Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
218             rinv30           = gmx_mm_invsqrt_pd(rsq30);
219
220             rinvsq00         = gmx_mm_inv_pd(rsq00);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             /* Compute parameters for interactions between i and j atoms */
236             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
238
239             /* LENNARD-JONES DISPERSION/REPULSION */
240
241             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
242             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
243             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
244             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
245             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx00);
254             ty               = _mm_mul_pd(fscal,dy00);
255             tz               = _mm_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_pd(fix0,tx);
259             fiy0             = _mm_add_pd(fiy0,ty);
260             fiz0             = _mm_add_pd(fiz0,tz);
261
262             fjx0             = _mm_add_pd(fjx0,tx);
263             fjy0             = _mm_add_pd(fjy0,ty);
264             fjz0             = _mm_add_pd(fjz0,tz);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r10              = _mm_mul_pd(rsq10,rinv10);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq10             = _mm_mul_pd(iq1,jq0);
274
275             /* Calculate table index by multiplying r with table scale and truncate to integer */
276             rt               = _mm_mul_pd(r10,vftabscale);
277             vfitab           = _mm_cvttpd_epi32(rt);
278             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
279             vfitab           = _mm_slli_epi32(vfitab,2);
280
281             /* CUBIC SPLINE TABLE ELECTROSTATICS */
282             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
284             GMX_MM_TRANSPOSE2_PD(Y,F);
285             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
286             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
287             GMX_MM_TRANSPOSE2_PD(G,H);
288             Heps             = _mm_mul_pd(vfeps,H);
289             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
290             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
291             velec            = _mm_mul_pd(qq10,VV);
292             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
293             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_pd(fscal,dx10);
302             ty               = _mm_mul_pd(fscal,dy10);
303             tz               = _mm_mul_pd(fscal,dz10);
304
305             /* Update vectorial force */
306             fix1             = _mm_add_pd(fix1,tx);
307             fiy1             = _mm_add_pd(fiy1,ty);
308             fiz1             = _mm_add_pd(fiz1,tz);
309
310             fjx0             = _mm_add_pd(fjx0,tx);
311             fjy0             = _mm_add_pd(fjy0,ty);
312             fjz0             = _mm_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r20              = _mm_mul_pd(rsq20,rinv20);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq20             = _mm_mul_pd(iq2,jq0);
322
323             /* Calculate table index by multiplying r with table scale and truncate to integer */
324             rt               = _mm_mul_pd(r20,vftabscale);
325             vfitab           = _mm_cvttpd_epi32(rt);
326             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
327             vfitab           = _mm_slli_epi32(vfitab,2);
328
329             /* CUBIC SPLINE TABLE ELECTROSTATICS */
330             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
331             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
332             GMX_MM_TRANSPOSE2_PD(Y,F);
333             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
334             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(G,H);
336             Heps             = _mm_mul_pd(vfeps,H);
337             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
338             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
339             velec            = _mm_mul_pd(qq20,VV);
340             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
341             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx20);
350             ty               = _mm_mul_pd(fscal,dy20);
351             tz               = _mm_mul_pd(fscal,dz20);
352
353             /* Update vectorial force */
354             fix2             = _mm_add_pd(fix2,tx);
355             fiy2             = _mm_add_pd(fiy2,ty);
356             fiz2             = _mm_add_pd(fiz2,tz);
357
358             fjx0             = _mm_add_pd(fjx0,tx);
359             fjy0             = _mm_add_pd(fjy0,ty);
360             fjz0             = _mm_add_pd(fjz0,tz);
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r30              = _mm_mul_pd(rsq30,rinv30);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq30             = _mm_mul_pd(iq3,jq0);
370
371             /* Calculate table index by multiplying r with table scale and truncate to integer */
