Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_pd(rsq00);
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209
210             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216
217             fjx0             = _mm_setzero_pd();
218             fjy0             = _mm_setzero_pd();
219             fjz0             = _mm_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_pd(iq0,jq0);
229             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_pd(r00,vftabscale);
234             vfitab           = _mm_cvttpd_epi32(rt);
235             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
236             vfitab           = _mm_slli_epi32(vfitab,2);
237
238             /* CUBIC SPLINE TABLE ELECTROSTATICS */
239             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
240             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
241             GMX_MM_TRANSPOSE2_PD(Y,F);
242             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
243             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
244             GMX_MM_TRANSPOSE2_PD(G,H);
245             Heps             = _mm_mul_pd(vfeps,H);
246             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
247             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
248             velec            = _mm_mul_pd(qq00,VV);
249             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
250             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
258             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _mm_add_pd(velecsum,velec);
262             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
263
264             fscal            = _mm_add_pd(felec,fvdw);
265
266             /* Calculate temporary vectorial force */
267             tx               = _mm_mul_pd(fscal,dx00);
268             ty               = _mm_mul_pd(fscal,dy00);
269             tz               = _mm_mul_pd(fscal,dz00);
270
271             /* Update vectorial force */
272             fix0             = _mm_add_pd(fix0,tx);
273             fiy0             = _mm_add_pd(fiy0,ty);
274             fiz0             = _mm_add_pd(fiz0,tz);
275
276             fjx0             = _mm_add_pd(fjx0,tx);
277             fjy0             = _mm_add_pd(fjy0,ty);
278             fjz0             = _mm_add_pd(fjz0,tz);
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             r10              = _mm_mul_pd(rsq10,rinv10);
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq10             = _mm_mul_pd(iq1,jq0);
288
289             /* Calculate table index by multiplying r with table scale and truncate to integer */
290             rt               = _mm_mul_pd(r10,vftabscale);
291             vfitab           = _mm_cvttpd_epi32(rt);
292             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
293             vfitab           = _mm_slli_epi32(vfitab,2);
294
295             /* CUBIC SPLINE TABLE ELECTROSTATICS */
296             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
297             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
298             GMX_MM_TRANSPOSE2_PD(Y,F);
299             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
300             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
301             GMX_MM_TRANSPOSE2_PD(G,H);
302             Heps             = _mm_mul_pd(vfeps,H);
303             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
304             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
305             velec            = _mm_mul_pd(qq10,VV);
306             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
307             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_pd(fscal,dx10);
316             ty               = _mm_mul_pd(fscal,dy10);
317             tz               = _mm_mul_pd(fscal,dz10);
318
319             /* Update vectorial force */
320             fix1             = _mm_add_pd(fix1,tx);
321             fiy1             = _mm_add_pd(fiy1,ty);
322             fiz1             = _mm_add_pd(fiz1,tz);
323
324             fjx0             = _mm_add_pd(fjx0,tx);
325             fjy0             = _mm_add_pd(fjy0,ty);
326             fjz0             = _mm_add_pd(fjz0,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r20              = _mm_mul_pd(rsq20,rinv20);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm_mul_pd(iq2,jq0);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_pd(r20,vftabscale);
339             vfitab           = _mm_cvttpd_epi32(rt);
340             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
341             vfitab           = _mm_slli_epi32(vfitab,2);
342
343             /* CUBIC SPLINE TABLE ELECTROSTATICS */
344             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
345             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
346             GMX_MM_TRANSPOSE2_PD(Y,F);
347             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
348             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
349             GMX_MM_TRANSPOSE2_PD(G,H);
350             Heps             = _mm_mul_pd(vfeps,H);
351             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
352             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
353             velec            = _mm_mul_pd(qq20,VV);
354             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_pd(fscal,dx20);
364             ty               = _mm_mul_pd(fscal,dy20);
