Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = sse2_invsqrt_d(rsq00);
204             rinv10           = sse2_invsqrt_d(rsq10);
205             rinv20           = sse2_invsqrt_d(rsq20);
206
207             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213
214             fjx0             = _mm_setzero_pd();
215             fjy0             = _mm_setzero_pd();
216             fjz0             = _mm_setzero_pd();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_pd(iq0,jq0);
226             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_pd(r00,vftabscale);
231             vfitab           = _mm_cvttpd_epi32(rt);
232             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
233             vfitab           = _mm_slli_epi32(vfitab,2);
234
235             /* CUBIC SPLINE TABLE ELECTROSTATICS */
236             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
237             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
238             GMX_MM_TRANSPOSE2_PD(Y,F);
239             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
240             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
241             GMX_MM_TRANSPOSE2_PD(G,H);
242             Heps             = _mm_mul_pd(vfeps,H);
243             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
244             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
245             velec            = _mm_mul_pd(qq00,VV);
246             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
247             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
248
249             /* LENNARD-JONES DISPERSION/REPULSION */
250
251             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
252             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
253             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
260
261             fscal            = _mm_add_pd(felec,fvdw);
262
263             /* Calculate temporary vectorial force */
264             tx               = _mm_mul_pd(fscal,dx00);
265             ty               = _mm_mul_pd(fscal,dy00);
266             tz               = _mm_mul_pd(fscal,dz00);
267
268             /* Update vectorial force */
269             fix0             = _mm_add_pd(fix0,tx);
270             fiy0             = _mm_add_pd(fiy0,ty);
271             fiz0             = _mm_add_pd(fiz0,tz);
272
273             fjx0             = _mm_add_pd(fjx0,tx);
274             fjy0             = _mm_add_pd(fjy0,ty);
275             fjz0             = _mm_add_pd(fjz0,tz);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r10              = _mm_mul_pd(rsq10,rinv10);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _mm_mul_pd(iq1,jq0);
285
286             /* Calculate table index by multiplying r with table scale and truncate to integer */
287             rt               = _mm_mul_pd(r10,vftabscale);
288             vfitab           = _mm_cvttpd_epi32(rt);
289             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
290             vfitab           = _mm_slli_epi32(vfitab,2);
291
292             /* CUBIC SPLINE TABLE ELECTROSTATICS */
293             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
294             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
295             GMX_MM_TRANSPOSE2_PD(Y,F);
296             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
297             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
298             GMX_MM_TRANSPOSE2_PD(G,H);
299             Heps             = _mm_mul_pd(vfeps,H);
300             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
301             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
302             velec            = _mm_mul_pd(qq10,VV);
303             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
304             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_pd(fscal,dx10);
313             ty               = _mm_mul_pd(fscal,dy10);
314             tz               = _mm_mul_pd(fscal,dz10);
315
316             /* Update vectorial force */
317             fix1             = _mm_add_pd(fix1,tx);
318             fiy1             = _mm_add_pd(fiy1,ty);
319             fiz1             = _mm_add_pd(fiz1,tz);
320
321             fjx0             = _mm_add_pd(fjx0,tx);
322             fjy0             = _mm_add_pd(fjy0,ty);
323             fjz0             = _mm_add_pd(fjz0,tz);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             r20              = _mm_mul_pd(rsq20,rinv20);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_pd(iq2,jq0);
333
334             /* Calculate table index by multiplying r with table scale and truncate to integer */
335             rt               = _mm_mul_pd(r20,vftabscale);
336             vfitab           = _mm_cvttpd_epi32(rt);
337             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
338             vfitab           = _mm_slli_epi32(vfitab,2);
339
340             /* CUBIC SPLINE TABLE ELECTROSTATICS */
341             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
342             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
343             GMX_MM_TRANSPOSE2_PD(Y,F);
344             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
345             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
346             GMX_MM_TRANSPOSE2_PD(G,H);
347             Heps             = _mm_mul_pd(vfeps,H);
348             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
349             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
