Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = sse2_invsqrt_d(rsq00);
204             rinv10           = sse2_invsqrt_d(rsq10);
205             rinv20           = sse2_invsqrt_d(rsq20);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             r00              = _mm_mul_pd(rsq00,rinv00);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_pd(iq0,jq0);
224             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
226
227             /* Calculate table index by multiplying r with table scale and truncate to integer */
228             rt               = _mm_mul_pd(r00,vftabscale);
229             vfitab           = _mm_cvttpd_epi32(rt);
230             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
231             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
232
233             /* CUBIC SPLINE TABLE ELECTROSTATICS */
234             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
236             GMX_MM_TRANSPOSE2_PD(Y,F);
237             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
238             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(G,H);
240             Heps             = _mm_mul_pd(vfeps,H);
241             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
242             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
243             velec            = _mm_mul_pd(qq00,VV);
244             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
245             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             vfitab           = _mm_add_epi32(vfitab,ifour);
249             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
250             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
251             GMX_MM_TRANSPOSE2_PD(Y,F);
252             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
253             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
254             GMX_MM_TRANSPOSE2_PD(G,H);
255             Heps             = _mm_mul_pd(vfeps,H);
256             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
257             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
258             vvdw6            = _mm_mul_pd(c6_00,VV);
259             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
260             fvdw6            = _mm_mul_pd(c6_00,FF);
261
262             /* CUBIC SPLINE TABLE REPULSION */
263             vfitab           = _mm_add_epi32(vfitab,ifour);
264             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Heps             = _mm_mul_pd(vfeps,H);
271             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
272             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
273             vvdw12           = _mm_mul_pd(c12_00,VV);
274             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
275             fvdw12           = _mm_mul_pd(c12_00,FF);
276             vvdw             = _mm_add_pd(vvdw12,vvdw6);
277             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm_add_pd(velecsum,velec);
281             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm_add_pd(felec,fvdw);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx00);
287             ty               = _mm_mul_pd(fscal,dy00);
288             tz               = _mm_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_pd(fix0,tx);
292             fiy0             = _mm_add_pd(fiy0,ty);
293             fiz0             = _mm_add_pd(fiz0,tz);
294
295             fjx0             = _mm_add_pd(fjx0,tx);
296             fjy0             = _mm_add_pd(fjy0,ty);
297             fjz0             = _mm_add_pd(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm_mul_pd(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* Calculate table index by multiplying r with table scale and truncate to integer */
309             rt               = _mm_mul_pd(r10,vftabscale);
310             vfitab           = _mm_cvttpd_epi32(rt);
311             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
312             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
313
314             /* CUBIC SPLINE TABLE ELECTROSTATICS */
315             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
316             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
319             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Heps             = _mm_mul_pd(vfeps,H);
322             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
323             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
324             velec            = _mm_mul_pd(qq10,VV);
325             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
326             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_pd(fscal,dx10);
335             ty               = _mm_mul_pd(fscal,dy10);
336             tz               = _mm_mul_pd(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_pd(fix1,tx);
340             fiy1             = _mm_add_pd(fiy1,ty);
341             fiz1             = _mm_add_pd(fiz1,tz);
342
343             fjx0             = _mm_add_pd(fjx0,tx);
344             fjy0             = _mm_add_pd(fjy0,ty);
345             fjz0             = _mm_add_pd(fjz0,tz);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm_mul_pd(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_pd(iq2,jq0);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm_mul_pd(r20,vftabscale);
358             vfitab           = _mm_cvttpd_epi32(rt);
359             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
360             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
361
362             /* CUBIC SPLINE TABLE ELECTROSTATICS */
363             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
364             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
365             GMX_MM_TRANSPOSE2_PD(Y,F);
366             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
367             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
368             GMX_MM_TRANSPOSE2_PD(G,H);
369             Heps             = _mm_mul_pd(vfeps,H);
370             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
