Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_elec->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm_invsqrt_pd(rsq00);
205             rinv10           = gmx_mm_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm_invsqrt_pd(rsq20);
207
208             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214
215             fjx0             = _mm_setzero_pd();
216             fjy0             = _mm_setzero_pd();
217             fjz0             = _mm_setzero_pd();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_pd(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_pd(iq0,jq0);
227             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
229
230             /* Calculate table index by multiplying r with table scale and truncate to integer */
231             rt               = _mm_mul_pd(r00,vftabscale);
232             vfitab           = _mm_cvttpd_epi32(rt);
233             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
234             vfitab           = _mm_slli_epi32(vfitab,2);
235
236             /* CUBIC SPLINE TABLE ELECTROSTATICS */
237             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             GMX_MM_TRANSPOSE2_PD(Y,F);
240             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
241             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(G,H);
243             Heps             = _mm_mul_pd(vfeps,H);
244             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
245             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
246             velec            = _mm_mul_pd(qq00,VV);
247             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
248             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
249
250             /* LENNARD-JONES DISPERSION/REPULSION */
251
252             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
253             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
254             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
255             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
256             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
257
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velecsum         = _mm_add_pd(velecsum,velec);
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm_add_pd(felec,fvdw);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm_mul_pd(fscal,dx00);
266             ty               = _mm_mul_pd(fscal,dy00);
267             tz               = _mm_mul_pd(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm_add_pd(fix0,tx);
271             fiy0             = _mm_add_pd(fiy0,ty);
272             fiz0             = _mm_add_pd(fiz0,tz);
273
274             fjx0             = _mm_add_pd(fjx0,tx);
275             fjy0             = _mm_add_pd(fjy0,ty);
276             fjz0             = _mm_add_pd(fjz0,tz);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r10              = _mm_mul_pd(rsq10,rinv10);
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq10             = _mm_mul_pd(iq1,jq0);
286
287             /* Calculate table index by multiplying r with table scale and truncate to integer */
288             rt               = _mm_mul_pd(r10,vftabscale);
289             vfitab           = _mm_cvttpd_epi32(rt);
290             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
291             vfitab           = _mm_slli_epi32(vfitab,2);
292
293             /* CUBIC SPLINE TABLE ELECTROSTATICS */
294             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
295             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
296             GMX_MM_TRANSPOSE2_PD(Y,F);
297             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
298             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
299             GMX_MM_TRANSPOSE2_PD(G,H);
300             Heps             = _mm_mul_pd(vfeps,H);
301             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
302             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
303             velec            = _mm_mul_pd(qq10,VV);
304             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
305             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm_add_pd(velecsum,velec);
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm_mul_pd(fscal,dx10);
314             ty               = _mm_mul_pd(fscal,dy10);
315             tz               = _mm_mul_pd(fscal,dz10);
316
317             /* Update vectorial force */
318             fix1             = _mm_add_pd(fix1,tx);
319             fiy1             = _mm_add_pd(fiy1,ty);
320             fiz1             = _mm_add_pd(fiz1,tz);
321
322             fjx0             = _mm_add_pd(fjx0,tx);
323             fjy0             = _mm_add_pd(fjy0,ty);
324             fjz0             = _mm_add_pd(fjz0,tz);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r20              = _mm_mul_pd(rsq20,rinv20);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm_mul_pd(r20,vftabscale);
337             vfitab           = _mm_cvttpd_epi32(rt);
338             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
339             vfitab           = _mm_slli_epi32(vfitab,2);
340
341             /* CUBIC SPLINE TABLE ELECTROSTATICS */
342             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
343             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
344             GMX_MM_TRANSPOSE2_PD(Y,F);
345             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
346             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
347             GMX_MM_TRANSPOSE2_PD(G,H);
348             Heps             = _mm_mul_pd(vfeps,H);
