Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_elec->data;
118     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm_setzero_pd();
146         fiy0             = _mm_setzero_pd();
147         fiz0             = _mm_setzero_pd();
148
149         /* Load parameters for i particles */
150         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         velecsum         = _mm_setzero_pd();
155         vvdwsum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = sse2_invsqrt_d(rsq00);
180
181             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             vdwjidx0A        = 2*vdwtype[jnrA+0];
186             vdwjidx0B        = 2*vdwtype[jnrB+0];
187
188             /**************************
189              * CALCULATE INTERACTIONS *
190              **************************/
191
192             r00              = _mm_mul_pd(rsq00,rinv00);
193
194             /* Compute parameters for interactions between i and j atoms */
195             qq00             = _mm_mul_pd(iq0,jq0);
196             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
197                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
198
199             /* Calculate table index by multiplying r with table scale and truncate to integer */
200             rt               = _mm_mul_pd(r00,vftabscale);
201             vfitab           = _mm_cvttpd_epi32(rt);
202             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
203             vfitab           = _mm_slli_epi32(vfitab,2);
204
205             /* CUBIC SPLINE TABLE ELECTROSTATICS */
206             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
207             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
208             GMX_MM_TRANSPOSE2_PD(Y,F);
209             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
210             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
211             GMX_MM_TRANSPOSE2_PD(G,H);
212             Heps             = _mm_mul_pd(vfeps,H);
213             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
214             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
215             velec            = _mm_mul_pd(qq00,VV);
216             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
217             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
218
219             /* LENNARD-JONES DISPERSION/REPULSION */
220
221             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
222             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
223             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
224             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
225             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velecsum         = _mm_add_pd(velecsum,velec);
229             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
230
231             fscal            = _mm_add_pd(felec,fvdw);
232
233             /* Calculate temporary vectorial force */
234             tx               = _mm_mul_pd(fscal,dx00);
235             ty               = _mm_mul_pd(fscal,dy00);
236             tz               = _mm_mul_pd(fscal,dz00);
237
238             /* Update vectorial force */
239             fix0             = _mm_add_pd(fix0,tx);
240             fiy0             = _mm_add_pd(fiy0,ty);
241             fiz0             = _mm_add_pd(fiz0,tz);
242
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
244
245             /* Inner loop uses 56 flops */
246         }
247
248         if(jidx<j_index_end)
249         {
250
251             jnrA             = jjnr[jidx];
252             j_coord_offsetA  = DIM*jnrA;
253
254             /* load j atom coordinates */
255             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256                                               &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm_sub_pd(ix0,jx0);
260             dy00             = _mm_sub_pd(iy0,jy0);
261             dz00             = _mm_sub_pd(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265
266             rinv00           = sse2_invsqrt_d(rsq00);
267
268             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
269
270             /* Load parameters for j particles */
271             jq0              = _mm_load_sd(charge+jnrA+0);
272             vdwjidx0A        = 2*vdwtype[jnrA+0];
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             r00              = _mm_mul_pd(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm_mul_pd(iq0,jq0);
282             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
283
284             /* Calculate table index by multiplying r with table scale and truncate to integer */
285             rt               = _mm_mul_pd(r00,vftabscale);
286             vfitab           = _mm_cvttpd_epi32(rt);
287             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
288             vfitab           = _mm_slli_epi32(vfitab,2);
289
290             /* CUBIC SPLINE TABLE ELECTROSTATICS */
291             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
292             F                = _mm_setzero_pd();
293             GMX_MM_TRANSPOSE2_PD(Y,F);
294             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
295             H                = _mm_setzero_pd();
296             GMX_MM_TRANSPOSE2_PD(G,H);
297             Heps             = _mm_mul_pd(vfeps,H);
298             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
299             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
300             velec            = _mm_mul_pd(qq00,VV);
301             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
302             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
303
304             /* LENNARD-JONES DISPERSION/REPULSION */
305
306             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
307             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
308             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