371             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
372             velec            = _mm_mul_pd(qq20,VV);
373             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
374             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm_mul_pd(fscal,dx20);
383             ty               = _mm_mul_pd(fscal,dy20);
384             tz               = _mm_mul_pd(fscal,dz20);
385
386             /* Update vectorial force */
387             fix2             = _mm_add_pd(fix2,tx);
388             fiy2             = _mm_add_pd(fiy2,ty);
389             fiz2             = _mm_add_pd(fiz2,tz);
390
391             fjx0             = _mm_add_pd(fjx0,tx);
392             fjy0             = _mm_add_pd(fjy0,ty);
393             fjz0             = _mm_add_pd(fjz0,tz);
394
395             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
396
397             /* Inner loop uses 162 flops */
398         }
399
400         if(jidx<j_index_end)
401         {
402
403             jnrA             = jjnr[jidx];
404             j_coord_offsetA  = DIM*jnrA;
405
406             /* load j atom coordinates */
407             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
408                                               &jx0,&jy0,&jz0);
409
410             /* Calculate displacement vector */
411             dx00             = _mm_sub_pd(ix0,jx0);
412             dy00             = _mm_sub_pd(iy0,jy0);
413             dz00             = _mm_sub_pd(iz0,jz0);
414             dx10             = _mm_sub_pd(ix1,jx0);
415             dy10             = _mm_sub_pd(iy1,jy0);
416             dz10             = _mm_sub_pd(iz1,jz0);
417             dx20             = _mm_sub_pd(ix2,jx0);
418             dy20             = _mm_sub_pd(iy2,jy0);
419             dz20             = _mm_sub_pd(iz2,jz0);
420
421             /* Calculate squared distance and things based on it */
422             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
423             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
424             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
425
426             rinv00           = sse2_invsqrt_d(rsq00);
427             rinv10           = sse2_invsqrt_d(rsq10);
428             rinv20           = sse2_invsqrt_d(rsq20);
429
430             /* Load parameters for j particles */
431             jq0              = _mm_load_sd(charge+jnrA+0);
432             vdwjidx0A        = 2*vdwtype[jnrA+0];
433
434             fjx0             = _mm_setzero_pd();
435             fjy0             = _mm_setzero_pd();
436             fjz0             = _mm_setzero_pd();
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm_mul_pd(rsq00,rinv00);
443
444             /* Compute parameters for interactions between i and j atoms */
445             qq00             = _mm_mul_pd(iq0,jq0);
446             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
447
448             /* Calculate table index by multiplying r with table scale and truncate to integer */
449             rt               = _mm_mul_pd(r00,vftabscale);
450             vfitab           = _mm_cvttpd_epi32(rt);
451             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
452             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
453
454             /* CUBIC SPLINE TABLE ELECTROSTATICS */
455             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
456             F                = _mm_setzero_pd();
457             GMX_MM_TRANSPOSE2_PD(Y,F);
458             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
459             H                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(G,H);
461             Heps             = _mm_mul_pd(vfeps,H);
462             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
463             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
464             velec            = _mm_mul_pd(qq00,VV);
465             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
466             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
467
468             /* CUBIC SPLINE TABLE DISPERSION */
469             vfitab           = _mm_add_epi32(vfitab,ifour);
470             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
471             F                = _mm_setzero_pd();
472             GMX_MM_TRANSPOSE2_PD(Y,F);
473             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
474             H                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(G,H);
476             Heps             = _mm_mul_pd(vfeps,H);
477             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
478             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
479             vvdw6            = _mm_mul_pd(c6_00,VV);
480             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
481             fvdw6            = _mm_mul_pd(c6_00,FF);
482
483             /* CUBIC SPLINE TABLE REPULSION */
484             vfitab           = _mm_add_epi32(vfitab,ifour);
485             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
486             F                = _mm_setzero_pd();
487             GMX_MM_TRANSPOSE2_PD(Y,F);
488             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
489             H                = _mm_setzero_pd();
490             GMX_MM_TRANSPOSE2_PD(G,H);
491             Heps             = _mm_mul_pd(vfeps,H);
492             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
493             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
494             vvdw12           = _mm_mul_pd(c12_00,VV);
495             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
496             fvdw12           = _mm_mul_pd(c12_00,FF);
497             vvdw             = _mm_add_pd(vvdw12,vvdw6);
498             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
502             velecsum         = _mm_add_pd(velecsum,velec);
503             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
504             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
505
506             fscal            = _mm_add_pd(felec,fvdw);
507
508             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm_mul_pd(fscal,dx00);