365             tz               = _mm_mul_pd(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm_add_pd(fix2,tx);
369             fiy2             = _mm_add_pd(fiy2,ty);
370             fiz2             = _mm_add_pd(fiz2,tz);
371
372             fjx0             = _mm_add_pd(fjx0,tx);
373             fjy0             = _mm_add_pd(fjy0,ty);
374             fjz0             = _mm_add_pd(fjz0,tz);
375
376             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
377
378             /* Inner loop uses 145 flops */
379         }
380
381         if(jidx<j_index_end)
382         {
383
384             jnrA             = jjnr[jidx];
385             j_coord_offsetA  = DIM*jnrA;
386
387             /* load j atom coordinates */
388             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
389                                               &jx0,&jy0,&jz0);
390
391             /* Calculate displacement vector */
392             dx00             = _mm_sub_pd(ix0,jx0);
393             dy00             = _mm_sub_pd(iy0,jy0);
394             dz00             = _mm_sub_pd(iz0,jz0);
395             dx10             = _mm_sub_pd(ix1,jx0);
396             dy10             = _mm_sub_pd(iy1,jy0);
397             dz10             = _mm_sub_pd(iz1,jz0);
398             dx20             = _mm_sub_pd(ix2,jx0);
399             dy20             = _mm_sub_pd(iy2,jy0);
400             dz20             = _mm_sub_pd(iz2,jz0);
401
402             /* Calculate squared distance and things based on it */
403             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
404             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
405             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
406
407             rinv00           = gmx_mm_invsqrt_pd(rsq00);
408             rinv10           = gmx_mm_invsqrt_pd(rsq10);
409             rinv20           = gmx_mm_invsqrt_pd(rsq20);
410
411             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
412
413             /* Load parameters for j particles */
414             jq0              = _mm_load_sd(charge+jnrA+0);
415             vdwjidx0A        = 2*vdwtype[jnrA+0];
416
417             fjx0             = _mm_setzero_pd();
418             fjy0             = _mm_setzero_pd();
419             fjz0             = _mm_setzero_pd();
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r00              = _mm_mul_pd(rsq00,rinv00);
426
427             /* Compute parameters for interactions between i and j atoms */
428             qq00             = _mm_mul_pd(iq0,jq0);
429             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
430
431             /* Calculate table index by multiplying r with table scale and truncate to integer */
432             rt               = _mm_mul_pd(r00,vftabscale);
433             vfitab           = _mm_cvttpd_epi32(rt);
434             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
435             vfitab           = _mm_slli_epi32(vfitab,2);
436
437             /* CUBIC SPLINE TABLE ELECTROSTATICS */
438             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
439             F                = _mm_setzero_pd();
440             GMX_MM_TRANSPOSE2_PD(Y,F);
441             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
442             H                = _mm_setzero_pd();
443             GMX_MM_TRANSPOSE2_PD(G,H);
444             Heps             = _mm_mul_pd(vfeps,H);
445             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
446             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
447             velec            = _mm_mul_pd(qq00,VV);
448             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
449             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
450
451             /* LENNARD-JONES DISPERSION/REPULSION */
452
453             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
454             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
455             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
456             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
457             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
461             velecsum         = _mm_add_pd(velecsum,velec);
462             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
463             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
464
465             fscal            = _mm_add_pd(felec,fvdw);
466
467             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm_mul_pd(fscal,dx00);
471             ty               = _mm_mul_pd(fscal,dy00);
472             tz               = _mm_mul_pd(fscal,dz00);
473
474             /* Update vectorial force */
475             fix0             = _mm_add_pd(fix0,tx);
476             fiy0             = _mm_add_pd(fiy0,ty);
477             fiz0             = _mm_add_pd(fiz0,tz);
478
479             fjx0             = _mm_add_pd(fjx0,tx);
480             fjy0             = _mm_add_pd(fjy0,ty);
481             fjz0             = _mm_add_pd(fjz0,tz);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r10              = _mm_mul_pd(rsq10,rinv10);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq10             = _mm_mul_pd(iq1,jq0);
491
492             /* Calculate table index by multiplying r with table scale and truncate to integer */
493             rt               = _mm_mul_pd(r10,vftabscale);
494             vfitab           = _mm_cvttpd_epi32(rt);
495             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
496             vfitab           = _mm_slli_epi32(vfitab,2);