349             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
350             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
351             velec            = _mm_mul_pd(qq20,VV);
352             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
353             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_pd(fscal,dx20);
362             ty               = _mm_mul_pd(fscal,dy20);
363             tz               = _mm_mul_pd(fscal,dz20);
364
365             /* Update vectorial force */
366             fix2             = _mm_add_pd(fix2,tx);
367             fiy2             = _mm_add_pd(fiy2,ty);
368             fiz2             = _mm_add_pd(fiz2,tz);
369
370             fjx0             = _mm_add_pd(fjx0,tx);
371             fjy0             = _mm_add_pd(fjy0,ty);
372             fjz0             = _mm_add_pd(fjz0,tz);
373
374             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
375
376             /* Inner loop uses 145 flops */
377         }
378
379         if(jidx<j_index_end)
380         {
381
382             jnrA             = jjnr[jidx];
383             j_coord_offsetA  = DIM*jnrA;
384
385             /* load j atom coordinates */
386             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
387                                               &jx0,&jy0,&jz0);
388
389             /* Calculate displacement vector */
390             dx00             = _mm_sub_pd(ix0,jx0);
391             dy00             = _mm_sub_pd(iy0,jy0);
392             dz00             = _mm_sub_pd(iz0,jz0);
393             dx10             = _mm_sub_pd(ix1,jx0);
394             dy10             = _mm_sub_pd(iy1,jy0);
395             dz10             = _mm_sub_pd(iz1,jz0);
396             dx20             = _mm_sub_pd(ix2,jx0);
397             dy20             = _mm_sub_pd(iy2,jy0);
398             dz20             = _mm_sub_pd(iz2,jz0);
399
400             /* Calculate squared distance and things based on it */
401             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
402             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
403             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
404
405             rinv00           = gmx_mm_invsqrt_pd(rsq00);
406             rinv10           = gmx_mm_invsqrt_pd(rsq10);
407             rinv20           = gmx_mm_invsqrt_pd(rsq20);
408
409             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
410
411             /* Load parameters for j particles */
412             jq0              = _mm_load_sd(charge+jnrA+0);
413             vdwjidx0A        = 2*vdwtype[jnrA+0];
414
415             fjx0             = _mm_setzero_pd();
416             fjy0             = _mm_setzero_pd();
417             fjz0             = _mm_setzero_pd();
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r00              = _mm_mul_pd(rsq00,rinv00);
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq00             = _mm_mul_pd(iq0,jq0);
427             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
428
429             /* Calculate table index by multiplying r with table scale and truncate to integer */
430             rt               = _mm_mul_pd(r00,vftabscale);
431             vfitab           = _mm_cvttpd_epi32(rt);
432             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
433             vfitab           = _mm_slli_epi32(vfitab,2);
434
435             /* CUBIC SPLINE TABLE ELECTROSTATICS */
436             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
437             F                = _mm_setzero_pd();
438             GMX_MM_TRANSPOSE2_PD(Y,F);
439             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
440             H                = _mm_setzero_pd();
441             GMX_MM_TRANSPOSE2_PD(G,H);
442             Heps             = _mm_mul_pd(vfeps,H);
443             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
444             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
445             velec            = _mm_mul_pd(qq00,VV);
446             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
447             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
448
449             /* LENNARD-JONES DISPERSION/REPULSION */
450
451             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
452             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
453             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
454             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
455             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
459             velecsum         = _mm_add_pd(velecsum,velec);
460             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
461             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
462
463             fscal            = _mm_add_pd(felec,fvdw);
464
465             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
466
467             /* Calculate temporary vectorial force */
468             tx               = _mm_mul_pd(fscal,dx00);
469             ty               = _mm_mul_pd(fscal,dy00);
470             tz               = _mm_mul_pd(fscal,dz00);
471
472             /* Update vectorial force */
473             fix0             = _mm_add_pd(fix0,tx);
474             fiy0             = _mm_add_pd(fiy0,ty);
475             fiz0             = _mm_add_pd(fiz0,tz);
476
477             fjx0             = _mm_add_pd(fjx0,tx);
478             fjy0             = _mm_add_pd(fjy0,ty);
479             fjz0             = _mm_add_pd(fjz0,tz);
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r10              = _mm_mul_pd(rsq10,rinv10);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq10             = _mm_mul_pd(iq1,jq0);