350             velec            = _mm_mul_pd(qq20,VV);
351             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
352             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velecsum         = _mm_add_pd(velecsum,velec);
356
357             fscal            = felec;
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm_mul_pd(fscal,dx20);
361             ty               = _mm_mul_pd(fscal,dy20);
362             tz               = _mm_mul_pd(fscal,dz20);
363
364             /* Update vectorial force */
365             fix2             = _mm_add_pd(fix2,tx);
366             fiy2             = _mm_add_pd(fiy2,ty);
367             fiz2             = _mm_add_pd(fiz2,tz);
368
369             fjx0             = _mm_add_pd(fjx0,tx);
370             fjy0             = _mm_add_pd(fjy0,ty);
371             fjz0             = _mm_add_pd(fjz0,tz);
372
373             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
374
375             /* Inner loop uses 145 flops */
376         }
377
378         if(jidx<j_index_end)
379         {
380
381             jnrA             = jjnr[jidx];
382             j_coord_offsetA  = DIM*jnrA;
383
384             /* load j atom coordinates */
385             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
386                                               &jx0,&jy0,&jz0);
387
388             /* Calculate displacement vector */
389             dx00             = _mm_sub_pd(ix0,jx0);
390             dy00             = _mm_sub_pd(iy0,jy0);
391             dz00             = _mm_sub_pd(iz0,jz0);
392             dx10             = _mm_sub_pd(ix1,jx0);
393             dy10             = _mm_sub_pd(iy1,jy0);
394             dz10             = _mm_sub_pd(iz1,jz0);
395             dx20             = _mm_sub_pd(ix2,jx0);
396             dy20             = _mm_sub_pd(iy2,jy0);
397             dz20             = _mm_sub_pd(iz2,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
401             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
402             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
403
404             rinv00           = sse2_invsqrt_d(rsq00);
405             rinv10           = sse2_invsqrt_d(rsq10);
406             rinv20           = sse2_invsqrt_d(rsq20);
407
408             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
409
410             /* Load parameters for j particles */
411             jq0              = _mm_load_sd(charge+jnrA+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413
414             fjx0             = _mm_setzero_pd();
415             fjy0             = _mm_setzero_pd();
416             fjz0             = _mm_setzero_pd();
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             r00              = _mm_mul_pd(rsq00,rinv00);
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq00             = _mm_mul_pd(iq0,jq0);
426             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
427
428             /* Calculate table index by multiplying r with table scale and truncate to integer */
429             rt               = _mm_mul_pd(r00,vftabscale);
430             vfitab           = _mm_cvttpd_epi32(rt);
431             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
432             vfitab           = _mm_slli_epi32(vfitab,2);
433
434             /* CUBIC SPLINE TABLE ELECTROSTATICS */
435             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
436             F                = _mm_setzero_pd();
437             GMX_MM_TRANSPOSE2_PD(Y,F);
438             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
439             H                = _mm_setzero_pd();
440             GMX_MM_TRANSPOSE2_PD(G,H);
441             Heps             = _mm_mul_pd(vfeps,H);
442             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
443             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
444             velec            = _mm_mul_pd(qq00,VV);
445             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
446             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
447
448             /* LENNARD-JONES DISPERSION/REPULSION */
449
450             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
451             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
452             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
453             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
454             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
458             velecsum         = _mm_add_pd(velecsum,velec);
459             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
460             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
461
462             fscal            = _mm_add_pd(felec,fvdw);
463
464             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm_mul_pd(fscal,dx00);
468             ty               = _mm_mul_pd(fscal,dy00);
469             tz               = _mm_mul_pd(fscal,dz00);
470
471             /* Update vectorial force */
472             fix0             = _mm_add_pd(fix0,tx);
473             fiy0             = _mm_add_pd(fiy0,ty);
474             fiz0             = _mm_add_pd(fiz0,tz);
475
476             fjx0             = _mm_add_pd(fjx0,tx);
477             fjy0             = _mm_add_pd(fjy0,ty);
478             fjz0             = _mm_add_pd(fjz0,tz);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r10              = _mm_mul_pd(rsq10,rinv10);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq10             = _mm_mul_pd(iq1,jq0);
488
489             /* Calculate table index by multiplying r with table scale and truncate to integer */