372             rt               = _mm_mul_pd(r30,vftabscale);
373             vfitab           = _mm_cvttpd_epi32(rt);
374             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
375             vfitab           = _mm_slli_epi32(vfitab,2);
376
377             /* CUBIC SPLINE TABLE ELECTROSTATICS */
378             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
379             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
380             GMX_MM_TRANSPOSE2_PD(Y,F);
381             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
382             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
383             GMX_MM_TRANSPOSE2_PD(G,H);
384             Heps             = _mm_mul_pd(vfeps,H);
385             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
386             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
387             velec            = _mm_mul_pd(qq30,VV);
388             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
389             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm_add_pd(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_pd(fscal,dx30);
398             ty               = _mm_mul_pd(fscal,dy30);
399             tz               = _mm_mul_pd(fscal,dz30);
400
401             /* Update vectorial force */
402             fix3             = _mm_add_pd(fix3,tx);
403             fiy3             = _mm_add_pd(fiy3,ty);
404             fiz3             = _mm_add_pd(fiz3,tz);
405
406             fjx0             = _mm_add_pd(fjx0,tx);
407             fjy0             = _mm_add_pd(fjy0,ty);
408             fjz0             = _mm_add_pd(fjz0,tz);
409
410             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
411
412             /* Inner loop uses 164 flops */
413         }
414
415         if(jidx<j_index_end)
416         {
417
418             jnrA             = jjnr[jidx];
419             j_coord_offsetA  = DIM*jnrA;
420
421             /* load j atom coordinates */
422             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
423                                               &jx0,&jy0,&jz0);
424
425             /* Calculate displacement vector */
426             dx00             = _mm_sub_pd(ix0,jx0);
427             dy00             = _mm_sub_pd(iy0,jy0);
428             dz00             = _mm_sub_pd(iz0,jz0);
429             dx10             = _mm_sub_pd(ix1,jx0);
430             dy10             = _mm_sub_pd(iy1,jy0);
431             dz10             = _mm_sub_pd(iz1,jz0);
432             dx20             = _mm_sub_pd(ix2,jx0);
433             dy20             = _mm_sub_pd(iy2,jy0);
434             dz20             = _mm_sub_pd(iz2,jz0);
435             dx30             = _mm_sub_pd(ix3,jx0);
436             dy30             = _mm_sub_pd(iy3,jy0);
437             dz30             = _mm_sub_pd(iz3,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
443             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
444
445             rinv10           = gmx_mm_invsqrt_pd(rsq10);
446             rinv20           = gmx_mm_invsqrt_pd(rsq20);
447             rinv30           = gmx_mm_invsqrt_pd(rsq30);
448
449             rinvsq00         = gmx_mm_inv_pd(rsq00);
450
451             /* Load parameters for j particles */
452             jq0              = _mm_load_sd(charge+jnrA+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454
455             fjx0             = _mm_setzero_pd();
456             fjy0             = _mm_setzero_pd();
457             fjz0             = _mm_setzero_pd();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             /* Compute parameters for interactions between i and j atoms */
464             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
465
466             /* LENNARD-JONES DISPERSION/REPULSION */
467
468             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
469             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
470             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
471             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
472             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
476             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
477
478             fscal            = fvdw;
479
480             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm_mul_pd(fscal,dx00);
484             ty               = _mm_mul_pd(fscal,dy00);
485             tz               = _mm_mul_pd(fscal,dz00);
486
487             /* Update vectorial force */
488             fix0             = _mm_add_pd(fix0,tx);
489             fiy0             = _mm_add_pd(fiy0,ty);
490             fiz0             = _mm_add_pd(fiz0,tz);
491
492             fjx0             = _mm_add_pd(fjx0,tx);
493             fjy0             = _mm_add_pd(fjy0,ty);
494             fjz0             = _mm_add_pd(fjz0,tz);
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r10              = _mm_mul_pd(rsq10,rinv10);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq10             = _mm_mul_pd(iq1,jq0);
504
505             /* Calculate table index by multiplying r with table scale and truncate to integer */
506             rt               = _mm_mul_pd(r10,vftabscale);
