Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse2_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171         fix3             = _mm_setzero_pd();
172         fiy3             = _mm_setzero_pd();
173         fiz3             = _mm_setzero_pd();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_pd();
177         vvdwsum          = _mm_setzero_pd();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_pd(ix0,jx0);
195             dy00             = _mm_sub_pd(iy0,jy0);
196             dz00             = _mm_sub_pd(iz0,jz0);
197             dx10             = _mm_sub_pd(ix1,jx0);
198             dy10             = _mm_sub_pd(iy1,jy0);
199             dz10             = _mm_sub_pd(iz1,jz0);
200             dx20             = _mm_sub_pd(ix2,jx0);
201             dy20             = _mm_sub_pd(iy2,jy0);
202             dz20             = _mm_sub_pd(iz2,jz0);
203             dx30             = _mm_sub_pd(ix3,jx0);
204             dy30             = _mm_sub_pd(iy3,jy0);
205             dz30             = _mm_sub_pd(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv00           = sse2_invsqrt_d(rsq00);
214             rinv10           = sse2_invsqrt_d(rsq10);
215             rinv20           = sse2_invsqrt_d(rsq20);
216             rinv30           = sse2_invsqrt_d(rsq30);
217
218             /* Load parameters for j particles */
219             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
220             vdwjidx0A        = 2*vdwtype[jnrA+0];
221             vdwjidx0B        = 2*vdwtype[jnrB+0];
222
223             fjx0             = _mm_setzero_pd();
224             fjy0             = _mm_setzero_pd();
225             fjz0             = _mm_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r00              = _mm_mul_pd(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
236
237             /* Calculate table index by multiplying r with table scale and truncate to integer */
238             rt               = _mm_mul_pd(r00,vftabscale);
239             vfitab           = _mm_cvttpd_epi32(rt);
240             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
241             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
242
243             /* CUBIC SPLINE TABLE DISPERSION */
244             vfitab           = _mm_add_epi32(vfitab,ifour);
245             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
246             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
247             GMX_MM_TRANSPOSE2_PD(Y,F);
248             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
249             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
250             GMX_MM_TRANSPOSE2_PD(G,H);
251             Heps             = _mm_mul_pd(vfeps,H);
252             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
253             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
254             vvdw6            = _mm_mul_pd(c6_00,VV);
255             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
256             fvdw6            = _mm_mul_pd(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             GMX_MM_TRANSPOSE2_PD(Y,F);
263             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
264             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
265             GMX_MM_TRANSPOSE2_PD(G,H);
266             Heps             = _mm_mul_pd(vfeps,H);
267             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
268             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
269             vvdw12           = _mm_mul_pd(c12_00,VV);
270             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
271             fvdw12           = _mm_mul_pd(c12_00,FF);
272             vvdw             = _mm_add_pd(vvdw12,vvdw6);
273             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
277
278             fscal            = fvdw;
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_pd(fscal,dx00);
282             ty               = _mm_mul_pd(fscal,dy00);
283             tz               = _mm_mul_pd(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm_add_pd(fix0,tx);
287             fiy0             = _mm_add_pd(fiy0,ty);
288             fiz0             = _mm_add_pd(fiz0,tz);
289
290             fjx0             = _mm_add_pd(fjx0,tx);
291             fjy0             = _mm_add_pd(fjy0,ty);
292             fjz0             = _mm_add_pd(fjz0,tz);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r10              = _mm_mul_pd(rsq10,rinv10);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _mm_mul_pd(iq1,jq0);
302
303             /* Calculate table index by multiplying r with table scale and truncate to integer */
304             rt               = _mm_mul_pd(r10,vftabscale);
305             vfitab           = _mm_cvttpd_epi32(rt);
306             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
307             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
308
309             /* CUBIC SPLINE TABLE ELECTROSTATICS */
310             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
311             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
312             GMX_MM_TRANSPOSE2_PD(Y,F);
313             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
314             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
315             GMX_MM_TRANSPOSE2_PD(G,H);
316             Heps             = _mm_mul_pd(vfeps,H);
317             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
318             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
319             velec            = _mm_mul_pd(qq10,VV);
320             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
321             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _mm_add_pd(velecsum,velec);
325
326             fscal            = felec;
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_pd(fscal,dx10);
330             ty               = _mm_mul_pd(fscal,dy10);
331             tz               = _mm_mul_pd(fscal,dz10);
332
333             /* Update vectorial force */
334             fix1             = _mm_add_pd(fix1,tx);
335             fiy1             = _mm_add_pd(fiy1,ty);
336             fiz1             = _mm_add_pd(fiz1,tz);
337
338             fjx0             = _mm_add_pd(fjx0,tx);
339             fjy0             = _mm_add_pd(fjy0,ty);