490             rt               = _mm_mul_pd(r10,vftabscale);
491             vfitab           = _mm_cvttpd_epi32(rt);
492             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
493             vfitab           = _mm_slli_epi32(vfitab,2);
494
495             /* CUBIC SPLINE TABLE ELECTROSTATICS */
496             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
497             F                = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(Y,F);
499             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
500             H                = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(G,H);
502             Heps             = _mm_mul_pd(vfeps,H);
503             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
504             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
505             velec            = _mm_mul_pd(qq10,VV);
506             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
507             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
511             velecsum         = _mm_add_pd(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx10);
519             ty               = _mm_mul_pd(fscal,dy10);
520             tz               = _mm_mul_pd(fscal,dz10);
521
522             /* Update vectorial force */
523             fix1             = _mm_add_pd(fix1,tx);
524             fiy1             = _mm_add_pd(fiy1,ty);
525             fiz1             = _mm_add_pd(fiz1,tz);
526
527             fjx0             = _mm_add_pd(fjx0,tx);
528             fjy0             = _mm_add_pd(fjy0,ty);
529             fjz0             = _mm_add_pd(fjz0,tz);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r20              = _mm_mul_pd(rsq20,rinv20);
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq20             = _mm_mul_pd(iq2,jq0);
539
540             /* Calculate table index by multiplying r with table scale and truncate to integer */
541             rt               = _mm_mul_pd(r20,vftabscale);
542             vfitab           = _mm_cvttpd_epi32(rt);
543             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
544             vfitab           = _mm_slli_epi32(vfitab,2);
545
546             /* CUBIC SPLINE TABLE ELECTROSTATICS */
547             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
548             F                = _mm_setzero_pd();
549             GMX_MM_TRANSPOSE2_PD(Y,F);
550             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
551             H                = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(G,H);
553             Heps             = _mm_mul_pd(vfeps,H);
554             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
555             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
556             velec            = _mm_mul_pd(qq20,VV);
557             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
558             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
562             velecsum         = _mm_add_pd(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm_mul_pd(fscal,dx20);
570             ty               = _mm_mul_pd(fscal,dy20);
571             tz               = _mm_mul_pd(fscal,dz20);
572
573             /* Update vectorial force */
574             fix2             = _mm_add_pd(fix2,tx);
575             fiy2             = _mm_add_pd(fiy2,ty);
576             fiz2             = _mm_add_pd(fiz2,tz);
577
578             fjx0             = _mm_add_pd(fjx0,tx);
579             fjy0             = _mm_add_pd(fjy0,ty);
580             fjz0             = _mm_add_pd(fjz0,tz);
581
582             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
583
584             /* Inner loop uses 145 flops */
585         }
586
587         /* End of innermost loop */
588
589         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
590                                               f+i_coord_offset,fshift+i_shift_offset);
591
592         ggid                        = gid[iidx];
593         /* Update potential energies */
594         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
595         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
596
597         /* Increment number of inner iterations */
598         inneriter                  += j_index_end - j_index_start;
599
600         /* Outer loop uses 20 flops */
601     }
602
603     /* Increment number of outer iterations */
604     outeriter        += nri;
605
606     /* Update outer/inner flops */
607
608     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
609 }
610 /*
611  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
612  * Electrostatics interaction: CubicSplineTable
613  * VdW interaction:            LennardJones
614  * Geometry:                   Water3-Particle
615  * Calculate force/pot:        Force
616  */
617 void
618 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
619                     (t_nblist                    * gmx_restrict       nlist,
620                      rvec                        * gmx_restrict          xx,
621                      rvec                        * gmx_restrict          ff,
622                      struct t_forcerec           * gmx_restrict          fr,
623                      t_mdatoms                   * gmx_restrict     mdatoms,
624                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
625                      t_nrnb                      * gmx_restrict        nrnb)
626 {
627     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
628      * just 0 for non-waters.