507             vfitab           = _mm_cvttpd_epi32(rt);
508             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
509             vfitab           = _mm_slli_epi32(vfitab,2);
510
511             /* CUBIC SPLINE TABLE ELECTROSTATICS */
512             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
513             F                = _mm_setzero_pd();
514             GMX_MM_TRANSPOSE2_PD(Y,F);
515             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
516             H                = _mm_setzero_pd();
517             GMX_MM_TRANSPOSE2_PD(G,H);
518             Heps             = _mm_mul_pd(vfeps,H);
519             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
520             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
521             velec            = _mm_mul_pd(qq10,VV);
522             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
523             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
527             velecsum         = _mm_add_pd(velecsum,velec);
528
529             fscal            = felec;
530
531             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
532
533             /* Calculate temporary vectorial force */
534             tx               = _mm_mul_pd(fscal,dx10);
535             ty               = _mm_mul_pd(fscal,dy10);
536             tz               = _mm_mul_pd(fscal,dz10);
537
538             /* Update vectorial force */
539             fix1             = _mm_add_pd(fix1,tx);
540             fiy1             = _mm_add_pd(fiy1,ty);
541             fiz1             = _mm_add_pd(fiz1,tz);
542
543             fjx0             = _mm_add_pd(fjx0,tx);
544             fjy0             = _mm_add_pd(fjy0,ty);
545             fjz0             = _mm_add_pd(fjz0,tz);
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             r20              = _mm_mul_pd(rsq20,rinv20);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq20             = _mm_mul_pd(iq2,jq0);
555
556             /* Calculate table index by multiplying r with table scale and truncate to integer */
557             rt               = _mm_mul_pd(r20,vftabscale);
558             vfitab           = _mm_cvttpd_epi32(rt);
559             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
560             vfitab           = _mm_slli_epi32(vfitab,2);
561
562             /* CUBIC SPLINE TABLE ELECTROSTATICS */
563             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
564             F                = _mm_setzero_pd();
565             GMX_MM_TRANSPOSE2_PD(Y,F);
566             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
567             H                = _mm_setzero_pd();
568             GMX_MM_TRANSPOSE2_PD(G,H);
569             Heps             = _mm_mul_pd(vfeps,H);
570             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
571             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
572             velec            = _mm_mul_pd(qq20,VV);
573             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
574             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
575
576             /* Update potential sum for this i atom from the interaction with this j atom. */
577             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
578             velecsum         = _mm_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm_mul_pd(fscal,dx20);
586             ty               = _mm_mul_pd(fscal,dy20);
587             tz               = _mm_mul_pd(fscal,dz20);
588
589             /* Update vectorial force */
590             fix2             = _mm_add_pd(fix2,tx);
591             fiy2             = _mm_add_pd(fiy2,ty);
592             fiz2             = _mm_add_pd(fiz2,tz);
593
594             fjx0             = _mm_add_pd(fjx0,tx);
595             fjy0             = _mm_add_pd(fjy0,ty);
596             fjz0             = _mm_add_pd(fjz0,tz);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r30              = _mm_mul_pd(rsq30,rinv30);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq30             = _mm_mul_pd(iq3,jq0);
606
607             /* Calculate table index by multiplying r with table scale and truncate to integer */
608             rt               = _mm_mul_pd(r30,vftabscale);
609             vfitab           = _mm_cvttpd_epi32(rt);
610             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
611             vfitab           = _mm_slli_epi32(vfitab,2);
612
613             /* CUBIC SPLINE TABLE ELECTROSTATICS */
614             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
615             F                = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(Y,F);
617             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
618             H                = _mm_setzero_pd();
619             GMX_MM_TRANSPOSE2_PD(G,H);
620             Heps             = _mm_mul_pd(vfeps,H);
621             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
622             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
623             velec            = _mm_mul_pd(qq30,VV);
624             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