309             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
310             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
314             velecsum         = _mm_add_pd(velecsum,velec);
315             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
316             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
317
318             fscal            = _mm_add_pd(felec,fvdw);
319
320             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_pd(fscal,dx00);
324             ty               = _mm_mul_pd(fscal,dy00);
325             tz               = _mm_mul_pd(fscal,dz00);
326
327             /* Update vectorial force */
328             fix0             = _mm_add_pd(fix0,tx);
329             fiy0             = _mm_add_pd(fiy0,ty);
330             fiz0             = _mm_add_pd(fiz0,tz);
331
332             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
333
334             /* Inner loop uses 56 flops */
335         }
336
337         /* End of innermost loop */
338
339         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
340                                               f+i_coord_offset,fshift+i_shift_offset);
341
342         ggid                        = gid[iidx];
343         /* Update potential energies */
344         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
345         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
346
347         /* Increment number of inner iterations */
348         inneriter                  += j_index_end - j_index_start;
349
350         /* Outer loop uses 9 flops */
351     }
352
353     /* Increment number of outer iterations */
354     outeriter        += nri;
355
356     /* Update outer/inner flops */
357
358     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
359 }
360 /*
361  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_double
362  * Electrostatics interaction: CubicSplineTable
363  * VdW interaction:            LennardJones
364  * Geometry:                   Particle-Particle
365  * Calculate force/pot:        Force
366  */
367 void
368 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_double
369                     (t_nblist                    * gmx_restrict       nlist,
370                      rvec                        * gmx_restrict          xx,
371                      rvec                        * gmx_restrict          ff,
372                      struct t_forcerec           * gmx_restrict          fr,
373                      t_mdatoms                   * gmx_restrict     mdatoms,
374                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
375                      t_nrnb                      * gmx_restrict        nrnb)
376 {
377     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
378      * just 0 for non-waters.
379      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
380      * jnr indices corresponding to data put in the four positions in the SIMD register.
381      */
382     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
383     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
384     int              jnrA,jnrB;
385     int              j_coord_offsetA,j_coord_offsetB;
386     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
387     real             rcutoff_scalar;
388     real             *shiftvec,*fshift,*x,*f;
389     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
390     int              vdwioffset0;
391     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
392     int              vdwjidx0A,vdwjidx0B;
393     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
394     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
395     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
396     real             *charge;
397     int              nvdwtype;
398     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
399     int              *vdwtype;
400     real             *vdwparam;
401     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
402     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
403     __m128i          vfitab;
404     __m128i          ifour       = _mm_set1_epi32(4);
405     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
406     real             *vftab;
407     __m128d          dummy_mask,cutoff_mask;
408     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
409     __m128d          one     = _mm_set1_pd(1.0);
410     __m128d          two     = _mm_set1_pd(2.0);
411     x                = xx[0];
412     f                = ff[0];
413
414     nri              = nlist->nri;
415     iinr             = nlist->iinr;
416     jindex           = nlist->jindex;
417     jjnr             = nlist->jjnr;
418     shiftidx         = nlist->shift;
419     gid              = nlist->gid;
420     shiftvec         = fr->shift_vec[0];
421     fshift           = fr->fshift[0];
422     facel            = _mm_set1_pd(fr->ic->epsfac);
423     charge           = mdatoms->chargeA;
424     nvdwtype         = fr->ntype;
425     vdwparam         = fr->nbfp;
426     vdwtype          = mdatoms->typeA;
427
428     vftab            = kernel_data->table_elec->data;
429     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
430
431     /* Avoid stupid compiler warnings */
432     jnrA = jnrB = 0;
433     j_coord_offsetA = 0;
434     j_coord_offsetB = 0;
435
436     outeriter        = 0;
437     inneriter        = 0;
438
439     /* Start outer loop over neighborlists */
440     for(iidx=0; iidx<nri; iidx++)
441     {
442         /* Load shift vector for this list */
443         i_shift_offset   = DIM*shiftidx[iidx];
444
445         /* Load limits for loop over neighbors */
446         j_index_start    = jindex[iidx];
447         j_index_end      = jindex[iidx+1];
448
449         /* Get outer coordinate index */
450         inr              = iinr[iidx];
451         i_coord_offset   = DIM*inr;
452
453         /* Load i particle coords and add shift vector */
454         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