489
490             /* Calculate table index by multiplying r with table scale and truncate to integer */
491             rt               = _mm_mul_pd(r10,vftabscale);
492             vfitab           = _mm_cvttpd_epi32(rt);
493             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
494             vfitab           = _mm_slli_epi32(vfitab,2);
495
496             /* CUBIC SPLINE TABLE ELECTROSTATICS */
497             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
498             F                = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(Y,F);
500             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
501             H                = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(G,H);
503             Heps             = _mm_mul_pd(vfeps,H);
504             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
505             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
506             velec            = _mm_mul_pd(qq10,VV);
507             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
508             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
512             velecsum         = _mm_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx10);
520             ty               = _mm_mul_pd(fscal,dy10);
521             tz               = _mm_mul_pd(fscal,dz10);
522
523             /* Update vectorial force */
524             fix1             = _mm_add_pd(fix1,tx);
525             fiy1             = _mm_add_pd(fiy1,ty);
526             fiz1             = _mm_add_pd(fiz1,tz);
527
528             fjx0             = _mm_add_pd(fjx0,tx);
529             fjy0             = _mm_add_pd(fjy0,ty);
530             fjz0             = _mm_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r20              = _mm_mul_pd(rsq20,rinv20);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq20             = _mm_mul_pd(iq2,jq0);
540
541             /* Calculate table index by multiplying r with table scale and truncate to integer */
542             rt               = _mm_mul_pd(r20,vftabscale);
543             vfitab           = _mm_cvttpd_epi32(rt);
544             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
545             vfitab           = _mm_slli_epi32(vfitab,2);
546
547             /* CUBIC SPLINE TABLE ELECTROSTATICS */
548             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
549             F                = _mm_setzero_pd();
550             GMX_MM_TRANSPOSE2_PD(Y,F);
551             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
552             H                = _mm_setzero_pd();
553             GMX_MM_TRANSPOSE2_PD(G,H);
554             Heps             = _mm_mul_pd(vfeps,H);
555             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
556             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
557             velec            = _mm_mul_pd(qq20,VV);
558             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
559             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
568
569             /* Calculate temporary vectorial force */
570             tx               = _mm_mul_pd(fscal,dx20);
571             ty               = _mm_mul_pd(fscal,dy20);
572             tz               = _mm_mul_pd(fscal,dz20);
573
574             /* Update vectorial force */
575             fix2             = _mm_add_pd(fix2,tx);
576             fiy2             = _mm_add_pd(fiy2,ty);
577             fiz2             = _mm_add_pd(fiz2,tz);
578
579             fjx0             = _mm_add_pd(fjx0,tx);
580             fjy0             = _mm_add_pd(fjy0,ty);
581             fjz0             = _mm_add_pd(fjz0,tz);
582
583             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
584
585             /* Inner loop uses 145 flops */
586         }
587
588         /* End of innermost loop */
589
590         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
591                                               f+i_coord_offset,fshift+i_shift_offset);
592
593         ggid                        = gid[iidx];
594         /* Update potential energies */
595         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
596         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
597
598         /* Increment number of inner iterations */
599         inneriter                  += j_index_end - j_index_start;
600
601         /* Outer loop uses 20 flops */
602     }
603
604     /* Increment number of outer iterations */
605     outeriter        += nri;
606
607     /* Update outer/inner flops */
608
609     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
610 }
611 /*
612  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
613  * Electrostatics interaction: CubicSplineTable
614  * VdW interaction:            LennardJones
615  * Geometry:                   Water3-Particle
616  * Calculate force/pot:        Force
617  */
618 void
619 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
620                     (t_nblist                    * gmx_restrict       nlist,
621                      rvec                        * gmx_restrict          xx,
622                      rvec                        * gmx_restrict          ff,
623                      t_forcerec                  * gmx_restrict          fr,
624                      t_mdatoms                   * gmx_restrict     mdatoms,
625                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
626                      t_nrnb                      * gmx_restrict        nrnb)
627 {
628     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
629      * just 0 for non-waters.