629      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
630      * jnr indices corresponding to data put in the four positions in the SIMD register.
631      */
632     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
633     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
634     int              jnrA,jnrB;
635     int              j_coord_offsetA,j_coord_offsetB;
636     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
637     real             rcutoff_scalar;
638     real             *shiftvec,*fshift,*x,*f;
639     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset0;
641     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
642     int              vdwioffset1;
643     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
644     int              vdwioffset2;
645     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
646     int              vdwjidx0A,vdwjidx0B;
647     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
649     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
650     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
651     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     int              nvdwtype;
654     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
655     int              *vdwtype;
656     real             *vdwparam;
657     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
658     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
659     __m128i          vfitab;
660     __m128i          ifour       = _mm_set1_epi32(4);
661     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
662     real             *vftab;
663     __m128d          dummy_mask,cutoff_mask;
664     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
665     __m128d          one     = _mm_set1_pd(1.0);
666     __m128d          two     = _mm_set1_pd(2.0);
667     x                = xx[0];
668     f                = ff[0];
669
670     nri              = nlist->nri;
671     iinr             = nlist->iinr;
672     jindex           = nlist->jindex;
673     jjnr             = nlist->jjnr;
674     shiftidx         = nlist->shift;
675     gid              = nlist->gid;
676     shiftvec         = fr->shift_vec[0];
677     fshift           = fr->fshift[0];
678     facel            = _mm_set1_pd(fr->ic->epsfac);
679     charge           = mdatoms->chargeA;
680     nvdwtype         = fr->ntype;
681     vdwparam         = fr->nbfp;
682     vdwtype          = mdatoms->typeA;
683
684     vftab            = kernel_data->table_elec->data;
685     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
686
687     /* Setup water-specific parameters */
688     inr              = nlist->iinr[0];
689     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
690     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
691     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
692     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
693
694     /* Avoid stupid compiler warnings */
695     jnrA = jnrB = 0;
696     j_coord_offsetA = 0;
697     j_coord_offsetB = 0;
698
699     outeriter        = 0;
700     inneriter        = 0;
701
702     /* Start outer loop over neighborlists */
703     for(iidx=0; iidx<nri; iidx++)
704     {
705         /* Load shift vector for this list */
706         i_shift_offset   = DIM*shiftidx[iidx];
707
708         /* Load limits for loop over neighbors */
709         j_index_start    = jindex[iidx];
710         j_index_end      = jindex[iidx+1];
711
712         /* Get outer coordinate index */
713         inr              = iinr[iidx];
714         i_coord_offset   = DIM*inr;
715
716         /* Load i particle coords and add shift vector */
717         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
718                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
719
720         fix0             = _mm_setzero_pd();
721         fiy0             = _mm_setzero_pd();
722         fiz0             = _mm_setzero_pd();
723         fix1             = _mm_setzero_pd();
724         fiy1             = _mm_setzero_pd();
725         fiz1             = _mm_setzero_pd();
726         fix2             = _mm_setzero_pd();
727         fiy2             = _mm_setzero_pd();
728         fiz2             = _mm_setzero_pd();
729
730         /* Start inner kernel loop */
731         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
732         {
733
734             /* Get j neighbor index, and coordinate index */
735             jnrA             = jjnr[jidx];
736             jnrB             = jjnr[jidx+1];
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739
740             /* load j atom coordinates */
741             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
742                                               &jx0,&jy0,&jz0);
743
744             /* Calculate displacement vector */
745             dx00             = _mm_sub_pd(ix0,jx0);
746             dy00             = _mm_sub_pd(iy0,jy0);
747             dz00             = _mm_sub_pd(iz0,jz0);
748             dx10             = _mm_sub_pd(ix1,jx0);
749             dy10             = _mm_sub_pd(iy1,jy0);
750             dz10             = _mm_sub_pd(iz1,jz0);
751             dx20             = _mm_sub_pd(ix2,jx0);
