm_invsqrt_pd(rsq30);
838
839             rinvsq00         = gmx_mm_inv_pd(rsq00);
840
841             /* Load parameters for j particles */
842             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
843             vdwjidx0A        = 2*vdwtype[jnrA+0];
844             vdwjidx0B        = 2*vdwtype[jnrB+0];
845
846             fjx0             = _mm_setzero_pd();
847             fjy0             = _mm_setzero_pd();
848             fjz0             = _mm_setzero_pd();
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             /* Compute parameters for interactions between i and j atoms */
855             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
856                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
857
858             /* LENNARD-JONES DISPERSION/REPULSION */
859
860             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
861             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
862
863             fscal            = fvdw;
864
865             /* Calculate temporary vectorial force */
866             tx               = _mm_mul_pd(fscal,dx00);
867             ty               = _mm_mul_pd(fscal,dy00);
868             tz               = _mm_mul_pd(fscal,dz00);
869
870             /* Update vectorial force */
871             fix0             = _mm_add_pd(fix0,tx);
872             fiy0             = _mm_add_pd(fiy0,ty);
873             fiz0             = _mm_add_pd(fiz0,tz);
874
875             fjx0             = _mm_add_pd(fjx0,tx);
876             fjy0             = _mm_add_pd(fjy0,ty);
877             fjz0             = _mm_add_pd(fjz0,tz);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r10              = _mm_mul_pd(rsq10,rinv10);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _mm_mul_pd(iq1,jq0);
887
888             /* Calculate table index by multiplying r with table scale and truncate to integer */
889             rt               = _mm_mul_pd(r10,vftabscale);
890             vfitab           = _mm_cvttpd_epi32(rt);
891             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
892             vfitab           = _mm_slli_epi32(vfitab,2);
893
894             /* CUBIC SPLINE TABLE ELECTROSTATICS */
895             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
896             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
897             GMX_MM_TRANSPOSE2_PD(Y,F);
898             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
899             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
900             GMX_MM_TRANSPOSE2_PD(G,H);
901             Heps             = _mm_mul_pd(vfeps,H);
902             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
903             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
904             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
905
906             fscal            = felec;
907
908             /* Calculate temporary vectorial force */
909             tx               = _mm_mul_pd(fscal,dx10);
910             ty               = _mm_mul_pd(fscal,dy10);
911             tz               = _mm_mul_pd(fscal,dz10);
912
913             /* Update vectorial force */
914             fix1             = _mm_add_pd(fix1,tx);
915             fiy1             = _mm_add_pd(fiy1,ty);
916             fiz1             = _mm_add_pd(fiz1,tz);
917
918             fjx0             = _mm_add_pd(fjx0,tx);
919             fjy0             = _mm_add_pd(fjy0,ty);
920             fjz0             = _mm_add_pd(fjz0,tz);
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             r20              = _mm_mul_pd(rsq20,rinv20);
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq20             = _mm_mul_pd(iq2,jq0);
930
931             /* Calculate table index by multiplying r with table scale and truncate to integer */
932             rt               = _mm_mul_pd(r20,vftabscale);
933             vfitab           = _mm_cvttpd_epi32(rt);
934             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
935             vfitab           = _mm_slli_epi32(vfitab,2);
936
937             /* CUBIC SPLINE TABLE ELECTROSTATICS */
938             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
939             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
940             GMX_MM_TRANSPOSE2_PD(Y,F);
941             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
942             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
943             GMX_MM_TRANSPOSE2_PD(G,H);
944             Heps             = _mm_mul_pd(vfeps,H);
945             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
946             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
947             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
948
949             fscal            = felec;
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm_mul_pd(fscal,dx20);
953             ty               = _mm_mul_pd(fscal,dy20);
954             tz               = _mm_mul_pd(fscal,dz20);
955
956             /* Update vectorial force */
957             fix2             = _mm_add_pd(fix2,tx);
958             fiy2             = _mm_add_pd(fiy2,ty);
959             fiz2             = _mm_add_pd(fiz2,tz);
960
961             fjx0             = _mm_add_pd(fjx0,tx);
962             fjy0             = _mm_add_pd(fjy0,ty);
963             fjz0             = _mm_add_pd(fjz0,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             r30              = _mm_mul_pd(rsq30,rinv30);
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq30             = _mm_mul_pd(iq3,jq0);