630      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
631      * jnr indices corresponding to data put in the four positions in the SIMD register.
632      */
633     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
634     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
635     int              jnrA,jnrB;
636     int              j_coord_offsetA,j_coord_offsetB;
637     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
638     real             rcutoff_scalar;
639     real             *shiftvec,*fshift,*x,*f;
640     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
641     int              vdwioffset0;
642     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643     int              vdwioffset1;
644     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwjidx0A,vdwjidx0B;
648     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
650     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
651     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
652     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
653     real             *charge;
654     int              nvdwtype;
655     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
656     int              *vdwtype;
657     real             *vdwparam;
658     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
659     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
660     __m128i          vfitab;
661     __m128i          ifour       = _mm_set1_epi32(4);
662     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
663     real             *vftab;
664     __m128d          dummy_mask,cutoff_mask;
665     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
666     __m128d          one     = _mm_set1_pd(1.0);
667     __m128d          two     = _mm_set1_pd(2.0);
668     x                = xx[0];
669     f                = ff[0];
670
671     nri              = nlist->nri;
672     iinr             = nlist->iinr;
673     jindex           = nlist->jindex;
674     jjnr             = nlist->jjnr;
675     shiftidx         = nlist->shift;
676     gid              = nlist->gid;
677     shiftvec         = fr->shift_vec[0];
678     fshift           = fr->fshift[0];
679     facel            = _mm_set1_pd(fr->epsfac);
680     charge           = mdatoms->chargeA;
681     nvdwtype         = fr->ntype;
682     vdwparam         = fr->nbfp;
683     vdwtype          = mdatoms->typeA;
684
685     vftab            = kernel_data->table_elec->data;
686     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
687
688     /* Setup water-specific parameters */
689     inr              = nlist->iinr[0];
690     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
691     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
692     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
693     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
694
695     /* Avoid stupid compiler warnings */
696     jnrA = jnrB = 0;
697     j_coord_offsetA = 0;
698     j_coord_offsetB = 0;
699
700     outeriter        = 0;
701     inneriter        = 0;
702
703     /* Start outer loop over neighborlists */
704     for(iidx=0; iidx<nri; iidx++)
705     {
706         /* Load shift vector for this list */
707         i_shift_offset   = DIM*shiftidx[iidx];
708
709         /* Load limits for loop over neighbors */
710         j_index_start    = jindex[iidx];
711         j_index_end      = jindex[iidx+1];
712
713         /* Get outer coordinate index */
714         inr              = iinr[iidx];
715         i_coord_offset   = DIM*inr;
716
717         /* Load i particle coords and add shift vector */
718         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
719                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
720
721         fix0             = _mm_setzero_pd();
722         fiy0             = _mm_setzero_pd();
723         fiz0             = _mm_setzero_pd();
724         fix1             = _mm_setzero_pd();
725         fiy1             = _mm_setzero_pd();
726         fiz1             = _mm_setzero_pd();
727         fix2             = _mm_setzero_pd();
728         fiy2             = _mm_setzero_pd();
729         fiz2             = _mm_setzero_pd();
730
731         /* Start inner kernel loop */
732         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
733         {
734
735             /* Get j neighbor index, and coordinate index */
736             jnrA             = jjnr[jidx];
737             jnrB             = jjnr[jidx+1];
738             j_coord_offsetA  = DIM*jnrA;
739             j_coord_offsetB  = DIM*jnrB;
740
741             /* load j atom coordinates */
742             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
743                                               &jx0,&jy0,&jz0);
744
745             /* Calculate displacement vector */
746             dx00             = _mm_sub_pd(ix0,jx0);
747             dy00             = _mm_sub_pd(iy0,jy0);
748             dz00             = _mm_sub_pd(iz0,jz0);
749             dx10             = _mm_sub_pd(ix1,jx0);
750             dy10             = _mm_sub_pd(iy1,jy0);
751             dz10             = _mm_sub_pd(iz1,jz0);
752             dx20             = _mm_sub_pd(ix2,jx0);