752             dy20             = _mm_sub_pd(iy2,jy0);
753             dz20             = _mm_sub_pd(iz2,jz0);
754
755             /* Calculate squared distance and things based on it */
756             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
757             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
758             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
759
760             rinv00           = sse2_invsqrt_d(rsq00);
761             rinv10           = sse2_invsqrt_d(rsq10);
762             rinv20           = sse2_invsqrt_d(rsq20);
763
764             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
765
766             /* Load parameters for j particles */
767             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
768             vdwjidx0A        = 2*vdwtype[jnrA+0];
769             vdwjidx0B        = 2*vdwtype[jnrB+0];
770
771             fjx0             = _mm_setzero_pd();
772             fjy0             = _mm_setzero_pd();
773             fjz0             = _mm_setzero_pd();
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             r00              = _mm_mul_pd(rsq00,rinv00);
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq00             = _mm_mul_pd(iq0,jq0);
783             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
784                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
785
786             /* Calculate table index by multiplying r with table scale and truncate to integer */
787             rt               = _mm_mul_pd(r00,vftabscale);
788             vfitab           = _mm_cvttpd_epi32(rt);
789             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
790             vfitab           = _mm_slli_epi32(vfitab,2);
791
792             /* CUBIC SPLINE TABLE ELECTROSTATICS */
793             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
794             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
795             GMX_MM_TRANSPOSE2_PD(Y,F);
796             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
797             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
798             GMX_MM_TRANSPOSE2_PD(G,H);
799             Heps             = _mm_mul_pd(vfeps,H);
800             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
801             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
802             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
803
804             /* LENNARD-JONES DISPERSION/REPULSION */
805
806             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
807             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
808
809             fscal            = _mm_add_pd(felec,fvdw);
810
811             /* Calculate temporary vectorial force */
812             tx               = _mm_mul_pd(fscal,dx00);
813             ty               = _mm_mul_pd(fscal,dy00);
814             tz               = _mm_mul_pd(fscal,dz00);
815
816             /* Update vectorial force */
817             fix0             = _mm_add_pd(fix0,tx);
818             fiy0             = _mm_add_pd(fiy0,ty);
819             fiz0             = _mm_add_pd(fiz0,tz);
820
821             fjx0             = _mm_add_pd(fjx0,tx);
822             fjy0             = _mm_add_pd(fjy0,ty);
823             fjz0             = _mm_add_pd(fjz0,tz);
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             r10              = _mm_mul_pd(rsq10,rinv10);
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq10             = _mm_mul_pd(iq1,jq0);
833
834             /* Calculate table index by multiplying r with table scale and truncate to integer */
835             rt               = _mm_mul_pd(r10,vftabscale);
836             vfitab           = _mm_cvttpd_epi32(rt);
837             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
838             vfitab           = _mm_slli_epi32(vfitab,2);
839
840             /* CUBIC SPLINE TABLE ELECTROSTATICS */
841             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
842             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
843             GMX_MM_TRANSPOSE2_PD(Y,F);
844             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
845             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
846             GMX_MM_TRANSPOSE2_PD(G,H);
847             Heps             = _mm_mul_pd(vfeps,H);
848             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
849             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
850             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
851
852             fscal            = felec;
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm_mul_pd(fscal,dx10);
856             ty               = _mm_mul_pd(fscal,dy10);
857             tz               = _mm_mul_pd(fscal,dz10);
858
859             /* Update vectorial force */
860             fix1             = _mm_add_pd(fix1,tx);
861             fiy1             = _mm_add_pd(fiy1,ty);
862             fiz1             = _mm_add_pd(fiz1,tz);
863
864             fjx0             = _mm_add_pd(fjx0,tx);
865             fjy0             = _mm_add_pd(fjy0,ty);
866             fjz0             = _mm_add_pd(fjz0,tz);