512             ty               = _mm_mul_pd(fscal,dy00);
513             tz               = _mm_mul_pd(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm_add_pd(fix0,tx);
517             fiy0             = _mm_add_pd(fiy0,ty);
518             fiz0             = _mm_add_pd(fiz0,tz);
519
520             fjx0             = _mm_add_pd(fjx0,tx);
521             fjy0             = _mm_add_pd(fjy0,ty);
522             fjz0             = _mm_add_pd(fjz0,tz);
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r10              = _mm_mul_pd(rsq10,rinv10);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq10             = _mm_mul_pd(iq1,jq0);
532
533             /* Calculate table index by multiplying r with table scale and truncate to integer */
534             rt               = _mm_mul_pd(r10,vftabscale);
535             vfitab           = _mm_cvttpd_epi32(rt);
536             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
537             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
538
539             /* CUBIC SPLINE TABLE ELECTROSTATICS */
540             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
541             F                = _mm_setzero_pd();
542             GMX_MM_TRANSPOSE2_PD(Y,F);
543             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
544             H                = _mm_setzero_pd();
545             GMX_MM_TRANSPOSE2_PD(G,H);
546             Heps             = _mm_mul_pd(vfeps,H);
547             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
548             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
549             velec            = _mm_mul_pd(qq10,VV);
550             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
551             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
555             velecsum         = _mm_add_pd(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_pd(fscal,dx10);
563             ty               = _mm_mul_pd(fscal,dy10);
564             tz               = _mm_mul_pd(fscal,dz10);
565
566             /* Update vectorial force */
567             fix1             = _mm_add_pd(fix1,tx);
568             fiy1             = _mm_add_pd(fiy1,ty);
569             fiz1             = _mm_add_pd(fiz1,tz);
570
571             fjx0             = _mm_add_pd(fjx0,tx);
572             fjy0             = _mm_add_pd(fjy0,ty);
573             fjz0             = _mm_add_pd(fjz0,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r20              = _mm_mul_pd(rsq20,rinv20);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq20             = _mm_mul_pd(iq2,jq0);
583
584             /* Calculate table index by multiplying r with table scale and truncate to integer */
585             rt               = _mm_mul_pd(r20,vftabscale);
586             vfitab           = _mm_cvttpd_epi32(rt);
587             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
588             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
589
590             /* CUBIC SPLINE TABLE ELECTROSTATICS */
591             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
592             F                = _mm_setzero_pd();
593             GMX_MM_TRANSPOSE2_PD(Y,F);
594             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
595             H                = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(G,H);
597             Heps             = _mm_mul_pd(vfeps,H);
598             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
599             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
600             velec            = _mm_mul_pd(qq20,VV);
601             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
602             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
606             velecsum         = _mm_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm_mul_pd(fscal,dx20);
614             ty               = _mm_mul_pd(fscal,dy20);
615             tz               = _mm_mul_pd(fscal,dz20);
616
617             /* Update vectorial force */
618             fix2             = _mm_add_pd(fix2,tx);
619             fiy2             = _mm_add_pd(fiy2,ty);
620             fiz2             = _mm_add_pd(fiz2,tz);
621
622             fjx0             = _mm_add_pd(fjx0,tx);
623             fjy0             = _mm_add_pd(fjy0,ty);
624             fjz0             = _mm_add_pd(fjz0,tz);
625
626             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
627
628             /* Inner loop uses 162 flops */
629         }
630
631         /* End of innermost loop */
632
633         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
634                                               f+i_coord_offset,fshift+i_shift_offset);
635
636         ggid                        = gid[iidx];
637         /* Update potential energies */
638         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
639         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 20 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
653 }
654 /*
655  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse2_double
656  * Electrostatics interaction: CubicSplineTable
657  * VdW interaction:            CubicSplineTable
658  * Geometry:                   Water3-Particle
659  * Calculate force/pot:        Force
660  */
661 void
662 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse2_double
663                     (t_nblist                    * gmx_restrict       nlist,
664                      rvec                        * gmx_restrict          xx,
665                      rvec                        * gmx_restrict          ff,
666                      struct t_forcerec           * gmx_restrict          fr,
667                      t_mdatoms                   * gmx_restrict     mdatoms,
668                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
669                      t_nrnb                      * gmx_restrict        nrnb)
670 {
671     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
672      * just 0 for non-waters.
673      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
674      * jnr indices corresponding to data put in the four positions in the SIMD register.