340             fjz0             = _mm_add_pd(fjz0,tz);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             r20              = _mm_mul_pd(rsq20,rinv20);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm_mul_pd(iq2,jq0);
350
351             /* Calculate table index by multiplying r with table scale and truncate to integer */
352             rt               = _mm_mul_pd(r20,vftabscale);
353             vfitab           = _mm_cvttpd_epi32(rt);
354             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
355             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
356
357             /* CUBIC SPLINE TABLE ELECTROSTATICS */
358             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
359             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
360             GMX_MM_TRANSPOSE2_PD(Y,F);
361             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
362             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
363             GMX_MM_TRANSPOSE2_PD(G,H);
364             Heps             = _mm_mul_pd(vfeps,H);
365             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
366             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
367             velec            = _mm_mul_pd(qq20,VV);
368             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
369             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm_add_pd(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx20);
378             ty               = _mm_mul_pd(fscal,dy20);
379             tz               = _mm_mul_pd(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm_add_pd(fix2,tx);
383             fiy2             = _mm_add_pd(fiy2,ty);
384             fiz2             = _mm_add_pd(fiz2,tz);
385
386             fjx0             = _mm_add_pd(fjx0,tx);
387             fjy0             = _mm_add_pd(fjy0,ty);
388             fjz0             = _mm_add_pd(fjz0,tz);
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r30              = _mm_mul_pd(rsq30,rinv30);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq30             = _mm_mul_pd(iq3,jq0);
398
399             /* Calculate table index by multiplying r with table scale and truncate to integer */
400             rt               = _mm_mul_pd(r30,vftabscale);
401             vfitab           = _mm_cvttpd_epi32(rt);
402             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
403             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
404
405             /* CUBIC SPLINE TABLE ELECTROSTATICS */
406             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
407             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
408             GMX_MM_TRANSPOSE2_PD(Y,F);
409             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
410             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
411             GMX_MM_TRANSPOSE2_PD(G,H);
412             Heps             = _mm_mul_pd(vfeps,H);
413             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
414             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
415             velec            = _mm_mul_pd(qq30,VV);
416             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
417             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velecsum         = _mm_add_pd(velecsum,velec);
421
422             fscal            = felec;
423
424             /* Calculate temporary vectorial force */
425             tx               = _mm_mul_pd(fscal,dx30);
426             ty               = _mm_mul_pd(fscal,dy30);
427             tz               = _mm_mul_pd(fscal,dz30);
428
429             /* Update vectorial force */
430             fix3             = _mm_add_pd(fix3,tx);
431             fiy3             = _mm_add_pd(fiy3,ty);
432             fiz3             = _mm_add_pd(fiz3,tz);
433
434             fjx0             = _mm_add_pd(fjx0,tx);
435             fjy0             = _mm_add_pd(fjy0,ty);
436             fjz0             = _mm_add_pd(fjz0,tz);
437
438             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 188 flops */
441         }
442
443         if(jidx<j_index_end)
444         {
445
446             jnrA             = jjnr[jidx];
447             j_coord_offsetA  = DIM*jnrA;
448
449             /* load j atom coordinates */
450             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
451                                               &jx0,&jy0,&jz0);
452
453             /* Calculate displacement vector */
454             dx00             = _mm_sub_pd(ix0,jx0);
455             dy00             = _mm_sub_pd(iy0,jy0);
456             dz00             = _mm_sub_pd(iz0,jz0);
457             dx10             = _mm_sub_pd(ix1,jx0);
458             dy10             = _mm_sub_pd(iy1,jy0);
459             dz10             = _mm_sub_pd(iz1,jz0);
460             dx20             = _mm_sub_pd(ix2,jx0);
461             dy20             = _mm_sub_pd(iy2,jy0);
462             dz20             = _mm_sub_pd(iz2,jz0);
463             dx30             = _mm_sub_pd(ix3,jx0);
464             dy30             = _mm_sub_pd(iy3,jy0);
465             dz30             = _mm_sub_pd(iz3,jz0);
466
467             /* Calculate squared distance and things based on it */
468             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
469             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
470             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
471             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
472
473             rinv00           = sse2_invsqrt_d(rsq00);
474             rinv10           = sse2_invsqrt_d(rsq10);
475             rinv20           = sse2_invsqrt_d(rsq20);
476             rinv30           = sse2_invsqrt_d(rsq30);
477
478             /* Load parameters for j particles */
479             jq0              = _mm_load_sd(charge+jnrA+0);
480             vdwjidx0A        = 2*vdwtype[jnrA+0];
481
482             fjx0             = _mm_setzero_pd();
483             fjy0             = _mm_setzero_pd();
484             fjz0             = _mm_setzero_pd();
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             r00              = _mm_mul_pd(rsq00,rinv00);
491
492             /* Compute parameters for interactions between i and j atoms */