625             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
626
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
629             velecsum         = _mm_add_pd(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm_mul_pd(fscal,dx30);
637             ty               = _mm_mul_pd(fscal,dy30);
638             tz               = _mm_mul_pd(fscal,dz30);
639
640             /* Update vectorial force */
641             fix3             = _mm_add_pd(fix3,tx);
642             fiy3             = _mm_add_pd(fiy3,ty);
643             fiz3             = _mm_add_pd(fiz3,tz);
644
645             fjx0             = _mm_add_pd(fjx0,tx);
646             fjy0             = _mm_add_pd(fjy0,ty);
647             fjz0             = _mm_add_pd(fjz0,tz);
648
649             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
650
651             /* Inner loop uses 164 flops */
652         }
653
654         /* End of innermost loop */
655
656         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
657                                               f+i_coord_offset,fshift+i_shift_offset);
658
659         ggid                        = gid[iidx];
660         /* Update potential energies */
661         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
662         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
663
664         /* Increment number of inner iterations */
665         inneriter                  += j_index_end - j_index_start;
666
667         /* Outer loop uses 26 flops */
668     }
669
670     /* Increment number of outer iterations */
671     outeriter        += nri;
672
673     /* Update outer/inner flops */
674
675     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164);
676 }
677 /*
678  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
679  * Electrostatics interaction: CubicSplineTable
680  * VdW interaction:            LennardJones
681  * Geometry:                   Water4-Particle
682  * Calculate force/pot:        Force
683  */
684 void
685 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse2_double
686                     (t_nblist                    * gmx_restrict       nlist,
687                      rvec                        * gmx_restrict          xx,
688                      rvec                        * gmx_restrict          ff,
689                      t_forcerec                  * gmx_restrict          fr,
690                      t_mdatoms                   * gmx_restrict     mdatoms,
691                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
692                      t_nrnb                      * gmx_restrict        nrnb)
693 {
694     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
695      * just 0 for non-waters.
696      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
697      * jnr indices corresponding to data put in the four positions in the SIMD register.
698      */
699     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
700     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
701     int              jnrA,jnrB;
702     int              j_coord_offsetA,j_coord_offsetB;
703     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
704     real             rcutoff_scalar;
705     real             *shiftvec,*fshift,*x,*f;
706     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
707     int              vdwioffset0;
708     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709     int              vdwioffset1;
710     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711     int              vdwioffset2;
712     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713     int              vdwioffset3;
714     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
715     int              vdwjidx0A,vdwjidx0B;
716     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
717     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
718     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
719     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
720     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
721     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
722     real             *charge;
723     int              nvdwtype;
724     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
725     int              *vdwtype;
726     real             *vdwparam;
727     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
728     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
729     __m128i          vfitab;
730     __m128i          ifour       = _mm_set1_epi32(4);
731     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
732     real             *vftab;
733     __m128d          dummy_mask,cutoff_mask;
734     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
735     __m128d          one     = _mm_set1_pd(1.0);
736     __m128d          two     = _mm_set1_pd(2.0);
737     x                = xx[0];
738     f                = ff[0];
739
740     nri              = nlist->nri;
741     iinr             = nlist->iinr;
742     jindex           = nlist->jindex;
743     jjnr             = nlist->jjnr;
744     shiftidx         = nlist->shift;
745     gid              = nlist->gid;