675      */
676     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
677     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
678     int              jnrA,jnrB;
679     int              j_coord_offsetA,j_coord_offsetB;
680     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
681     real             rcutoff_scalar;
682     real             *shiftvec,*fshift,*x,*f;
683     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
684     int              vdwioffset0;
685     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
686     int              vdwioffset1;
687     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
688     int              vdwioffset2;
689     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
690     int              vdwjidx0A,vdwjidx0B;
691     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
692     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
693     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
694     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
695     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
696     real             *charge;
697     int              nvdwtype;
698     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
699     int              *vdwtype;
700     real             *vdwparam;
701     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
702     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
703     __m128i          vfitab;
704     __m128i          ifour       = _mm_set1_epi32(4);
705     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
706     real             *vftab;
707     __m128d          dummy_mask,cutoff_mask;
708     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
709     __m128d          one     = _mm_set1_pd(1.0);
710     __m128d          two     = _mm_set1_pd(2.0);
711     x                = xx[0];
712     f                = ff[0];
713
714     nri              = nlist->nri;
715     iinr             = nlist->iinr;
716     jindex           = nlist->jindex;
717     jjnr             = nlist->jjnr;
718     shiftidx         = nlist->shift;
719     gid              = nlist->gid;
720     shiftvec         = fr->shift_vec[0];
721     fshift           = fr->fshift[0];
722     facel            = _mm_set1_pd(fr->ic->epsfac);
723     charge           = mdatoms->chargeA;
724     nvdwtype         = fr->ntype;
725     vdwparam         = fr->nbfp;
726     vdwtype          = mdatoms->typeA;
727
728     vftab            = kernel_data->table_elec_vdw->data;
729     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
730
731     /* Setup water-specific parameters */
732     inr              = nlist->iinr[0];
733     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
734     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
735     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
736     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
737
738     /* Avoid stupid compiler warnings */
739     jnrA = jnrB = 0;
740     j_coord_offsetA = 0;
741     j_coord_offsetB = 0;
742
743     outeriter        = 0;
744     inneriter        = 0;
745
746     /* Start outer loop over neighborlists */
747     for(iidx=0; iidx<nri; iidx++)
748     {
749         /* Load shift vector for this list */
750         i_shift_offset   = DIM*shiftidx[iidx];
751
752         /* Load limits for loop over neighbors */
753         j_index_start    = jindex[iidx];
754         j_index_end      = jindex[iidx+1];
755
756         /* Get outer coordinate index */
757         inr              = iinr[iidx];
758         i_coord_offset   = DIM*inr;
759
760         /* Load i particle coords and add shift vector */
761         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
762                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
763
764         fix0             = _mm_setzero_pd();
765         fiy0             = _mm_setzero_pd();
766         fiz0             = _mm_setzero_pd();
767         fix1             = _mm_setzero_pd();
768         fiy1             = _mm_setzero_pd();
769         fiz1             = _mm_setzero_pd();
770         fix2             = _mm_setzero_pd();
771         fiy2             = _mm_setzero_pd();
772         fiz2             = _mm_setzero_pd();
773
774         /* Start inner kernel loop */
775         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
776         {
777
778             /* Get j neighbor index, and coordinate index */
779             jnrA             = jjnr[jidx];
780             jnrB             = jjnr[jidx+1];
781             j_coord_offsetA  = DIM*jnrA;
782             j_coord_offsetB  = DIM*jnrB;
783
784             /* load j atom coordinates */
785             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
786                                               &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm_sub_pd(ix0,jx0);
790             dy00             = _mm_sub_pd(iy0,jy0);
791             dz00             = _mm_sub_pd(iz0,jz0);
792             dx10             = _mm_sub_pd(ix1,jx0);
793             dy10             = _mm_sub_pd(iy1,jy0);
794             dz10             = _mm_sub_pd(iz1,jz0);
795             dx20             = _mm_sub_pd(ix2,jx0);
796             dy20             = _mm_sub_pd(iy2,jy0);
797             dz20             = _mm_sub_pd(iz2,jz0);
798
799             /* Calculate squared distance and things based on it */
800             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
801             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
802             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
803
804             rinv00           = sse2_invsqrt_d(rsq00);
805             rinv10           = sse2_invsqrt_d(rsq10);
806             rinv20           = sse2_invsqrt_d(rsq20);
807
808             /* Load parameters for j particles */
809             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