497
498             /* CUBIC SPLINE TABLE ELECTROSTATICS */
499             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
500             F                = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(Y,F);
502             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
503             H                = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(G,H);
505             Heps             = _mm_mul_pd(vfeps,H);
506             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
507             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
508             velec            = _mm_mul_pd(qq10,VV);
509             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
510             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
514             velecsum         = _mm_add_pd(velecsum,velec);
515
516             fscal            = felec;
517
518             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
519
520             /* Calculate temporary vectorial force */
521             tx               = _mm_mul_pd(fscal,dx10);
522             ty               = _mm_mul_pd(fscal,dy10);
523             tz               = _mm_mul_pd(fscal,dz10);
524
525             /* Update vectorial force */
526             fix1             = _mm_add_pd(fix1,tx);
527             fiy1             = _mm_add_pd(fiy1,ty);
528             fiz1             = _mm_add_pd(fiz1,tz);
529
530             fjx0             = _mm_add_pd(fjx0,tx);
531             fjy0             = _mm_add_pd(fjy0,ty);
532             fjz0             = _mm_add_pd(fjz0,tz);
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             r20              = _mm_mul_pd(rsq20,rinv20);
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq20             = _mm_mul_pd(iq2,jq0);
542
543             /* Calculate table index by multiplying r with table scale and truncate to integer */
544             rt               = _mm_mul_pd(r20,vftabscale);
545             vfitab           = _mm_cvttpd_epi32(rt);
546             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
547             vfitab           = _mm_slli_epi32(vfitab,2);
548
549             /* CUBIC SPLINE TABLE ELECTROSTATICS */
550             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
551             F                = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(Y,F);
553             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
554             H                = _mm_setzero_pd();
555             GMX_MM_TRANSPOSE2_PD(G,H);
556             Heps             = _mm_mul_pd(vfeps,H);
557             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
558             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
559             velec            = _mm_mul_pd(qq20,VV);
560             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
561             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
565             velecsum         = _mm_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm_mul_pd(fscal,dx20);
573             ty               = _mm_mul_pd(fscal,dy20);
574             tz               = _mm_mul_pd(fscal,dz20);
575
576             /* Update vectorial force */
577             fix2             = _mm_add_pd(fix2,tx);
578             fiy2             = _mm_add_pd(fiy2,ty);
579             fiz2             = _mm_add_pd(fiz2,tz);
580
581             fjx0             = _mm_add_pd(fjx0,tx);
582             fjy0             = _mm_add_pd(fjy0,ty);
583             fjz0             = _mm_add_pd(fjz0,tz);
584
585             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
586
587             /* Inner loop uses 145 flops */
588         }
589
590         /* End of innermost loop */
591
592         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
593                                               f+i_coord_offset,fshift+i_shift_offset);
594
595         ggid                        = gid[iidx];
596         /* Update potential energies */
597         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
598         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
599
600         /* Increment number of inner iterations */
601         inneriter                  += j_index_end - j_index_start;
602
603         /* Outer loop uses 20 flops */
604     }
605
606     /* Increment number of outer iterations */
607     outeriter        += nri;
608
609     /* Update outer/inner flops */
610
611     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
612 }
613 /*
614  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
615  * Electrostatics interaction: CubicSplineTable
616  * VdW interaction:            LennardJones
617  * Geometry:                   Water3-Particle
618  * Calculate force/pot:        Force
619  */
620 void
621 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
622                     (t_nblist                    * gmx_restrict       nlist,
623                      rvec                        * gmx_restrict          xx,
624                      rvec                        * gmx_restrict          ff,
625                      t_forcerec                  * gmx_restrict          fr,
626                      t_mdatoms                   * gmx_restrict     mdatoms,
627                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
628                      t_nrnb                      * gmx_restrict        nrnb)
629 {
630     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
631      * just 0 for non-waters.