753             dy20             = _mm_sub_pd(iy2,jy0);
754             dz20             = _mm_sub_pd(iz2,jz0);
755
756             /* Calculate squared distance and things based on it */
757             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
758             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
759             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
760
761             rinv00           = gmx_mm_invsqrt_pd(rsq00);
762             rinv10           = gmx_mm_invsqrt_pd(rsq10);
763             rinv20           = gmx_mm_invsqrt_pd(rsq20);
764
765             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
766
767             /* Load parameters for j particles */
768             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
769             vdwjidx0A        = 2*vdwtype[jnrA+0];
770             vdwjidx0B        = 2*vdwtype[jnrB+0];
771
772             fjx0             = _mm_setzero_pd();
773             fjy0             = _mm_setzero_pd();
774             fjz0             = _mm_setzero_pd();
775
776             /**************************
777              * CALCULATE INTERACTIONS *
778              **************************/
779
780             r00              = _mm_mul_pd(rsq00,rinv00);
781
782             /* Compute parameters for interactions between i and j atoms */
783             qq00             = _mm_mul_pd(iq0,jq0);
784             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
785                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
786
787             /* Calculate table index by multiplying r with table scale and truncate to integer */
788             rt               = _mm_mul_pd(r00,vftabscale);
789             vfitab           = _mm_cvttpd_epi32(rt);
790             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
791             vfitab           = _mm_slli_epi32(vfitab,2);
792
793             /* CUBIC SPLINE TABLE ELECTROSTATICS */
794             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
795             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
796             GMX_MM_TRANSPOSE2_PD(Y,F);
797             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
798             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
799             GMX_MM_TRANSPOSE2_PD(G,H);
800             Heps             = _mm_mul_pd(vfeps,H);
801             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
802             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
803             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
804
805             /* LENNARD-JONES DISPERSION/REPULSION */
806
807             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
808             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
809
810             fscal            = _mm_add_pd(felec,fvdw);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm_mul_pd(fscal,dx00);
814             ty               = _mm_mul_pd(fscal,dy00);
815             tz               = _mm_mul_pd(fscal,dz00);
816
817             /* Update vectorial force */
818             fix0             = _mm_add_pd(fix0,tx);
819             fiy0             = _mm_add_pd(fiy0,ty);
820             fiz0             = _mm_add_pd(fiz0,tz);
821
822             fjx0             = _mm_add_pd(fjx0,tx);
823             fjy0             = _mm_add_pd(fjy0,ty);
824             fjz0             = _mm_add_pd(fjz0,tz);
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             r10              = _mm_mul_pd(rsq10,rinv10);
831
832             /* Compute parameters for interactions between i and j atoms */
833             qq10             = _mm_mul_pd(iq1,jq0);
834
835             /* Calculate table index by multiplying r with table scale and truncate to integer */
836             rt               = _mm_mul_pd(r10,vftabscale);
837             vfitab           = _mm_cvttpd_epi32(rt);
838             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
839             vfitab           = _mm_slli_epi32(vfitab,2);
840
841             /* CUBIC SPLINE TABLE ELECTROSTATICS */
842             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
843             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
844             GMX_MM_TRANSPOSE2_PD(Y,F);
845             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
846             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
847             GMX_MM_TRANSPOSE2_PD(G,H);
848             Heps             = _mm_mul_pd(vfeps,H);
849             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
850             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
851             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
852
853             fscal            = felec;
854
855             /* Calculate temporary vectorial force */
856             tx               = _mm_mul_pd(fscal,dx10);
857             ty               = _mm_mul_pd(fscal,dy10);
858             tz               = _mm_mul_pd(fscal,dz10);
859
860             /* Update vectorial force */
861             fix1             = _mm_add_pd(fix1,tx);
862             fiy1             = _mm_add_pd(fiy1,ty);