493             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
494
495             /* Calculate table index by multiplying r with table scale and truncate to integer */
496             rt               = _mm_mul_pd(r00,vftabscale);
497             vfitab           = _mm_cvttpd_epi32(rt);
498             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
499             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
500
501             /* CUBIC SPLINE TABLE DISPERSION */
502             vfitab           = _mm_add_epi32(vfitab,ifour);
503             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
504             F                = _mm_setzero_pd();
505             GMX_MM_TRANSPOSE2_PD(Y,F);
506             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
507             H                = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(G,H);
509             Heps             = _mm_mul_pd(vfeps,H);
510             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
511             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
512             vvdw6            = _mm_mul_pd(c6_00,VV);
513             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
514             fvdw6            = _mm_mul_pd(c6_00,FF);
515
516             /* CUBIC SPLINE TABLE REPULSION */
517             vfitab           = _mm_add_epi32(vfitab,ifour);
518             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
519             F                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(Y,F);
521             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
522             H                = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(G,H);
524             Heps             = _mm_mul_pd(vfeps,H);
525             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
526             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
527             vvdw12           = _mm_mul_pd(c12_00,VV);
528             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
529             fvdw12           = _mm_mul_pd(c12_00,FF);
530             vvdw             = _mm_add_pd(vvdw12,vvdw6);
531             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
535             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
536
537             fscal            = fvdw;
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx00);
543             ty               = _mm_mul_pd(fscal,dy00);
544             tz               = _mm_mul_pd(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_pd(fix0,tx);
548             fiy0             = _mm_add_pd(fiy0,ty);
549             fiz0             = _mm_add_pd(fiz0,tz);
550
551             fjx0             = _mm_add_pd(fjx0,tx);
552             fjy0             = _mm_add_pd(fjy0,ty);
553             fjz0             = _mm_add_pd(fjz0,tz);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r10              = _mm_mul_pd(rsq10,rinv10);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq10             = _mm_mul_pd(iq1,jq0);
563
564             /* Calculate table index by multiplying r with table scale and truncate to integer */
565             rt               = _mm_mul_pd(r10,vftabscale);
566             vfitab           = _mm_cvttpd_epi32(rt);
567             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
568             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
569
570             /* CUBIC SPLINE TABLE ELECTROSTATICS */
571             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
572             F                = _mm_setzero_pd();
573             GMX_MM_TRANSPOSE2_PD(Y,F);
574             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
575             H                = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(G,H);
577             Heps             = _mm_mul_pd(vfeps,H);
578             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
579             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
580             velec            = _mm_mul_pd(qq10,VV);
581             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
582             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
586             velecsum         = _mm_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm_mul_pd(fscal,dx10);
594             ty               = _mm_mul_pd(fscal,dy10);
595             tz               = _mm_mul_pd(fscal,dz10);
596
597             /* Update vectorial force */
598             fix1             = _mm_add_pd(fix1,tx);
599             fiy1             = _mm_add_pd(fiy1,ty);
600             fiz1             = _mm_add_pd(fiz1,tz);
601
602             fjx0             = _mm_add_pd(fjx0,tx);
603             fjy0             = _mm_add_pd(fjy0,ty);
604             fjz0             = _mm_add_pd(fjz0,tz);
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             r20              = _mm_mul_pd(rsq20,rinv20);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq20             = _mm_mul_pd(iq2,jq0);
614
615             /* Calculate table index by multiplying r with table scale and truncate to integer */
616             rt               = _mm_mul_pd(r20,vftabscale);
617             vfitab           = _mm_cvttpd_epi32(rt);
618             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
619             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
620
621             /* CUBIC SPLINE TABLE ELECTROSTATICS */
622             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
623             F                = _mm_setzero_pd();
624             GMX_MM_TRANSPOSE2_PD(Y,F);
625             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
626             H                = _mm_setzero_pd();
627             GMX_MM_TRANSPOSE2_PD(G,H);
628             Heps             = _mm_mul_pd(vfeps,H);
629             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
630             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
631             velec            = _mm_mul_pd(qq20,VV);
632             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
633             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
634
635             /* Update potential sum for this i atom from the interaction with this j atom. */
636             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