632      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
633      * jnr indices corresponding to data put in the four positions in the SIMD register.
634      */
635     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
636     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
637     int              jnrA,jnrB;
638     int              j_coord_offsetA,j_coord_offsetB;
639     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
640     real             rcutoff_scalar;
641     real             *shiftvec,*fshift,*x,*f;
642     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
643     int              vdwioffset0;
644     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
645     int              vdwioffset1;
646     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
647     int              vdwioffset2;
648     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
649     int              vdwjidx0A,vdwjidx0B;
650     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
651     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
652     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
653     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
654     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
655     real             *charge;
656     int              nvdwtype;
657     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
658     int              *vdwtype;
659     real             *vdwparam;
660     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
661     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
662     __m128i          vfitab;
663     __m128i          ifour       = _mm_set1_epi32(4);
664     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
665     real             *vftab;
666     __m128d          dummy_mask,cutoff_mask;
667     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
668     __m128d          one     = _mm_set1_pd(1.0);
669     __m128d          two     = _mm_set1_pd(2.0);
670     x                = xx[0];
671     f                = ff[0];
672
673     nri              = nlist->nri;
674     iinr             = nlist->iinr;
675     jindex           = nlist->jindex;
676     jjnr             = nlist->jjnr;
677     shiftidx         = nlist->shift;
678     gid              = nlist->gid;
679     shiftvec         = fr->shift_vec[0];
680     fshift           = fr->fshift[0];
681     facel            = _mm_set1_pd(fr->epsfac);
682     charge           = mdatoms->chargeA;
683     nvdwtype         = fr->ntype;
684     vdwparam         = fr->nbfp;
685     vdwtype          = mdatoms->typeA;
686
687     vftab            = kernel_data->table_elec->data;
688     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
689
690     /* Setup water-specific parameters */
691     inr              = nlist->iinr[0];
692     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
693     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
694     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
695     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
696
697     /* Avoid stupid compiler warnings */
698     jnrA = jnrB = 0;
699     j_coord_offsetA = 0;
700     j_coord_offsetB = 0;
701
702     outeriter        = 0;
703     inneriter        = 0;
704
705     /* Start outer loop over neighborlists */
706     for(iidx=0; iidx<nri; iidx++)
707     {
708         /* Load shift vector for this list */
709         i_shift_offset   = DIM*shiftidx[iidx];
710
711         /* Load limits for loop over neighbors */
712         j_index_start    = jindex[iidx];
713         j_index_end      = jindex[iidx+1];
714
715         /* Get outer coordinate index */
716         inr              = iinr[iidx];
717         i_coord_offset   = DIM*inr;
718
719         /* Load i particle coords and add shift vector */
720         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
721                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
722
723         fix0             = _mm_setzero_pd();
724         fiy0             = _mm_setzero_pd();
725         fiz0             = _mm_setzero_pd();
726         fix1             = _mm_setzero_pd();
727         fiy1             = _mm_setzero_pd();
728         fiz1             = _mm_setzero_pd();
729         fix2             = _mm_setzero_pd();
730         fiy2             = _mm_setzero_pd();
731         fiz2             = _mm_setzero_pd();
732
733         /* Start inner kernel loop */
734         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
735         {
736
737             /* Get j neighbor index, and coordinate index */
738             jnrA             = jjnr[jidx];
739             jnrB             = jjnr[jidx+1];
740             j_coord_offsetA  = DIM*jnrA;
741             j_coord_offsetB  = DIM*jnrB;
742
743             /* load j atom coordinates */
744             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_pd(ix0,jx0);
749             dy00             = _mm_sub_pd(iy0,jy0);
750             dz00             = _mm_sub_pd(iz0,jz0);
751             dx10             = _mm_sub_pd(ix1,jx0);
752             dy10             = _mm_sub_pd(iy1,jy0);