746     shiftvec         = fr->shift_vec[0];
747     fshift           = fr->fshift[0];
748     facel            = _mm_set1_pd(fr->epsfac);
749     charge           = mdatoms->chargeA;
750     nvdwtype         = fr->ntype;
751     vdwparam         = fr->nbfp;
752     vdwtype          = mdatoms->typeA;
753
754     vftab            = kernel_data->table_elec->data;
755     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
756
757     /* Setup water-specific parameters */
758     inr              = nlist->iinr[0];
759     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
760     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
761     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
762     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768
769     outeriter        = 0;
770     inneriter        = 0;
771
772     /* Start outer loop over neighborlists */
773     for(iidx=0; iidx<nri; iidx++)
774     {
775         /* Load shift vector for this list */
776         i_shift_offset   = DIM*shiftidx[iidx];
777
778         /* Load limits for loop over neighbors */
779         j_index_start    = jindex[iidx];
780         j_index_end      = jindex[iidx+1];
781
782         /* Get outer coordinate index */
783         inr              = iinr[iidx];
784         i_coord_offset   = DIM*inr;
785
786         /* Load i particle coords and add shift vector */
787         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
788                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
789
790         fix0             = _mm_setzero_pd();
791         fiy0             = _mm_setzero_pd();
792         fiz0             = _mm_setzero_pd();
793         fix1             = _mm_setzero_pd();
794         fiy1             = _mm_setzero_pd();
795         fiz1             = _mm_setzero_pd();
796         fix2             = _mm_setzero_pd();
797         fiy2             = _mm_setzero_pd();
798         fiz2             = _mm_setzero_pd();
799         fix3             = _mm_setzero_pd();
800         fiy3             = _mm_setzero_pd();
801         fiz3             = _mm_setzero_pd();
802
803         /* Start inner kernel loop */
804         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
805         {
806
807             /* Get j neighbor index, and coordinate index */
808             jnrA             = jjnr[jidx];
809             jnrB             = jjnr[jidx+1];
810             j_coord_offsetA  = DIM*jnrA;
811             j_coord_offsetB  = DIM*jnrB;
812
813             /* load j atom coordinates */
814             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_pd(ix0,jx0);
819             dy00             = _mm_sub_pd(iy0,jy0);
820             dz00             = _mm_sub_pd(iz0,jz0);
821             dx10             = _mm_sub_pd(ix1,jx0);
822             dy10             = _mm_sub_pd(iy1,jy0);
823             dz10             = _mm_sub_pd(iz1,jz0);
824             dx20             = _mm_sub_pd(ix2,jx0);
825             dy20             = _mm_sub_pd(iy2,jy0);
826             dz20             = _mm_sub_pd(iz2,jz0);
827             dx30             = _mm_sub_pd(ix3,jx0);
828             dy30             = _mm_sub_pd(iy3,jy0);
829             dz30             = _mm_sub_pd(iz3,jz0);
830
831             /* Calculate squared distance and things based on it */
832             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
833             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
834             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
835             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
836
837             rinv10           = gmx_mm_invsqrt_pd(rsq10);
838             rinv20           = gmx_mm_invsqrt_pd(rsq20);
839             rinv30           = gmx_mm_invsqrt_pd(rsq30);
840
841             rinvsq00         = gmx_mm_inv_pd(rsq00);
842
843             /* Load parameters for j particles */
844             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
845             vdwjidx0A        = 2*vdwtype[jnrA+0];
846             vdwjidx0B        = 2*vdwtype[jnrB+0];
847
848             fjx0             = _mm_setzero_pd();
849             fjy0             = _mm_setzero_pd();
850             fjz0             = _mm_setzero_pd();
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             /* Compute parameters for interactions between i and j atoms */
857             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
858                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
859
860             /* LENNARD-JONES DISPERSION/REPULSION */
861
862             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
863             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
864
865             fscal            = fvdw;
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm_mul_pd(fscal,dx00);
869             ty               = _mm_mul_pd(fscal,dy00);
870             tz               = _mm_mul_pd(fscal,dz00);
871
872             /* Update vectorial force */
873             fix0             = _mm_add_pd(fix0,tx);
874             fiy0             = _mm_add_pd(fiy0,ty);
875             fiz0             = _mm_add_pd(fiz0,tz);
876