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             r20              = _mm_mul_pd(rsq20,rinv20);
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq20             = _mm_mul_pd(iq2,jq0);
876
877             /* Calculate table index by multiplying r with table scale and truncate to integer */
878             rt               = _mm_mul_pd(r20,vftabscale);
879             vfitab           = _mm_cvttpd_epi32(rt);
880             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
881             vfitab           = _mm_slli_epi32(vfitab,2);
882
883             /* CUBIC SPLINE TABLE ELECTROSTATICS */
884             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
885             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
886             GMX_MM_TRANSPOSE2_PD(Y,F);
887             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
888             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
889             GMX_MM_TRANSPOSE2_PD(G,H);
890             Heps             = _mm_mul_pd(vfeps,H);
891             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
892             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
893             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
894
895             fscal            = felec;
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_pd(fscal,dx20);
899             ty               = _mm_mul_pd(fscal,dy20);
900             tz               = _mm_mul_pd(fscal,dz20);
901
902             /* Update vectorial force */
903             fix2             = _mm_add_pd(fix2,tx);
904             fiy2             = _mm_add_pd(fiy2,ty);
905             fiz2             = _mm_add_pd(fiz2,tz);
906
907             fjx0             = _mm_add_pd(fjx0,tx);
908             fjy0             = _mm_add_pd(fjy0,ty);
909             fjz0             = _mm_add_pd(fjz0,tz);
910
911             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
912
913             /* Inner loop uses 128 flops */
914         }
915
916         if(jidx<j_index_end)
917         {
918
919             jnrA             = jjnr[jidx];
920             j_coord_offsetA  = DIM*jnrA;
921
922             /* load j atom coordinates */
923             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
924                                               &jx0,&jy0,&jz0);
925
926             /* Calculate displacement vector */
927             dx00             = _mm_sub_pd(ix0,jx0);
928             dy00             = _mm_sub_pd(iy0,jy0);
929             dz00             = _mm_sub_pd(iz0,jz0);
930             dx10             = _mm_sub_pd(ix1,jx0);
931             dy10             = _mm_sub_pd(iy1,jy0);
932             dz10             = _mm_sub_pd(iz1,jz0);
933             dx20             = _mm_sub_pd(ix2,jx0);
934             dy20             = _mm_sub_pd(iy2,jy0);
935             dz20             = _mm_sub_pd(iz2,jz0);
936
937             /* Calculate squared distance and things based on it */
938             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
939             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
940             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
941
942             rinv00           = sse2_invsqrt_d(rsq00);
943             rinv10           = sse2_invsqrt_d(rsq10);
944             rinv20           = sse2_invsqrt_d(rsq20);
945
946             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
947
948             /* Load parameters for j particles */
949             jq0              = _mm_load_sd(charge+jnrA+0);
950             vdwjidx0A        = 2*vdwtype[jnrA+0];
951
952             fjx0             = _mm_setzero_pd();
953             fjy0             = _mm_setzero_pd();
954             fjz0             = _mm_setzero_pd();
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             r00              = _mm_mul_pd(rsq00,rinv00);
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq00             = _mm_mul_pd(iq0,jq0);
964             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
965
966             /* Calculate table index by multiplying r with table scale and truncate to integer */
967             rt               = _mm_mul_pd(r00,vftabscale);
968             vfitab           = _mm_cvttpd_epi32(rt);
969             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
970             vfitab           = _mm_slli_epi32(vfitab,2);
971
972             /* CUBIC SPLINE TABLE ELECTROSTATICS */
973             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
974             F                = _mm_setzero_pd();
975             GMX_MM_TRANSPOSE2_PD(Y,F);
976             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
977             H                = _mm_setzero_pd();
978             GMX_MM_TRANSPOSE2_PD(G,H);
979             Heps             = _mm_mul_pd(vfeps,H);
980             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
981             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
982             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
983
984             /* LENNARD-JONES DISPERSION/REPULSION */
985
986             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
987             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