753             dz10             = _mm_sub_pd(iz1,jz0);
754             dx20             = _mm_sub_pd(ix2,jx0);
755             dy20             = _mm_sub_pd(iy2,jy0);
756             dz20             = _mm_sub_pd(iz2,jz0);
757
758             /* Calculate squared distance and things based on it */
759             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
760             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
761             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
762
763             rinv00           = gmx_mm_invsqrt_pd(rsq00);
764             rinv10           = gmx_mm_invsqrt_pd(rsq10);
765             rinv20           = gmx_mm_invsqrt_pd(rsq20);
766
767             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
768
769             /* Load parameters for j particles */
770             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
771             vdwjidx0A        = 2*vdwtype[jnrA+0];
772             vdwjidx0B        = 2*vdwtype[jnrB+0];
773
774             fjx0             = _mm_setzero_pd();
775             fjy0             = _mm_setzero_pd();
776             fjz0             = _mm_setzero_pd();
777
778             /**************************
779              * CALCULATE INTERACTIONS *
780              **************************/
781
782             r00              = _mm_mul_pd(rsq00,rinv00);
783
784             /* Compute parameters for interactions between i and j atoms */
785             qq00             = _mm_mul_pd(iq0,jq0);
786             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
787                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
788
789             /* Calculate table index by multiplying r with table scale and truncate to integer */
790             rt               = _mm_mul_pd(r00,vftabscale);
791             vfitab           = _mm_cvttpd_epi32(rt);
792             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
793             vfitab           = _mm_slli_epi32(vfitab,2);
794
795             /* CUBIC SPLINE TABLE ELECTROSTATICS */
796             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
797             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
798             GMX_MM_TRANSPOSE2_PD(Y,F);
799             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
800             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
801             GMX_MM_TRANSPOSE2_PD(G,H);
802             Heps             = _mm_mul_pd(vfeps,H);
803             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
804             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
805             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
806
807             /* LENNARD-JONES DISPERSION/REPULSION */
808
809             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
810             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
811
812             fscal            = _mm_add_pd(felec,fvdw);
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_pd(fscal,dx00);
816             ty               = _mm_mul_pd(fscal,dy00);
817             tz               = _mm_mul_pd(fscal,dz00);
818
819             /* Update vectorial force */
820             fix0             = _mm_add_pd(fix0,tx);
821             fiy0             = _mm_add_pd(fiy0,ty);
822             fiz0             = _mm_add_pd(fiz0,tz);
823
824             fjx0             = _mm_add_pd(fjx0,tx);
825             fjy0             = _mm_add_pd(fjy0,ty);
826             fjz0             = _mm_add_pd(fjz0,tz);
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             r10              = _mm_mul_pd(rsq10,rinv10);
833
834             /* Compute parameters for interactions between i and j atoms */
835             qq10             = _mm_mul_pd(iq1,jq0);
836
837             /* Calculate table index by multiplying r with table scale and truncate to integer */
838             rt               = _mm_mul_pd(r10,vftabscale);
839             vfitab           = _mm_cvttpd_epi32(rt);
840             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
841             vfitab           = _mm_slli_epi32(vfitab,2);
842
843             /* CUBIC SPLINE TABLE ELECTROSTATICS */
844             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
845             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
846             GMX_MM_TRANSPOSE2_PD(Y,F);
847             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
848             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
849             GMX_MM_TRANSPOSE2_PD(G,H);
850             Heps             = _mm_mul_pd(vfeps,H);
851             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
852             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
853             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
854
855             fscal            = felec;
856
857             /* Calculate temporary vectorial force */
858             tx               = _mm_mul_pd(fscal,dx10);
859             ty               = _mm_mul_pd(fscal,dy10);
860             tz               = _mm_mul_pd(fscal,dz10);
861
862             /* Update vectorial force */