877             fjx0             = _mm_add_pd(fjx0,tx);
878             fjy0             = _mm_add_pd(fjy0,ty);
879             fjz0             = _mm_add_pd(fjz0,tz);
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             r10              = _mm_mul_pd(rsq10,rinv10);
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq10             = _mm_mul_pd(iq1,jq0);
889
890             /* Calculate table index by multiplying r with table scale and truncate to integer */
891             rt               = _mm_mul_pd(r10,vftabscale);
892             vfitab           = _mm_cvttpd_epi32(rt);
893             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
894             vfitab           = _mm_slli_epi32(vfitab,2);
895
896             /* CUBIC SPLINE TABLE ELECTROSTATICS */
897             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
898             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
899             GMX_MM_TRANSPOSE2_PD(Y,F);
900             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
901             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
902             GMX_MM_TRANSPOSE2_PD(G,H);
903             Heps             = _mm_mul_pd(vfeps,H);
904             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
905             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
906             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
907
908             fscal            = felec;
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm_mul_pd(fscal,dx10);
912             ty               = _mm_mul_pd(fscal,dy10);
913             tz               = _mm_mul_pd(fscal,dz10);
914
915             /* Update vectorial force */
916             fix1             = _mm_add_pd(fix1,tx);
917             fiy1             = _mm_add_pd(fiy1,ty);
918             fiz1             = _mm_add_pd(fiz1,tz);
919
920             fjx0             = _mm_add_pd(fjx0,tx);
921             fjy0             = _mm_add_pd(fjy0,ty);
922             fjz0             = _mm_add_pd(fjz0,tz);
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             r20              = _mm_mul_pd(rsq20,rinv20);
929
930             /* Compute parameters for interactions between i and j atoms */
931             qq20             = _mm_mul_pd(iq2,jq0);
932
933             /* Calculate table index by multiplying r with table scale and truncate to integer */
934             rt               = _mm_mul_pd(r20,vftabscale);
935             vfitab           = _mm_cvttpd_epi32(rt);
936             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
937             vfitab           = _mm_slli_epi32(vfitab,2);
938
939             /* CUBIC SPLINE TABLE ELECTROSTATICS */
940             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
941             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
942             GMX_MM_TRANSPOSE2_PD(Y,F);
943             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
944             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
945             GMX_MM_TRANSPOSE2_PD(G,H);
946             Heps             = _mm_mul_pd(vfeps,H);
947             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
948             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
949             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
950
951             fscal            = felec;
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm_mul_pd(fscal,dx20);
955             ty               = _mm_mul_pd(fscal,dy20);
956             tz               = _mm_mul_pd(fscal,dz20);
957
958             /* Update vectorial force */
959             fix2             = _mm_add_pd(fix2,tx);
960             fiy2             = _mm_add_pd(fiy2,ty);
961             fiz2             = _mm_add_pd(fiz2,tz);
962
963             fjx0             = _mm_add_pd(fjx0,tx);
964             fjy0             = _mm_add_pd(fjy0,ty);
965             fjz0             = _mm_add_pd(fjz0,tz);
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             r30              = _mm_mul_pd(rsq30,rinv30);
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq30             = _mm_mul_pd(iq3,jq0);
975
976             /* Calculate table index by multiplying r with table scale and truncate to integer */
977             rt               = _mm_mul_pd(r30,vftabscale);
978             vfitab           = _mm_cvttpd_epi32(rt);
979             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
980             vfitab           = _mm_slli_epi32(vfitab,2);
981
982             /* CUBIC SPLINE TABLE ELECTROSTATICS */
983             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
984             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
985             GMX_MM_TRANSPOSE2_PD(Y,F);
986             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
987             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
988             GMX_MM_TRANSPOSE2_PD(G,H);
989             Heps             = _mm_mul_pd(vfeps,H);
990             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
991             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
992             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm_mul_pd(fscal,dx30);