973
974             /* Calculate table index by multiplying r with table scale and truncate to integer */
975             rt               = _mm_mul_pd(r30,vftabscale);
976             vfitab           = _mm_cvttpd_epi32(rt);
977             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
978             vfitab           = _mm_slli_epi32(vfitab,2);
979
980             /* CUBIC SPLINE TABLE ELECTROSTATICS */
981             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
982             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
983             GMX_MM_TRANSPOSE2_PD(Y,F);
984             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
985             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
986             GMX_MM_TRANSPOSE2_PD(G,H);
987             Heps             = _mm_mul_pd(vfeps,H);
988             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
989             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
990             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
991
992             fscal            = felec;
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx30);
996             ty               = _mm_mul_pd(fscal,dy30);
997             tz               = _mm_mul_pd(fscal,dz30);
998
999             /* Update vectorial force */
1000             fix3             = _mm_add_pd(fix3,tx);
1001             fiy3             = _mm_add_pd(fiy3,ty);
1002             fiz3             = _mm_add_pd(fiz3,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1009
1010             /* Inner loop uses 147 flops */
1011         }
1012
1013         if(jidx<j_index_end)
1014         {
1015
1016             jnrA             = jjnr[jidx];
1017             j_coord_offsetA  = DIM*jnrA;
1018
1019             /* load j atom coordinates */
1020             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1021                                               &jx0,&jy0,&jz0);
1022
1023             /* Calculate displacement vector */
1024             dx00             = _mm_sub_pd(ix0,jx0);
1025             dy00             = _mm_sub_pd(iy0,jy0);
1026             dz00             = _mm_sub_pd(iz0,jz0);
1027             dx10             = _mm_sub_pd(ix1,jx0);
1028             dy10             = _mm_sub_pd(iy1,jy0);
1029             dz10             = _mm_sub_pd(iz1,jz0);
1030             dx20             = _mm_sub_pd(ix2,jx0);
1031             dy20             = _mm_sub_pd(iy2,jy0);
1032             dz20             = _mm_sub_pd(iz2,jz0);
1033             dx30             = _mm_sub_pd(ix3,jx0);
1034             dy30             = _mm_sub_pd(iy3,jy0);
1035             dz30             = _mm_sub_pd(iz3,jz0);
1036
1037             /* Calculate squared distance and things based on it */
1038             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1039             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1040             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1041             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1042
1043             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1044             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1045             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1046
1047             rinvsq00         = gmx_mm_inv_pd(rsq00);
1048
1049             /* Load parameters for j particles */
1050             jq0              = _mm_load_sd(charge+jnrA+0);
1051             vdwjidx0A        = 2*vdwtype[jnrA+0];
1052
1053             fjx0             = _mm_setzero_pd();
1054             fjy0             = _mm_setzero_pd();
1055             fjz0             = _mm_setzero_pd();
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1063
1064             /* LENNARD-JONES DISPERSION/REPULSION */
1065
1066             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1067             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1068
1069             fscal            = fvdw;
1070
1071             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1072
1073             /* Calculate temporary vectorial force */
1074             tx               = _mm_mul_pd(fscal,dx00);
1075             ty               = _mm_mul_pd(fscal,dy00);
1076             tz               = _mm_mul_pd(fscal,dz00);
1077
1078             /* Update vectorial force */
1079             fix0             = _mm_add_pd(fix0,tx);
1080             fiy0             = _mm_add_pd(fiy0,ty);
1081             fiz0             = _mm_add_pd(fiz0,tz);
1082
1083             fjx0             = _mm_add_pd(fjx0,tx);
1084             fjy0             = _mm_add_pd(fjy0,ty);
1085             fjz0             = _mm_add_pd(fjz0,tz);
1086
1087             /**************************
1088              * CALCULATE INTERACTIONS *
1089              **************************/
1090
1091             r10              = _mm_mul_pd(rsq10,rinv10);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq10             = _mm_mul_pd(iq1,jq0);
1095
1096             /* Calculate table index by multiplying r with table scale and truncate to integer */
1097             rt               = _mm_mul_pd(r10,vftabscale);
1098             vfitab           = _mm_cvttpd_epi32(rt);
1099             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1100             vfitab           = _mm_slli_epi32(vfitab,2);
1101
1102             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1103             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1104             F                = _mm_setzero_pd();