863             fix1             = _mm_add_pd(fix1,tx);
864             fiy1             = _mm_add_pd(fiy1,ty);
865             fiz1             = _mm_add_pd(fiz1,tz);
866
867             fjx0             = _mm_add_pd(fjx0,tx);
868             fjy0             = _mm_add_pd(fjy0,ty);
869             fjz0             = _mm_add_pd(fjz0,tz);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             r20              = _mm_mul_pd(rsq20,rinv20);
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq20             = _mm_mul_pd(iq2,jq0);
879
880             /* Calculate table index by multiplying r with table scale and truncate to integer */
881             rt               = _mm_mul_pd(r20,vftabscale);
882             vfitab           = _mm_cvttpd_epi32(rt);
883             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
884             vfitab           = _mm_slli_epi32(vfitab,2);
885
886             /* CUBIC SPLINE TABLE ELECTROSTATICS */
887             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
888             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
889             GMX_MM_TRANSPOSE2_PD(Y,F);
890             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
891             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
892             GMX_MM_TRANSPOSE2_PD(G,H);
893             Heps             = _mm_mul_pd(vfeps,H);
894             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
895             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
896             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
897
898             fscal            = felec;
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_pd(fscal,dx20);
902             ty               = _mm_mul_pd(fscal,dy20);
903             tz               = _mm_mul_pd(fscal,dz20);
904
905             /* Update vectorial force */
906             fix2             = _mm_add_pd(fix2,tx);
907             fiy2             = _mm_add_pd(fiy2,ty);
908             fiz2             = _mm_add_pd(fiz2,tz);
909
910             fjx0             = _mm_add_pd(fjx0,tx);
911             fjy0             = _mm_add_pd(fjy0,ty);
912             fjz0             = _mm_add_pd(fjz0,tz);
913
914             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
915
916             /* Inner loop uses 128 flops */
917         }
918
919         if(jidx<j_index_end)
920         {
921
922             jnrA             = jjnr[jidx];
923             j_coord_offsetA  = DIM*jnrA;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_pd(ix0,jx0);
931             dy00             = _mm_sub_pd(iy0,jy0);
932             dz00             = _mm_sub_pd(iz0,jz0);
933             dx10             = _mm_sub_pd(ix1,jx0);
934             dy10             = _mm_sub_pd(iy1,jy0);
935             dz10             = _mm_sub_pd(iz1,jz0);
936             dx20             = _mm_sub_pd(ix2,jx0);
937             dy20             = _mm_sub_pd(iy2,jy0);
938             dz20             = _mm_sub_pd(iz2,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
942             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
944
945             rinv00           = gmx_mm_invsqrt_pd(rsq00);
946             rinv10           = gmx_mm_invsqrt_pd(rsq10);
947             rinv20           = gmx_mm_invsqrt_pd(rsq20);
948
949             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
950
951             /* Load parameters for j particles */
952             jq0              = _mm_load_sd(charge+jnrA+0);
953             vdwjidx0A        = 2*vdwtype[jnrA+0];
954
955             fjx0             = _mm_setzero_pd();
956             fjy0             = _mm_setzero_pd();
957             fjz0             = _mm_setzero_pd();
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r00              = _mm_mul_pd(rsq00,rinv00);
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq00             = _mm_mul_pd(iq0,jq0);
967             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
968
969             /* Calculate table index by multiplying r with table scale and truncate to integer */
970             rt               = _mm_mul_pd(r00,vftabscale);
971             vfitab           = _mm_cvttpd_epi32(rt);
972             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
973             vfitab           = _mm_slli_epi32(vfitab,2);
974
975             /* CUBIC SPLINE TABLE ELECTROSTATICS */
976             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
977             F                = _mm_setzero_pd();
978             GMX_MM_TRANSPOSE2_PD(Y,F);
979             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
980             H                = _mm_setzero_pd();
981             GMX_MM_TRANSPOSE2_PD(G,H);
982             Heps             = _mm_mul_pd(vfeps,H);
983             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
984             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
985             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
986
987             /* LENNARD-JONES DISPERSION/REPULSION */
988
989             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