637             velecsum         = _mm_add_pd(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_pd(fscal,dx20);
645             ty               = _mm_mul_pd(fscal,dy20);
646             tz               = _mm_mul_pd(fscal,dz20);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_pd(fix2,tx);
650             fiy2             = _mm_add_pd(fiy2,ty);
651             fiz2             = _mm_add_pd(fiz2,tz);
652
653             fjx0             = _mm_add_pd(fjx0,tx);
654             fjy0             = _mm_add_pd(fjy0,ty);
655             fjz0             = _mm_add_pd(fjz0,tz);
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             r30              = _mm_mul_pd(rsq30,rinv30);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq30             = _mm_mul_pd(iq3,jq0);
665
666             /* Calculate table index by multiplying r with table scale and truncate to integer */
667             rt               = _mm_mul_pd(r30,vftabscale);
668             vfitab           = _mm_cvttpd_epi32(rt);
669             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
670             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
671
672             /* CUBIC SPLINE TABLE ELECTROSTATICS */
673             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
674             F                = _mm_setzero_pd();
675             GMX_MM_TRANSPOSE2_PD(Y,F);
676             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
677             H                = _mm_setzero_pd();
678             GMX_MM_TRANSPOSE2_PD(G,H);
679             Heps             = _mm_mul_pd(vfeps,H);
680             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
681             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
682             velec            = _mm_mul_pd(qq30,VV);
683             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
684             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
685
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
688             velecsum         = _mm_add_pd(velecsum,velec);
689
690             fscal            = felec;
691
692             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm_mul_pd(fscal,dx30);
696             ty               = _mm_mul_pd(fscal,dy30);
697             tz               = _mm_mul_pd(fscal,dz30);
698
699             /* Update vectorial force */
700             fix3             = _mm_add_pd(fix3,tx);
701             fiy3             = _mm_add_pd(fiy3,ty);
702             fiz3             = _mm_add_pd(fiz3,tz);
703
704             fjx0             = _mm_add_pd(fjx0,tx);
705             fjy0             = _mm_add_pd(fjy0,ty);
706             fjz0             = _mm_add_pd(fjz0,tz);
707
708             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
709
710             /* Inner loop uses 188 flops */
711         }
712
713         /* End of innermost loop */
714
715         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
716                                               f+i_coord_offset,fshift+i_shift_offset);
717
718         ggid                        = gid[iidx];
719         /* Update potential energies */
720         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
721         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 26 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*188);
735 }
736 /*
737  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse2_double
738  * Electrostatics interaction: CubicSplineTable
739  * VdW interaction:            CubicSplineTable
740  * Geometry:                   Water4-Particle
741  * Calculate force/pot:        Force
742  */
743 void
744 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_sse2_double
745                     (t_nblist                    * gmx_restrict       nlist,
746                      rvec                        * gmx_restrict          xx,
747                      rvec                        * gmx_restrict          ff,
748                      struct t_forcerec           * gmx_restrict          fr,
749                      t_mdatoms                   * gmx_restrict     mdatoms,
750                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
751                      t_nrnb                      * gmx_restrict        nrnb)
752 {
753     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
754      * just 0 for non-waters.
755      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
756      * jnr indices corresponding to data put in the four positions in the SIMD register.
757      */
758     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
759     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
760     int              jnrA,jnrB;
761     int              j_coord_offsetA,j_coord_offsetB;
762     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
763     real             rcutoff_scalar;
764     real             *shiftvec,*fshift,*x,*f;
765     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
766     int              vdwioffset0;
767     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
768     int              vdwioffset1;
769     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
770     int              vdwioffset2;
771     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
772     int              vdwioffset3;
773     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
774     int              vdwjidx0A,vdwjidx0B;
775     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
776     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
777     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
778     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
779     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
780     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
781     real             *charge;
782     int              nvdwtype;
783     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
784     int              *vdwtype;
785     real             *vdwparam;
786     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
787     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
788     __m128i          vfitab;
789     __m128i          ifour       = _mm_set1_epi32(4);
790     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
791     real             *vftab;
792     __m128d          dummy_mask,cutoff_mask;
