Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_elec->data;
105     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
131
132         fix0             = _mm_setzero_pd();
133         fiy0             = _mm_setzero_pd();
134         fiz0             = _mm_setzero_pd();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_pd();
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153             
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157             
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinv00           = gmx_mm_invsqrt_pd(rsq00);
167
168             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
169
170             /* Load parameters for j particles */
171             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
172             vdwjidx0A        = 2*vdwtype[jnrA+0];
173             vdwjidx0B        = 2*vdwtype[jnrB+0];
174
175             /**************************
176              * CALCULATE INTERACTIONS *
177              **************************/
178
179             r00              = _mm_mul_pd(rsq00,rinv00);
180
181             /* Compute parameters for interactions between i and j atoms */
182             qq00             = _mm_mul_pd(iq0,jq0);
183             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
184                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
185
186             /* Calculate table index by multiplying r with table scale and truncate to integer */
187             rt               = _mm_mul_pd(r00,vftabscale);
188             vfitab           = _mm_cvttpd_epi32(rt);
189             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
190             vfitab           = _mm_slli_epi32(vfitab,2);
191
192             /* CUBIC SPLINE TABLE ELECTROSTATICS */
193             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
194             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
195             GMX_MM_TRANSPOSE2_PD(Y,F);
196             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
197             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
198             GMX_MM_TRANSPOSE2_PD(G,H);
199             Heps             = _mm_mul_pd(vfeps,H);
200             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
201             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
202             velec            = _mm_mul_pd(qq00,VV);
203             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
204             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
205
206             /* LENNARD-JONES DISPERSION/REPULSION */
207
208             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
209             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
210             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
211             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
212             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             velecsum         = _mm_add_pd(velecsum,velec);
216             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
217
218             fscal            = _mm_add_pd(felec,fvdw);
219
220             /* Calculate temporary vectorial force */
221             tx               = _mm_mul_pd(fscal,dx00);
222             ty               = _mm_mul_pd(fscal,dy00);
223             tz               = _mm_mul_pd(fscal,dz00);
224
225             /* Update vectorial force */
226             fix0             = _mm_add_pd(fix0,tx);
227             fiy0             = _mm_add_pd(fiy0,ty);
228             fiz0             = _mm_add_pd(fiz0,tz);
229
230             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
231
232             /* Inner loop uses 56 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             jnrA             = jjnr[jidx];
239             j_coord_offsetA  = DIM*jnrA;
240
241             /* load j atom coordinates */
242             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
243                                               &jx0,&jy0,&jz0);
244             
245             /* Calculate displacement vector */
246             dx00             = _mm_sub_pd(ix0,jx0);
247             dy00             = _mm_sub_pd(iy0,jy0);
248             dz00             = _mm_sub_pd(iz0,jz0);
249
250             /* Calculate squared distance and things based on it */
251             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
252
253             rinv00           = gmx_mm_invsqrt_pd(rsq00);
254
255             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
256
257             /* Load parameters for j particles */
258             jq0              = _mm_load_sd(charge+jnrA+0);
259             vdwjidx0A        = 2*vdwtype[jnrA+0];
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             r00              = _mm_mul_pd(rsq00,rinv00);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq00             = _mm_mul_pd(iq0,jq0);
269             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
270
271             /* Calculate table index by multiplying r with table scale and truncate to integer */
272             rt               = _mm_mul_pd(r00,vftabscale);
273             vfitab           = _mm_cvttpd_epi32(rt);
274             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
275             vfitab           = _mm_slli_epi32(vfitab,2);
276
277             /* CUBIC SPLINE TABLE ELECTROSTATICS */
278             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_setzero_pd();
280             GMX_MM_TRANSPOSE2_PD(Y,F);
281             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
282             H                = _mm_setzero_pd();
283             GMX_MM_TRANSPOSE2_PD(G,H);
284             Heps             = _mm_mul_pd(vfeps,H);
285             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
286             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
287             velec            = _mm_mul_pd(qq00,VV);
288             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
289             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
290
291             /* LENNARD-JONES DISPERSION/REPULSION */
292
293             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