863             fiz1             = _mm_add_pd(fiz1,tz);
864
865             fjx0             = _mm_add_pd(fjx0,tx);
866             fjy0             = _mm_add_pd(fjy0,ty);
867             fjz0             = _mm_add_pd(fjz0,tz);
868
869             /**************************
870              * CALCULATE INTERACTIONS *
871              **************************/
872
873             r20              = _mm_mul_pd(rsq20,rinv20);
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq20             = _mm_mul_pd(iq2,jq0);
877
878             /* Calculate table index by multiplying r with table scale and truncate to integer */
879             rt               = _mm_mul_pd(r20,vftabscale);
880             vfitab           = _mm_cvttpd_epi32(rt);
881             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
882             vfitab           = _mm_slli_epi32(vfitab,2);
883
884             /* CUBIC SPLINE TABLE ELECTROSTATICS */
885             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
886             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
887             GMX_MM_TRANSPOSE2_PD(Y,F);
888             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
889             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
890             GMX_MM_TRANSPOSE2_PD(G,H);
891             Heps             = _mm_mul_pd(vfeps,H);
892             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
893             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
894             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
895
896             fscal            = felec;
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm_mul_pd(fscal,dx20);
900             ty               = _mm_mul_pd(fscal,dy20);
901             tz               = _mm_mul_pd(fscal,dz20);
902
903             /* Update vectorial force */
904             fix2             = _mm_add_pd(fix2,tx);
905             fiy2             = _mm_add_pd(fiy2,ty);
906             fiz2             = _mm_add_pd(fiz2,tz);
907
908             fjx0             = _mm_add_pd(fjx0,tx);
909             fjy0             = _mm_add_pd(fjy0,ty);
910             fjz0             = _mm_add_pd(fjz0,tz);
911
912             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
913
914             /* Inner loop uses 128 flops */
915         }
916
917         if(jidx<j_index_end)
918         {
919
920             jnrA             = jjnr[jidx];
921             j_coord_offsetA  = DIM*jnrA;
922
923             /* load j atom coordinates */
924             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _mm_sub_pd(ix0,jx0);
929             dy00             = _mm_sub_pd(iy0,jy0);
930             dz00             = _mm_sub_pd(iz0,jz0);
931             dx10             = _mm_sub_pd(ix1,jx0);
932             dy10             = _mm_sub_pd(iy1,jy0);
933             dz10             = _mm_sub_pd(iz1,jz0);
934             dx20             = _mm_sub_pd(ix2,jx0);
935             dy20             = _mm_sub_pd(iy2,jy0);
936             dz20             = _mm_sub_pd(iz2,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
940             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
941             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
942
943             rinv00           = gmx_mm_invsqrt_pd(rsq00);
944             rinv10           = gmx_mm_invsqrt_pd(rsq10);
945             rinv20           = gmx_mm_invsqrt_pd(rsq20);
946
947             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
948
949             /* Load parameters for j particles */
950             jq0              = _mm_load_sd(charge+jnrA+0);
951             vdwjidx0A        = 2*vdwtype[jnrA+0];
952
953             fjx0             = _mm_setzero_pd();
954             fjy0             = _mm_setzero_pd();
955             fjz0             = _mm_setzero_pd();
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r00              = _mm_mul_pd(rsq00,rinv00);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq00             = _mm_mul_pd(iq0,jq0);
965             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
966
967             /* Calculate table index by multiplying r with table scale and truncate to integer */
968             rt               = _mm_mul_pd(r00,vftabscale);
969             vfitab           = _mm_cvttpd_epi32(rt);
970             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
971             vfitab           = _mm_slli_epi32(vfitab,2);
972
973             /* CUBIC SPLINE TABLE ELECTROSTATICS */
974             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
975             F                = _mm_setzero_pd();
976             GMX_MM_TRANSPOSE2_PD(Y,F);
977             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
978             H                = _mm_setzero_pd();
979             GMX_MM_TRANSPOSE2_PD(G,H);
980             Heps             = _mm_mul_pd(vfeps,H);
981             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
982             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
983             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
984
985             /* LENNARD-JONES DISPERSION/REPULSION */
986