793     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
794     __m128d          one     = _mm_set1_pd(1.0);
795     __m128d          two     = _mm_set1_pd(2.0);
796     x                = xx[0];
797     f                = ff[0];
798
799     nri              = nlist->nri;
800     iinr             = nlist->iinr;
801     jindex           = nlist->jindex;
802     jjnr             = nlist->jjnr;
803     shiftidx         = nlist->shift;
804     gid              = nlist->gid;
805     shiftvec         = fr->shift_vec[0];
806     fshift           = fr->fshift[0];
807     facel            = _mm_set1_pd(fr->ic->epsfac);
808     charge           = mdatoms->chargeA;
809     nvdwtype         = fr->ntype;
810     vdwparam         = fr->nbfp;
811     vdwtype          = mdatoms->typeA;
812
813     vftab            = kernel_data->table_elec_vdw->data;
814     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
815
816     /* Setup water-specific parameters */
817     inr              = nlist->iinr[0];
818     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
819     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
820     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
821     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
822
823     /* Avoid stupid compiler warnings */
824     jnrA = jnrB = 0;
825     j_coord_offsetA = 0;
826     j_coord_offsetB = 0;
827
828     outeriter        = 0;
829     inneriter        = 0;
830
831     /* Start outer loop over neighborlists */
832     for(iidx=0; iidx<nri; iidx++)
833     {
834         /* Load shift vector for this list */
835         i_shift_offset   = DIM*shiftidx[iidx];
836
837         /* Load limits for loop over neighbors */
838         j_index_start    = jindex[iidx];
839         j_index_end      = jindex[iidx+1];
840
841         /* Get outer coordinate index */
842         inr              = iinr[iidx];
843         i_coord_offset   = DIM*inr;
844
845         /* Load i particle coords and add shift vector */
846         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
847                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
848
849         fix0             = _mm_setzero_pd();
850         fiy0             = _mm_setzero_pd();
851         fiz0             = _mm_setzero_pd();
852         fix1             = _mm_setzero_pd();
853         fiy1             = _mm_setzero_pd();
854         fiz1             = _mm_setzero_pd();
855         fix2             = _mm_setzero_pd();
856         fiy2             = _mm_setzero_pd();
857         fiz2             = _mm_setzero_pd();
858         fix3             = _mm_setzero_pd();
859         fiy3             = _mm_setzero_pd();
860         fiz3             = _mm_setzero_pd();
861
862         /* Start inner kernel loop */
863         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
864         {
865
866             /* Get j neighbor index, and coordinate index */
867             jnrA             = jjnr[jidx];
868             jnrB             = jjnr[jidx+1];
869             j_coord_offsetA  = DIM*jnrA;
870             j_coord_offsetB  = DIM*jnrB;
871
872             /* load j atom coordinates */
873             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
874                                               &jx0,&jy0,&jz0);
875
876             /* Calculate displacement vector */
877             dx00             = _mm_sub_pd(ix0,jx0);
878             dy00             = _mm_sub_pd(iy0,jy0);
879             dz00             = _mm_sub_pd(iz0,jz0);
880             dx10             = _mm_sub_pd(ix1,jx0);
881             dy10             = _mm_sub_pd(iy1,jy0);
882             dz10             = _mm_sub_pd(iz1,jz0);
883             dx20             = _mm_sub_pd(ix2,jx0);
884             dy20             = _mm_sub_pd(iy2,jy0);
885             dz20             = _mm_sub_pd(iz2,jz0);
886             dx30             = _mm_sub_pd(ix3,jx0);
887             dy30             = _mm_sub_pd(iy3,jy0);
888             dz30             = _mm_sub_pd(iz3,jz0);
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
892             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
893             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
894             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
895
896             rinv00           = sse2_invsqrt_d(rsq00);
897             rinv10           = sse2_invsqrt_d(rsq10);
898             rinv20           = sse2_invsqrt_d(rsq20);
899             rinv30           = sse2_invsqrt_d(rsq30);
900
901             /* Load parameters for j particles */
902             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
903             vdwjidx0A        = 2*vdwtype[jnrA+0];
904             vdwjidx0B        = 2*vdwtype[jnrB+0];
905
906             fjx0             = _mm_setzero_pd();
907             fjy0             = _mm_setzero_pd();
908             fjz0             = _mm_setzero_pd();
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             r00              = _mm_mul_pd(rsq00,rinv00);
915
916             /* Compute parameters for interactions between i and j atoms */
917             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
918                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
919
920             /* Calculate table index by multiplying r with table scale and truncate to integer */
921             rt               = _mm_mul_pd(r00,vftabscale);
922             vfitab           = _mm_cvttpd_epi32(rt);
923             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
924             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
925
926             /* CUBIC SPLINE TABLE DISPERSION */
927             vfitab           = _mm_add_epi32(vfitab,ifour);
928             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
929             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
930             GMX_MM_TRANSPOSE2_PD(Y,F);
931             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
932             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
933             GMX_MM_TRANSPOSE2_PD(G,H);
934             Heps             = _mm_mul_pd(vfeps,H);
935             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
936             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
937             fvdw6            = _mm_mul_pd(c6_00,FF);