294             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
295             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
296             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
297             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
301             velecsum         = _mm_add_pd(velecsum,velec);
302             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
303             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
304
305             fscal            = _mm_add_pd(felec,fvdw);
306
307             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_pd(fscal,dx00);
311             ty               = _mm_mul_pd(fscal,dy00);
312             tz               = _mm_mul_pd(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm_add_pd(fix0,tx);
316             fiy0             = _mm_add_pd(fiy0,ty);
317             fiz0             = _mm_add_pd(fiz0,tz);
318
319             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
320
321             /* Inner loop uses 56 flops */
322         }
323
324         /* End of innermost loop */
325
326         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
327                                               f+i_coord_offset,fshift+i_shift_offset);
328
329         ggid                        = gid[iidx];
330         /* Update potential energies */
331         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
332         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
333
334         /* Increment number of inner iterations */
335         inneriter                  += j_index_end - j_index_start;
336
337         /* Outer loop uses 9 flops */
338     }
339
340     /* Increment number of outer iterations */
341     outeriter        += nri;
342
343     /* Update outer/inner flops */
344
345     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
346 }
347 /*
348  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_double
349  * Electrostatics interaction: CubicSplineTable
350  * VdW interaction:            LennardJones
351  * Geometry:                   Particle-Particle
352  * Calculate force/pot:        Force
353  */
354 void
355 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_double
356                     (t_nblist * gmx_restrict                nlist,
357                      rvec * gmx_restrict                    xx,
358                      rvec * gmx_restrict                    ff,
359                      t_forcerec * gmx_restrict              fr,
360                      t_mdatoms * gmx_restrict               mdatoms,
361                      nb_kernel_data_t * gmx_restrict        kernel_data,
362                      t_nrnb * gmx_restrict                  nrnb)
363 {
364     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
365      * just 0 for non-waters.
366      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
367      * jnr indices corresponding to data put in the four positions in the SIMD register.
368      */
369     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
370     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
371     int              jnrA,jnrB;
372     int              j_coord_offsetA,j_coord_offsetB;
373     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
374     real             rcutoff_scalar;
375     real             *shiftvec,*fshift,*x,*f;
376     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
377     int              vdwioffset0;
378     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
379     int              vdwjidx0A,vdwjidx0B;
380     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
381     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
382     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
383     real             *charge;
384     int              nvdwtype;
385     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
386     int              *vdwtype;
387     real             *vdwparam;
388     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
389     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
390     __m128i          vfitab;
391     __m128i          ifour       = _mm_set1_epi32(4);
392     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
393     real             *vftab;
394     __m128d          dummy_mask,cutoff_mask;
395     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
396     __m128d          one     = _mm_set1_pd(1.0);
397     __m128d          two     = _mm_set1_pd(2.0);
398     x                = xx[0];
399     f                = ff[0];
400
401     nri              = nlist->nri;
402     iinr             = nlist->iinr;
403     jindex           = nlist->jindex;
404     jjnr             = nlist->jjnr;
405     shiftidx         = nlist->shift;
406     gid              = nlist->gid;
407     shiftvec         = fr->shift_vec[0];
408     fshift           = fr->fshift[0];
409     facel            = _mm_set1_pd(fr->epsfac);
410     charge           = mdatoms->chargeA;
411     nvdwtype         = fr->ntype;
412     vdwparam         = fr->nbfp;
413     vdwtype          = mdatoms->typeA;
414
415     vftab            = kernel_data->table_elec->data;
416     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
417
418     /* Avoid stupid compiler warnings */
419     jnrA = jnrB = 0;
420     j_coord_offsetA = 0;
421     j_coord_offsetB = 0;
422
423     outeriter        = 0;
424     inneriter        = 0;
425
426     /* Start outer loop over neighborlists */
427     for(iidx=0; iidx<nri; iidx++)
428     {
429         /* Load shift vector for this list */
430         i_shift_offset   = DIM*shiftidx[iidx];
431
432         /* Load limits for loop over neighbors */
433         j_index_start    = jindex[iidx];
434         j_index_end      = jindex[iidx+1];
435
436         /* Get outer coordinate index */
437         inr              = iinr[iidx];
438         i_coord_offset   = DIM*inr;
439
440         /* Load i particle coords and add shift vector */
441         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
442
443         fix0             = _mm_setzero_pd();
444         fiy0             = _mm_setzero_pd();
445         fiz0             = _mm_setzero_pd();
446