1105             GMX_MM_TRANSPOSE2_PD(Y,F);
1106             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1107             H                = _mm_setzero_pd();
1108             GMX_MM_TRANSPOSE2_PD(G,H);
1109             Heps             = _mm_mul_pd(vfeps,H);
1110             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1111             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1112             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1113
1114             fscal            = felec;
1115
1116             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_pd(fscal,dx10);
1120             ty               = _mm_mul_pd(fscal,dy10);
1121             tz               = _mm_mul_pd(fscal,dz10);
1122
1123             /* Update vectorial force */
1124             fix1             = _mm_add_pd(fix1,tx);
1125             fiy1             = _mm_add_pd(fiy1,ty);
1126             fiz1             = _mm_add_pd(fiz1,tz);
1127
1128             fjx0             = _mm_add_pd(fjx0,tx);
1129             fjy0             = _mm_add_pd(fjy0,ty);
1130             fjz0             = _mm_add_pd(fjz0,tz);
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r20              = _mm_mul_pd(rsq20,rinv20);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq20             = _mm_mul_pd(iq2,jq0);
1140
1141             /* Calculate table index by multiplying r with table scale and truncate to integer */
1142             rt               = _mm_mul_pd(r20,vftabscale);
1143             vfitab           = _mm_cvttpd_epi32(rt);
1144             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1145             vfitab           = _mm_slli_epi32(vfitab,2);
1146
1147             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1148             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1149             F                = _mm_setzero_pd();
1150             GMX_MM_TRANSPOSE2_PD(Y,F);
1151             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1152             H                = _mm_setzero_pd();
1153             GMX_MM_TRANSPOSE2_PD(G,H);
1154             Heps             = _mm_mul_pd(vfeps,H);
1155             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1156             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1157             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm_mul_pd(fscal,dx20);
1165             ty               = _mm_mul_pd(fscal,dy20);
1166             tz               = _mm_mul_pd(fscal,dz20);
1167
1168             /* Update vectorial force */
1169             fix2             = _mm_add_pd(fix2,tx);
1170             fiy2             = _mm_add_pd(fiy2,ty);
1171             fiz2             = _mm_add_pd(fiz2,tz);
1172
1173             fjx0             = _mm_add_pd(fjx0,tx);
1174             fjy0             = _mm_add_pd(fjy0,ty);
1175             fjz0             = _mm_add_pd(fjz0,tz);
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             r30              = _mm_mul_pd(rsq30,rinv30);
1182
1183             /* Compute parameters for interactions between i and j atoms */
1184             qq30             = _mm_mul_pd(iq3,jq0);
1185
1186             /* Calculate table index by multiplying r with table scale and truncate to integer */
1187             rt               = _mm_mul_pd(r30,vftabscale);
1188             vfitab           = _mm_cvttpd_epi32(rt);
1189             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1190             vfitab           = _mm_slli_epi32(vfitab,2);
1191
1192             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1193             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1194             F                = _mm_setzero_pd();
1195             GMX_MM_TRANSPOSE2_PD(Y,F);
1196             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1197             H                = _mm_setzero_pd();
1198             GMX_MM_TRANSPOSE2_PD(G,H);
1199             Heps             = _mm_mul_pd(vfeps,H);
1200             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1201             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1202             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1207
1208             /* Calculate temporary vectorial force */
1209             tx               = _mm_mul_pd(fscal,dx30);
1210             ty               = _mm_mul_pd(fscal,dy30);
1211             tz               = _mm_mul_pd(fscal,dz30);
1212
1213             /* Update vectorial force */
1214             fix3             = _mm_add_pd(fix3,tx);
1215             fiy3             = _mm_add_pd(fiy3,ty);
1216             fiz3             = _mm_add_pd(fiz3,tz);
1217
1218             fjx0             = _mm_add_pd(fjx0,tx);
1219             fjy0             = _mm_add_pd(fjy0,ty);
1220             fjz0             = _mm_add_pd(fjz0,tz);
1221
1222             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1223
1224             /* Inner loop uses 147 flops */
1225         }
1226
1227         /* End of innermost loop */
1228
1229         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1230                                               f+i_coord_offset,fshift+i_shift_offset);
1231
1232         /* Increment number of inner iterations */
1233         inneriter                  += j_index_end - j_index_start;
1234
1235         /* Outer loop uses 24 flops */
1236     }
1237
1238     /* Increment number of outer iterations */
1239     outeriter        += nri;
1240
1241     /* Update outer/inner flops */
1242
1243     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1244 }