938
939             /* CUBIC SPLINE TABLE REPULSION */
940             vfitab           = _mm_add_epi32(vfitab,ifour);
941             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
942             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
943             GMX_MM_TRANSPOSE2_PD(Y,F);
944             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
945             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
946             GMX_MM_TRANSPOSE2_PD(G,H);
947             Heps             = _mm_mul_pd(vfeps,H);
948             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
949             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
950             fvdw12           = _mm_mul_pd(c12_00,FF);
951             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
952
953             fscal            = fvdw;
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_pd(fscal,dx00);
957             ty               = _mm_mul_pd(fscal,dy00);
958             tz               = _mm_mul_pd(fscal,dz00);
959
960             /* Update vectorial force */
961             fix0             = _mm_add_pd(fix0,tx);
962             fiy0             = _mm_add_pd(fiy0,ty);
963             fiz0             = _mm_add_pd(fiz0,tz);
964
965             fjx0             = _mm_add_pd(fjx0,tx);
966             fjy0             = _mm_add_pd(fjy0,ty);
967             fjz0             = _mm_add_pd(fjz0,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r10              = _mm_mul_pd(rsq10,rinv10);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq10             = _mm_mul_pd(iq1,jq0);
977
978             /* Calculate table index by multiplying r with table scale and truncate to integer */
979             rt               = _mm_mul_pd(r10,vftabscale);
980             vfitab           = _mm_cvttpd_epi32(rt);
981             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
982             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
983
984             /* CUBIC SPLINE TABLE ELECTROSTATICS */
985             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
986             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
987             GMX_MM_TRANSPOSE2_PD(Y,F);
988             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
989             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
990             GMX_MM_TRANSPOSE2_PD(G,H);
991             Heps             = _mm_mul_pd(vfeps,H);
992             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
993             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
994             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_pd(fscal,dx10);
1000             ty               = _mm_mul_pd(fscal,dy10);
1001             tz               = _mm_mul_pd(fscal,dz10);
1002
1003             /* Update vectorial force */
1004             fix1             = _mm_add_pd(fix1,tx);
1005             fiy1             = _mm_add_pd(fiy1,ty);
1006             fiz1             = _mm_add_pd(fiz1,tz);
1007
1008             fjx0             = _mm_add_pd(fjx0,tx);
1009             fjy0             = _mm_add_pd(fjy0,ty);
1010             fjz0             = _mm_add_pd(fjz0,tz);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r20              = _mm_mul_pd(rsq20,rinv20);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq20             = _mm_mul_pd(iq2,jq0);
1020
1021             /* Calculate table index by multiplying r with table scale and truncate to integer */
1022             rt               = _mm_mul_pd(r20,vftabscale);
1023             vfitab           = _mm_cvttpd_epi32(rt);
1024             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1025             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1026
1027             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1028             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1029             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1030             GMX_MM_TRANSPOSE2_PD(Y,F);
1031             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1032             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1033             GMX_MM_TRANSPOSE2_PD(G,H);
1034             Heps             = _mm_mul_pd(vfeps,H);
1035             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1036             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1037             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1038
1039             fscal            = felec;
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_pd(fscal,dx20);
1043             ty               = _mm_mul_pd(fscal,dy20);
1044             tz               = _mm_mul_pd(fscal,dz20);
1045
1046             /* Update vectorial force */
1047             fix2             = _mm_add_pd(fix2,tx);
1048             fiy2             = _mm_add_pd(fiy2,ty);
1049             fiz2             = _mm_add_pd(fiz2,tz);
1050
1051             fjx0             = _mm_add_pd(fjx0,tx);
1052             fjy0             = _mm_add_pd(fjy0,ty);
1053             fjz0             = _mm_add_pd(fjz0,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             r30              = _mm_mul_pd(rsq30,rinv30);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq30             = _mm_mul_pd(iq3,jq0);
1063
1064             /* Calculate table index by multiplying r with table scale and truncate to integer */
1065             rt               = _mm_mul_pd(r30,vftabscale);
1066             vfitab           = _mm_cvttpd_epi32(rt);
1067             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1068             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1069
1070             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1071             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1072             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1073             GMX_MM_TRANSPOSE2_PD(Y,F);
1074             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1075             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1076             GMX_MM_TRANSPOSE2_PD(G,H);
1077             Heps             = _mm_mul_pd(vfeps,H);
1078             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1079             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1080             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1081