990             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
991
992             fscal            = _mm_add_pd(felec,fvdw);
993
994             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm_mul_pd(fscal,dx00);
998             ty               = _mm_mul_pd(fscal,dy00);
999             tz               = _mm_mul_pd(fscal,dz00);
1000
1001             /* Update vectorial force */
1002             fix0             = _mm_add_pd(fix0,tx);
1003             fiy0             = _mm_add_pd(fiy0,ty);
1004             fiz0             = _mm_add_pd(fiz0,tz);
1005
1006             fjx0             = _mm_add_pd(fjx0,tx);
1007             fjy0             = _mm_add_pd(fjy0,ty);
1008             fjz0             = _mm_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r10              = _mm_mul_pd(rsq10,rinv10);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq10             = _mm_mul_pd(iq1,jq0);
1018
1019             /* Calculate table index by multiplying r with table scale and truncate to integer */
1020             rt               = _mm_mul_pd(r10,vftabscale);
1021             vfitab           = _mm_cvttpd_epi32(rt);
1022             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1023             vfitab           = _mm_slli_epi32(vfitab,2);
1024
1025             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1026             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1027             F                = _mm_setzero_pd();
1028             GMX_MM_TRANSPOSE2_PD(Y,F);
1029             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1030             H                = _mm_setzero_pd();
1031             GMX_MM_TRANSPOSE2_PD(G,H);
1032             Heps             = _mm_mul_pd(vfeps,H);
1033             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1034             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1035             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_pd(fscal,dx10);
1043             ty               = _mm_mul_pd(fscal,dy10);
1044             tz               = _mm_mul_pd(fscal,dz10);
1045
1046             /* Update vectorial force */
1047             fix1             = _mm_add_pd(fix1,tx);
1048             fiy1             = _mm_add_pd(fiy1,ty);
1049             fiz1             = _mm_add_pd(fiz1,tz);
1050
1051             fjx0             = _mm_add_pd(fjx0,tx);
1052             fjy0             = _mm_add_pd(fjy0,ty);
1053             fjz0             = _mm_add_pd(fjz0,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             r20              = _mm_mul_pd(rsq20,rinv20);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq20             = _mm_mul_pd(iq2,jq0);
1063
1064             /* Calculate table index by multiplying r with table scale and truncate to integer */
1065             rt               = _mm_mul_pd(r20,vftabscale);
1066             vfitab           = _mm_cvttpd_epi32(rt);
1067             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1068             vfitab           = _mm_slli_epi32(vfitab,2);
1069
1070             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1071             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1072             F                = _mm_setzero_pd();
1073             GMX_MM_TRANSPOSE2_PD(Y,F);
1074             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1075             H                = _mm_setzero_pd();
1076             GMX_MM_TRANSPOSE2_PD(G,H);
1077             Heps             = _mm_mul_pd(vfeps,H);
1078             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1079             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1080             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1081
1082             fscal            = felec;
1083
1084             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = _mm_mul_pd(fscal,dx20);
1088             ty               = _mm_mul_pd(fscal,dy20);
1089             tz               = _mm_mul_pd(fscal,dz20);
1090
1091             /* Update vectorial force */
1092             fix2             = _mm_add_pd(fix2,tx);
1093             fiy2             = _mm_add_pd(fiy2,ty);
1094             fiz2             = _mm_add_pd(fiz2,tz);
1095
1096             fjx0             = _mm_add_pd(fjx0,tx);
1097             fjy0             = _mm_add_pd(fjy0,ty);
1098             fjz0             = _mm_add_pd(fjz0,tz);
1099
1100             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1101
1102             /* Inner loop uses 128 flops */
1103         }
1104
1105         /* End of innermost loop */
1106
1107         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1108                                               f+i_coord_offset,fshift+i_shift_offset);
1109
1110         /* Increment number of inner iterations */
1111         inneriter                  += j_index_end - j_index_start;
1112
1113         /* Outer loop uses 18 flops */
1114     }
1115
1116     /* Increment number of outer iterations */
1117     outeriter        += nri;
1118
1119     /* Update outer/inner flops */
1120
1121     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1122 }