987             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
988             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
989
990             fscal            = _mm_add_pd(felec,fvdw);
991
992             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm_mul_pd(fscal,dx00);
996             ty               = _mm_mul_pd(fscal,dy00);
997             tz               = _mm_mul_pd(fscal,dz00);
998
999             /* Update vectorial force */
1000             fix0             = _mm_add_pd(fix0,tx);
1001             fiy0             = _mm_add_pd(fiy0,ty);
1002             fiz0             = _mm_add_pd(fiz0,tz);
1003
1004             fjx0             = _mm_add_pd(fjx0,tx);
1005             fjy0             = _mm_add_pd(fjy0,ty);
1006             fjz0             = _mm_add_pd(fjz0,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r10              = _mm_mul_pd(rsq10,rinv10);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq10             = _mm_mul_pd(iq1,jq0);
1016
1017             /* Calculate table index by multiplying r with table scale and truncate to integer */
1018             rt               = _mm_mul_pd(r10,vftabscale);
1019             vfitab           = _mm_cvttpd_epi32(rt);
1020             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1021             vfitab           = _mm_slli_epi32(vfitab,2);
1022
1023             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1024             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1025             F                = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(Y,F);
1027             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1028             H                = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(G,H);
1030             Heps             = _mm_mul_pd(vfeps,H);
1031             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1032             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1033             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1034
1035             fscal            = felec;
1036
1037             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = _mm_mul_pd(fscal,dx10);
1041             ty               = _mm_mul_pd(fscal,dy10);
1042             tz               = _mm_mul_pd(fscal,dz10);
1043
1044             /* Update vectorial force */
1045             fix1             = _mm_add_pd(fix1,tx);
1046             fiy1             = _mm_add_pd(fiy1,ty);
1047             fiz1             = _mm_add_pd(fiz1,tz);
1048
1049             fjx0             = _mm_add_pd(fjx0,tx);
1050             fjy0             = _mm_add_pd(fjy0,ty);
1051             fjz0             = _mm_add_pd(fjz0,tz);
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             r20              = _mm_mul_pd(rsq20,rinv20);
1058
1059             /* Compute parameters for interactions between i and j atoms */
1060             qq20             = _mm_mul_pd(iq2,jq0);
1061
1062             /* Calculate table index by multiplying r with table scale and truncate to integer */
1063             rt               = _mm_mul_pd(r20,vftabscale);
1064             vfitab           = _mm_cvttpd_epi32(rt);
1065             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1066             vfitab           = _mm_slli_epi32(vfitab,2);
1067
1068             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1069             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1070             F                = _mm_setzero_pd();
1071             GMX_MM_TRANSPOSE2_PD(Y,F);
1072             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1073             H                = _mm_setzero_pd();
1074             GMX_MM_TRANSPOSE2_PD(G,H);
1075             Heps             = _mm_mul_pd(vfeps,H);
1076             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1077             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1078             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_pd(fscal,dx20);
1086             ty               = _mm_mul_pd(fscal,dy20);
1087             tz               = _mm_mul_pd(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm_add_pd(fix2,tx);
1091             fiy2             = _mm_add_pd(fiy2,ty);
1092             fiz2             = _mm_add_pd(fiz2,tz);
1093
1094             fjx0             = _mm_add_pd(fjx0,tx);
1095             fjy0             = _mm_add_pd(fjy0,ty);
1096             fjz0             = _mm_add_pd(fjz0,tz);
1097
1098             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1099
1100             /* Inner loop uses 128 flops */
1101         }
1102
1103         /* End of innermost loop */
1104
1105         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1106                                               f+i_coord_offset,fshift+i_shift_offset);
1107
1108         /* Increment number of inner iterations */
1109         inneriter                  += j_index_end - j_index_start;
1110
1111         /* Outer loop uses 18 flops */
1112     }
1113
1114     /* Increment number of outer iterations */
1115     outeriter        += nri;
1116
1117     /* Update outer/inner flops */
1118
1119     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1120 }