1082             fscal            = felec;
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_pd(fscal,dx30);
1086             ty               = _mm_mul_pd(fscal,dy30);
1087             tz               = _mm_mul_pd(fscal,dz30);
1088
1089             /* Update vectorial force */
1090             fix3             = _mm_add_pd(fix3,tx);
1091             fiy3             = _mm_add_pd(fiy3,ty);
1092             fiz3             = _mm_add_pd(fiz3,tz);
1093
1094             fjx0             = _mm_add_pd(fjx0,tx);
1095             fjy0             = _mm_add_pd(fjy0,ty);
1096             fjz0             = _mm_add_pd(fjz0,tz);
1097
1098             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1099
1100             /* Inner loop uses 168 flops */
1101         }
1102
1103         if(jidx<j_index_end)
1104         {
1105
1106             jnrA             = jjnr[jidx];
1107             j_coord_offsetA  = DIM*jnrA;
1108
1109             /* load j atom coordinates */
1110             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1111                                               &jx0,&jy0,&jz0);
1112
1113             /* Calculate displacement vector */
1114             dx00             = _mm_sub_pd(ix0,jx0);
1115             dy00             = _mm_sub_pd(iy0,jy0);
1116             dz00             = _mm_sub_pd(iz0,jz0);
1117             dx10             = _mm_sub_pd(ix1,jx0);
1118             dy10             = _mm_sub_pd(iy1,jy0);
1119             dz10             = _mm_sub_pd(iz1,jz0);
1120             dx20             = _mm_sub_pd(ix2,jx0);
1121             dy20             = _mm_sub_pd(iy2,jy0);
1122             dz20             = _mm_sub_pd(iz2,jz0);
1123             dx30             = _mm_sub_pd(ix3,jx0);
1124             dy30             = _mm_sub_pd(iy3,jy0);
1125             dz30             = _mm_sub_pd(iz3,jz0);
1126
1127             /* Calculate squared distance and things based on it */
1128             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1129             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1130             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1131             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1132
1133             rinv00           = sse2_invsqrt_d(rsq00);
1134             rinv10           = sse2_invsqrt_d(rsq10);
1135             rinv20           = sse2_invsqrt_d(rsq20);
1136             rinv30           = sse2_invsqrt_d(rsq30);
1137
1138             /* Load parameters for j particles */
1139             jq0              = _mm_load_sd(charge+jnrA+0);
1140             vdwjidx0A        = 2*vdwtype[jnrA+0];
1141
1142             fjx0             = _mm_setzero_pd();
1143             fjy0             = _mm_setzero_pd();
1144             fjz0             = _mm_setzero_pd();
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             r00              = _mm_mul_pd(rsq00,rinv00);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1154
1155             /* Calculate table index by multiplying r with table scale and truncate to integer */
1156             rt               = _mm_mul_pd(r00,vftabscale);
1157             vfitab           = _mm_cvttpd_epi32(rt);
1158             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1159             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1160
1161             /* CUBIC SPLINE TABLE DISPERSION */
1162             vfitab           = _mm_add_epi32(vfitab,ifour);
1163             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1164             F                = _mm_setzero_pd();
1165             GMX_MM_TRANSPOSE2_PD(Y,F);
1166             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1167             H                = _mm_setzero_pd();
1168             GMX_MM_TRANSPOSE2_PD(G,H);
1169             Heps             = _mm_mul_pd(vfeps,H);
1170             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1171             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1172             fvdw6            = _mm_mul_pd(c6_00,FF);
1173
1174             /* CUBIC SPLINE TABLE REPULSION */
1175             vfitab           = _mm_add_epi32(vfitab,ifour);
1176             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1177             F                = _mm_setzero_pd();
1178             GMX_MM_TRANSPOSE2_PD(Y,F);
1179             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1180             H                = _mm_setzero_pd();
1181             GMX_MM_TRANSPOSE2_PD(G,H);
1182             Heps             = _mm_mul_pd(vfeps,H);
1183             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1184             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1185             fvdw12           = _mm_mul_pd(c12_00,FF);
1186             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1187
1188             fscal            = fvdw;
1189
1190             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1191
1192             /* Calculate temporary vectorial force */
1193             tx               = _mm_mul_pd(fscal,dx00);
1194             ty               = _mm_mul_pd(fscal,dy00);
1195             tz               = _mm_mul_pd(fscal,dz00);
1196
1197             /* Update vectorial force */
1198             fix0             = _mm_add_pd(fix0,tx);
1199             fiy0             = _mm_add_pd(fiy0,ty);
1200             fiz0             = _mm_add_pd(fiz0,tz);
1201
1202             fjx0             = _mm_add_pd(fjx0,tx);
1203             fjy0             = _mm_add_pd(fjy0,ty);
1204             fjz0             = _mm_add_pd(fjz0,tz);
1205
1206             /**************************
1207              * CALCULATE INTERACTIONS *
1208              **************************/
1209
1210             r10              = _mm_mul_pd(rsq10,rinv10);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq10             = _mm_mul_pd(iq1,jq0);
1214
1215             /* Calculate table index by multiplying r with table scale and truncate to integer */
1216             rt               = _mm_mul_pd(r10,vftabscale);
1217             vfitab           = _mm_cvttpd_epi32(rt);
1218             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1219             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1220