455
456         fix0             = _mm_setzero_pd();
457         fiy0             = _mm_setzero_pd();
458         fiz0             = _mm_setzero_pd();
459
460         /* Load parameters for i particles */
461         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
462         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
463
464         /* Start inner kernel loop */
465         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrA             = jjnr[jidx];
470             jnrB             = jjnr[jidx+1];
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473
474             /* load j atom coordinates */
475             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_pd(ix0,jx0);
480             dy00             = _mm_sub_pd(iy0,jy0);
481             dz00             = _mm_sub_pd(iz0,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
485
486             rinv00           = sse2_invsqrt_d(rsq00);
487
488             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
489
490             /* Load parameters for j particles */
491             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r00              = _mm_mul_pd(rsq00,rinv00);
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq00             = _mm_mul_pd(iq0,jq0);
503             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
504                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
505
506             /* Calculate table index by multiplying r with table scale and truncate to integer */
507             rt               = _mm_mul_pd(r00,vftabscale);
508             vfitab           = _mm_cvttpd_epi32(rt);
509             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
510             vfitab           = _mm_slli_epi32(vfitab,2);
511
512             /* CUBIC SPLINE TABLE ELECTROSTATICS */
513             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
514             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
515             GMX_MM_TRANSPOSE2_PD(Y,F);
516             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
517             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
518             GMX_MM_TRANSPOSE2_PD(G,H);
519             Heps             = _mm_mul_pd(vfeps,H);
520             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
521             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
522             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
523
524             /* LENNARD-JONES DISPERSION/REPULSION */
525
526             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
527             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
528
529             fscal            = _mm_add_pd(felec,fvdw);
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
542
543             /* Inner loop uses 47 flops */
544         }
545
546         if(jidx<j_index_end)
547         {
548
549             jnrA             = jjnr[jidx];
550             j_coord_offsetA  = DIM*jnrA;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
554                                               &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm_sub_pd(ix0,jx0);
558             dy00             = _mm_sub_pd(iy0,jy0);
559             dz00             = _mm_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = sse2_invsqrt_d(rsq00);
565
566             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             jq0              = _mm_load_sd(charge+jnrA+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq00             = _mm_mul_pd(iq0,jq0);
580             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
581
582             /* Calculate table index by multiplying r with table scale and truncate to integer */
583             rt               = _mm_mul_pd(r00,vftabscale);
584             vfitab           = _mm_cvttpd_epi32(rt);
585             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
586             vfitab           = _mm_slli_epi32(vfitab,2);
587
588             /* CUBIC SPLINE TABLE ELECTROSTATICS */
589             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
590             F                = _mm_setzero_pd();
591             GMX_MM_TRANSPOSE2_PD(Y,F);
592             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
593             H                = _mm_setzero_pd();
594             GMX_MM_TRANSPOSE2_PD(G,H);
595             Heps             = _mm_mul_pd(vfeps,H);
596             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
597             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
598             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
599
600             /* LENNARD-JONES DISPERSION/REPULSION */
601
602             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
603             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
604
605             fscal            = _mm_add_pd(felec,fvdw);
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_pd(fscal,dx00);
611             ty               = _mm_mul_pd(fscal,dy00);
612             tz               = _mm_mul_pd(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm_add_pd(fix0,tx);
616             fiy0             = _mm_add_pd(fiy0,ty);
617             fiz0             = _mm_add_pd(fiz0,tz);
618
619             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
620
621             /* Inner loop uses 47 flops */
622         }
623
624         /* End of innermost loop */
625
626         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
627                                               f+i_coord_offset,fshift+i_shift_offset);
628
629         /* Increment number of inner iterations */
630         inneriter                  += j_index_end - j_index_start;
631
632         /* Outer loop uses 7 flops */
633     }
634
635     /* Increment number of outer iterations */
636     outeriter        += nri;
637
638     /* Update outer/inner flops */
639
640     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
641 }