447         /* Load parameters for i particles */
448         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
449         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
450
451         /* Start inner kernel loop */
452         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
453         {
454
455             /* Get j neighbor index, and coordinate index */
456             jnrA             = jjnr[jidx];
457             jnrB             = jjnr[jidx+1];
458             j_coord_offsetA  = DIM*jnrA;
459             j_coord_offsetB  = DIM*jnrB;
460             
461             /* load j atom coordinates */
462             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
463                                               &jx0,&jy0,&jz0);
464             
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_pd(ix0,jx0);
467             dy00             = _mm_sub_pd(iy0,jy0);
468             dz00             = _mm_sub_pd(iz0,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
472
473             rinv00           = gmx_mm_invsqrt_pd(rsq00);
474
475             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
476
477             /* Load parameters for j particles */
478             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
479             vdwjidx0A        = 2*vdwtype[jnrA+0];
480             vdwjidx0B        = 2*vdwtype[jnrB+0];
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq00             = _mm_mul_pd(iq0,jq0);
490             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
491                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
492
493             /* Calculate table index by multiplying r with table scale and truncate to integer */
494             rt               = _mm_mul_pd(r00,vftabscale);
495             vfitab           = _mm_cvttpd_epi32(rt);
496             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
497             vfitab           = _mm_slli_epi32(vfitab,2);
498
499             /* CUBIC SPLINE TABLE ELECTROSTATICS */
500             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
501             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
502             GMX_MM_TRANSPOSE2_PD(Y,F);
503             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
504             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
505             GMX_MM_TRANSPOSE2_PD(G,H);
506             Heps             = _mm_mul_pd(vfeps,H);
507             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
508             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
509             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
510
511             /* LENNARD-JONES DISPERSION/REPULSION */
512
513             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
514             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
515
516             fscal            = _mm_add_pd(felec,fvdw);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
529
530             /* Inner loop uses 47 flops */
531         }
532
533         if(jidx<j_index_end)
534         {
535
536             jnrA             = jjnr[jidx];
537             j_coord_offsetA  = DIM*jnrA;
538
539             /* load j atom coordinates */
540             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
541                                               &jx0,&jy0,&jz0);
542             
543             /* Calculate displacement vector */
544             dx00             = _mm_sub_pd(ix0,jx0);
545             dy00             = _mm_sub_pd(iy0,jy0);
546             dz00             = _mm_sub_pd(iz0,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
550
551             rinv00           = gmx_mm_invsqrt_pd(rsq00);
552
553             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
554
555             /* Load parameters for j particles */
556             jq0              = _mm_load_sd(charge+jnrA+0);
557             vdwjidx0A        = 2*vdwtype[jnrA+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm_mul_pd(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq00             = _mm_mul_pd(iq0,jq0);
567             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
568
569             /* Calculate table index by multiplying r with table scale and truncate to integer */
570             rt               = _mm_mul_pd(r00,vftabscale);
571             vfitab           = _mm_cvttpd_epi32(rt);
572             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
573             vfitab           = _mm_slli_epi32(vfitab,2);
574
575             /* CUBIC SPLINE TABLE ELECTROSTATICS */
576             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
577             F                = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(Y,F);
579             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
580             H                = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(G,H);
582             Heps             = _mm_mul_pd(vfeps,H);
583             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
584             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
585             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
586
587             /* LENNARD-JONES DISPERSION/REPULSION */
588
589             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
590             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
591
592             fscal            = _mm_add_pd(felec,fvdw);
593
594             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_pd(fscal,dx00);
598             ty               = _mm_mul_pd(fscal,dy00);
599             tz               = _mm_mul_pd(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm_add_pd(fix0,tx);
603             fiy0             = _mm_add_pd(fiy0,ty);
604             fiz0             = _mm_add_pd(fiz0,tz);
605
606             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
607
608             /* Inner loop uses 47 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
614                                               f+i_coord_offset,fshift+i_shift_offset);
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 7 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
628 }