1221             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1222             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1223             F                = _mm_setzero_pd();
1224             GMX_MM_TRANSPOSE2_PD(Y,F);
1225             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1226             H                = _mm_setzero_pd();
1227             GMX_MM_TRANSPOSE2_PD(G,H);
1228             Heps             = _mm_mul_pd(vfeps,H);
1229             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1230             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1231             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1232
1233             fscal            = felec;
1234
1235             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1236
1237             /* Calculate temporary vectorial force */
1238             tx               = _mm_mul_pd(fscal,dx10);
1239             ty               = _mm_mul_pd(fscal,dy10);
1240             tz               = _mm_mul_pd(fscal,dz10);
1241
1242             /* Update vectorial force */
1243             fix1             = _mm_add_pd(fix1,tx);
1244             fiy1             = _mm_add_pd(fiy1,ty);
1245             fiz1             = _mm_add_pd(fiz1,tz);
1246
1247             fjx0             = _mm_add_pd(fjx0,tx);
1248             fjy0             = _mm_add_pd(fjy0,ty);
1249             fjz0             = _mm_add_pd(fjz0,tz);
1250
1251             /**************************
1252              * CALCULATE INTERACTIONS *
1253              **************************/
1254
1255             r20              = _mm_mul_pd(rsq20,rinv20);
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq20             = _mm_mul_pd(iq2,jq0);
1259
1260             /* Calculate table index by multiplying r with table scale and truncate to integer */
1261             rt               = _mm_mul_pd(r20,vftabscale);
1262             vfitab           = _mm_cvttpd_epi32(rt);
1263             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1264             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1265
1266             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1267             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1268             F                = _mm_setzero_pd();
1269             GMX_MM_TRANSPOSE2_PD(Y,F);
1270             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1271             H                = _mm_setzero_pd();
1272             GMX_MM_TRANSPOSE2_PD(G,H);
1273             Heps             = _mm_mul_pd(vfeps,H);
1274             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1275             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1276             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1281
1282             /* Calculate temporary vectorial force */
1283             tx               = _mm_mul_pd(fscal,dx20);
1284             ty               = _mm_mul_pd(fscal,dy20);
1285             tz               = _mm_mul_pd(fscal,dz20);
1286
1287             /* Update vectorial force */
1288             fix2             = _mm_add_pd(fix2,tx);
1289             fiy2             = _mm_add_pd(fiy2,ty);
1290             fiz2             = _mm_add_pd(fiz2,tz);
1291
1292             fjx0             = _mm_add_pd(fjx0,tx);
1293             fjy0             = _mm_add_pd(fjy0,ty);
1294             fjz0             = _mm_add_pd(fjz0,tz);
1295
1296             /**************************
1297              * CALCULATE INTERACTIONS *
1298              **************************/
1299
1300             r30              = _mm_mul_pd(rsq30,rinv30);
1301
1302             /* Compute parameters for interactions between i and j atoms */
1303             qq30             = _mm_mul_pd(iq3,jq0);
1304
1305             /* Calculate table index by multiplying r with table scale and truncate to integer */
1306             rt               = _mm_mul_pd(r30,vftabscale);
1307             vfitab           = _mm_cvttpd_epi32(rt);
1308             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1309             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1310
1311             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1312             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1313             F                = _mm_setzero_pd();
1314             GMX_MM_TRANSPOSE2_PD(Y,F);
1315             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1316             H                = _mm_setzero_pd();
1317             GMX_MM_TRANSPOSE2_PD(G,H);
1318             Heps             = _mm_mul_pd(vfeps,H);
1319             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1320             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1321             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1322
1323             fscal            = felec;
1324
1325             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1326
1327             /* Calculate temporary vectorial force */
1328             tx               = _mm_mul_pd(fscal,dx30);
1329             ty               = _mm_mul_pd(fscal,dy30);
1330             tz               = _mm_mul_pd(fscal,dz30);
1331
1332             /* Update vectorial force */
1333             fix3             = _mm_add_pd(fix3,tx);
1334             fiy3             = _mm_add_pd(fiy3,ty);
1335             fiz3             = _mm_add_pd(fiz3,tz);
1336
1337             fjx0             = _mm_add_pd(fjx0,tx);
1338             fjy0             = _mm_add_pd(fjy0,ty);
1339             fjz0             = _mm_add_pd(fjz0,tz);
1340
1341             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1342
1343             /* Inner loop uses 168 flops */
1344         }
1345
1346         /* End of innermost loop */
1347
1348         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1349                                               f+i_coord_offset,fshift+i_shift_offset);
1350
1351         /* Increment number of inner iterations */
1352         inneriter                  += j_index_end - j_index_start;
1353
1354         /* Outer loop uses 24 flops */
1355     }
1356
1357     /* Increment number of outer iterations */
1358     outeriter        += nri;
1359
1360     /* Update outer/inner flops */
1361
1362     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*168);
1363 }