988
989             fscal            = _mm_add_pd(felec,fvdw);
990
991             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm_mul_pd(fscal,dx00);
995             ty               = _mm_mul_pd(fscal,dy00);
996             tz               = _mm_mul_pd(fscal,dz00);
997
998             /* Update vectorial force */
999             fix0             = _mm_add_pd(fix0,tx);
1000             fiy0             = _mm_add_pd(fiy0,ty);
1001             fiz0             = _mm_add_pd(fiz0,tz);
1002
1003             fjx0             = _mm_add_pd(fjx0,tx);
1004             fjy0             = _mm_add_pd(fjy0,ty);
1005             fjz0             = _mm_add_pd(fjz0,tz);
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             r10              = _mm_mul_pd(rsq10,rinv10);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             qq10             = _mm_mul_pd(iq1,jq0);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm_mul_pd(r10,vftabscale);
1018             vfitab           = _mm_cvttpd_epi32(rt);
1019             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1020             vfitab           = _mm_slli_epi32(vfitab,2);
1021
1022             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1023             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1024             F                = _mm_setzero_pd();
1025             GMX_MM_TRANSPOSE2_PD(Y,F);
1026             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1027             H                = _mm_setzero_pd();
1028             GMX_MM_TRANSPOSE2_PD(G,H);
1029             Heps             = _mm_mul_pd(vfeps,H);
1030             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1031             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1032             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1033
1034             fscal            = felec;
1035
1036             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_pd(fscal,dx10);
1040             ty               = _mm_mul_pd(fscal,dy10);
1041             tz               = _mm_mul_pd(fscal,dz10);
1042
1043             /* Update vectorial force */
1044             fix1             = _mm_add_pd(fix1,tx);
1045             fiy1             = _mm_add_pd(fiy1,ty);
1046             fiz1             = _mm_add_pd(fiz1,tz);
1047
1048             fjx0             = _mm_add_pd(fjx0,tx);
1049             fjy0             = _mm_add_pd(fjy0,ty);
1050             fjz0             = _mm_add_pd(fjz0,tz);
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             r20              = _mm_mul_pd(rsq20,rinv20);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _mm_mul_pd(iq2,jq0);
1060
1061             /* Calculate table index by multiplying r with table scale and truncate to integer */
1062             rt               = _mm_mul_pd(r20,vftabscale);
1063             vfitab           = _mm_cvttpd_epi32(rt);
1064             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1065             vfitab           = _mm_slli_epi32(vfitab,2);
1066
1067             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1068             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1069             F                = _mm_setzero_pd();
1070             GMX_MM_TRANSPOSE2_PD(Y,F);
1071             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1072             H                = _mm_setzero_pd();
1073             GMX_MM_TRANSPOSE2_PD(G,H);
1074             Heps             = _mm_mul_pd(vfeps,H);
1075             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1076             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1077             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1078
1079             fscal            = felec;
1080
1081             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1082
1083             /* Calculate temporary vectorial force */
1084             tx               = _mm_mul_pd(fscal,dx20);
1085             ty               = _mm_mul_pd(fscal,dy20);
1086             tz               = _mm_mul_pd(fscal,dz20);
1087
1088             /* Update vectorial force */
1089             fix2             = _mm_add_pd(fix2,tx);
1090             fiy2             = _mm_add_pd(fiy2,ty);
1091             fiz2             = _mm_add_pd(fiz2,tz);
1092
1093             fjx0             = _mm_add_pd(fjx0,tx);
1094             fjy0             = _mm_add_pd(fjy0,ty);
1095             fjz0             = _mm_add_pd(fjz0,tz);
1096
1097             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1098
1099             /* Inner loop uses 128 flops */
1100         }
1101
1102         /* End of innermost loop */
1103
1104         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1105                                               f+i_coord_offset,fshift+i_shift_offset);
1106
1107         /* Increment number of inner iterations */
1108         inneriter                  += j_index_end - j_index_start;
1109
1110         /* Outer loop uses 18 flops */
1111     }
1112
1113     /* Increment number of outer iterations */
1114     outeriter        += nri;
1115
1116     /* Update outer/inner flops */
1117
1118     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1119 }