998             ty               = _mm_mul_pd(fscal,dy30);
999             tz               = _mm_mul_pd(fscal,dz30);
1000
1001             /* Update vectorial force */
1002             fix3             = _mm_add_pd(fix3,tx);
1003             fiy3             = _mm_add_pd(fiy3,ty);
1004             fiz3             = _mm_add_pd(fiz3,tz);
1005
1006             fjx0             = _mm_add_pd(fjx0,tx);
1007             fjy0             = _mm_add_pd(fjy0,ty);
1008             fjz0             = _mm_add_pd(fjz0,tz);
1009
1010             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1011
1012             /* Inner loop uses 147 flops */
1013         }
1014
1015         if(jidx<j_index_end)
1016         {
1017
1018             jnrA             = jjnr[jidx];
1019             j_coord_offsetA  = DIM*jnrA;
1020
1021             /* load j atom coordinates */
1022             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1023                                               &jx0,&jy0,&jz0);
1024
1025             /* Calculate displacement vector */
1026             dx00             = _mm_sub_pd(ix0,jx0);
1027             dy00             = _mm_sub_pd(iy0,jy0);
1028             dz00             = _mm_sub_pd(iz0,jz0);
1029             dx10             = _mm_sub_pd(ix1,jx0);
1030             dy10             = _mm_sub_pd(iy1,jy0);
1031             dz10             = _mm_sub_pd(iz1,jz0);
1032             dx20             = _mm_sub_pd(ix2,jx0);
1033             dy20             = _mm_sub_pd(iy2,jy0);
1034             dz20             = _mm_sub_pd(iz2,jz0);
1035             dx30             = _mm_sub_pd(ix3,jx0);
1036             dy30             = _mm_sub_pd(iy3,jy0);
1037             dz30             = _mm_sub_pd(iz3,jz0);
1038
1039             /* Calculate squared distance and things based on it */
1040             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1041             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1042             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1043             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1044
1045             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1046             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1047             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1048
1049             rinvsq00         = gmx_mm_inv_pd(rsq00);
1050
1051             /* Load parameters for j particles */
1052             jq0              = _mm_load_sd(charge+jnrA+0);
1053             vdwjidx0A        = 2*vdwtype[jnrA+0];
1054
1055             fjx0             = _mm_setzero_pd();
1056             fjy0             = _mm_setzero_pd();
1057             fjz0             = _mm_setzero_pd();
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1065
1066             /* LENNARD-JONES DISPERSION/REPULSION */
1067
1068             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1069             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1070
1071             fscal            = fvdw;
1072
1073             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_pd(fscal,dx00);
1077             ty               = _mm_mul_pd(fscal,dy00);
1078             tz               = _mm_mul_pd(fscal,dz00);
1079
1080             /* Update vectorial force */
1081             fix0             = _mm_add_pd(fix0,tx);
1082             fiy0             = _mm_add_pd(fiy0,ty);
1083             fiz0             = _mm_add_pd(fiz0,tz);
1084
1085             fjx0             = _mm_add_pd(fjx0,tx);
1086             fjy0             = _mm_add_pd(fjy0,ty);
1087             fjz0             = _mm_add_pd(fjz0,tz);
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             r10              = _mm_mul_pd(rsq10,rinv10);
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq10             = _mm_mul_pd(iq1,jq0);
1097
1098             /* Calculate table index by multiplying r with table scale and truncate to integer */
1099             rt               = _mm_mul_pd(r10,vftabscale);
1100             vfitab           = _mm_cvttpd_epi32(rt);
1101             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1102             vfitab           = _mm_slli_epi32(vfitab,2);
1103
1104             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1105             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1106             F                = _mm_setzero_pd();
1107             GMX_MM_TRANSPOSE2_PD(Y,F);
1108             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1109             H                = _mm_setzero_pd();
1110             GMX_MM_TRANSPOSE2_PD(G,H);
1111             Heps             = _mm_mul_pd(vfeps,H);
1112             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1113             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1114             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1115
1116             fscal            = felec;
1117
1118             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1119
1120             /* Calculate temporary vectorial force */
1121             tx               = _mm_mul_pd(fscal,dx10);
1122             ty               = _mm_mul_pd(fscal,dy10);
1123             tz               = _mm_mul_pd(fscal,dz10);
1124
1125             /* Update vectorial force */
1126             fix1             = _mm_add_pd(fix1,tx);
1127             fiy1             = _mm_add_pd(fiy1,ty);
1128             fiz1             = _mm_add_pd(fiz1,tz);
1129
1130             fjx0             = _mm_add_pd(fjx0,tx);
1131             fjy0             = _mm_add_pd(fjy0,ty);
1132             fjz0             = _mm_add_pd(fjz0,tz);
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             r20              = _mm_mul_pd(rsq20,rinv20);
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             qq20             = _mm_mul_pd(iq2,jq0);
1142
1143             /* Calculate table index by multiplying r with table scale and truncate to integer */
1144             rt               = _mm_mul_pd(r20,vftabscale);
1145             vfitab           = _mm_cvttpd_epi32(rt);
1146             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1147             vfitab           = _mm_slli_epi32(vfitab,2);
1148
1149             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1150             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1151             F                = _mm_setzero_pd();
1152             GMX_MM_TRANSPOSE2_PD(Y,F);
1153             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1154             H                = _mm_setzero_pd();
1155             GMX_MM_TRANSPOSE2_PD(G,H);
1156             Heps             = _mm_mul_pd(vfeps,H);
1157             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1158             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1159             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_pd(fscal,dx20);
1167             ty               = _mm_mul_pd(fscal,dy20);
1168             tz               = _mm_mul_pd(fscal,dz20);
1169
1170             /* Update vectorial force */
1171             fix2             = _mm_add_pd(fix2,tx);
1172             fiy2             = _mm_add_pd(fiy2,ty);
1173             fiz2             = _mm_add_pd(fiz2,tz);
1174
1175             fjx0             = _mm_add_pd(fjx0,tx);
1176             fjy0             = _mm_add_pd(fjy0,ty);
1177             fjz0             = _mm_add_pd(fjz0,tz);
1178
1179             /**************************
1180              * CALCULATE INTERACTIONS *
1181              **************************/
1182
1183             r30              = _mm_mul_pd(rsq30,rinv30);
1184
1185             /* Compute parameters for interactions between i and j atoms */
1186             qq30             = _mm_mul_pd(iq3,jq0);
1187
1188             /* Calculate table index by multiplying r with table scale and truncate to integer */
1189             rt               = _mm_mul_pd(r30,vftabscale);
1190             vfitab           = _mm_cvttpd_epi32(rt);
1191             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1192             vfitab           = _mm_slli_epi32(vfitab,2);
1193
1194             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1195             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1196             F                = _mm_setzero_pd();
1197             GMX_MM_TRANSPOSE2_PD(Y,F);
1198             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1199             H                = _mm_setzero_pd();
1200             GMX_MM_TRANSPOSE2_PD(G,H);
1201             Heps             = _mm_mul_pd(vfeps,H);
1202             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1203             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1204             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1205
1206             fscal            = felec;
1207
1208             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1209
1210             /* Calculate temporary vectorial force */
1211             tx               = _mm_mul_pd(fscal,dx30);
1212             ty               = _mm_mul_pd(fscal,dy30);
1213             tz               = _mm_mul_pd(fscal,dz30);
1214
1215             /* Update vectorial force */
1216             fix3             = _mm_add_pd(fix3,tx);
1217             fiy3             = _mm_add_pd(fiy3,ty);
1218             fiz3             = _mm_add_pd(fiz3,tz);
1219
1220             fjx0             = _mm_add_pd(fjx0,tx);
1221             fjy0             = _mm_add_pd(fjy0,ty);
1222             fjz0             = _mm_add_pd(fjz0,tz);
1223
1224             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1225
1226             /* Inner loop uses 147 flops */
1227         }
1228
1229         /* End of innermost loop */
1230
1231         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1232                                               f+i_coord_offset,fshift+i_shift_offset);
1233
1234         /* Increment number of inner iterations */
1235         inneriter                  += j_index_end - j_index_start;
1236
1237         /* Outer loop uses 24 flops */
1238     }
1239
1240     /* Increment number of outer iterations */
1241     outeriter        += nri;
1242
1243     /* Update outer/inner flops */
1244
1245     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1246 }