810             vdwjidx0A        = 2*vdwtype[jnrA+0];
811             vdwjidx0B        = 2*vdwtype[jnrB+0];
812
813             fjx0             = _mm_setzero_pd();
814             fjy0             = _mm_setzero_pd();
815             fjz0             = _mm_setzero_pd();
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             r00              = _mm_mul_pd(rsq00,rinv00);
822
823             /* Compute parameters for interactions between i and j atoms */
824             qq00             = _mm_mul_pd(iq0,jq0);
825             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
826                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
827
828             /* Calculate table index by multiplying r with table scale and truncate to integer */
829             rt               = _mm_mul_pd(r00,vftabscale);
830             vfitab           = _mm_cvttpd_epi32(rt);
831             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
832             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
833
834             /* CUBIC SPLINE TABLE ELECTROSTATICS */
835             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
836             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
837             GMX_MM_TRANSPOSE2_PD(Y,F);
838             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
839             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
840             GMX_MM_TRANSPOSE2_PD(G,H);
841             Heps             = _mm_mul_pd(vfeps,H);
842             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
843             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
844             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
845
846             /* CUBIC SPLINE TABLE DISPERSION */
847             vfitab           = _mm_add_epi32(vfitab,ifour);
848             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
849             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
850             GMX_MM_TRANSPOSE2_PD(Y,F);
851             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
852             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
853             GMX_MM_TRANSPOSE2_PD(G,H);
854             Heps             = _mm_mul_pd(vfeps,H);
855             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
856             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
857             fvdw6            = _mm_mul_pd(c6_00,FF);
858
859             /* CUBIC SPLINE TABLE REPULSION */
860             vfitab           = _mm_add_epi32(vfitab,ifour);
861             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
862             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
863             GMX_MM_TRANSPOSE2_PD(Y,F);
864             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
865             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
866             GMX_MM_TRANSPOSE2_PD(G,H);
867             Heps             = _mm_mul_pd(vfeps,H);
868             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
869             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
870             fvdw12           = _mm_mul_pd(c12_00,FF);
871             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
872
873             fscal            = _mm_add_pd(felec,fvdw);
874
875             /* Calculate temporary vectorial force */
876             tx               = _mm_mul_pd(fscal,dx00);
877             ty               = _mm_mul_pd(fscal,dy00);
878             tz               = _mm_mul_pd(fscal,dz00);
879
880             /* Update vectorial force */
881             fix0             = _mm_add_pd(fix0,tx);
882             fiy0             = _mm_add_pd(fiy0,ty);
883             fiz0             = _mm_add_pd(fiz0,tz);
884
885             fjx0             = _mm_add_pd(fjx0,tx);
886             fjy0             = _mm_add_pd(fjy0,ty);
887             fjz0             = _mm_add_pd(fjz0,tz);
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r10              = _mm_mul_pd(rsq10,rinv10);
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq10             = _mm_mul_pd(iq1,jq0);
897
898             /* Calculate table index by multiplying r with table scale and truncate to integer */
899             rt               = _mm_mul_pd(r10,vftabscale);
900             vfitab           = _mm_cvttpd_epi32(rt);
901             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
902             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
903
904             /* CUBIC SPLINE TABLE ELECTROSTATICS */
905             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
906             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
907             GMX_MM_TRANSPOSE2_PD(Y,F);
908             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
909             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
910             GMX_MM_TRANSPOSE2_PD(G,H);
911             Heps             = _mm_mul_pd(vfeps,H);
912             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
913             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
914             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
915
916             fscal            = felec;
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_pd(fscal,dx10);
920             ty               = _mm_mul_pd(fscal,dy10);
921             tz               = _mm_mul_pd(fscal,dz10);
922
923             /* Update vectorial force */
924             fix1             = _mm_add_pd(fix1,tx);
925             fiy1             = _mm_add_pd(fiy1,ty);
926             fiz1             = _mm_add_pd(fiz1,tz);
927
928             fjx0             = _mm_add_pd(fjx0,tx);
929             fjy0             = _mm_add_pd(fjy0,ty);
930             fjz0             = _mm_add_pd(fjz0,tz);
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             r20              = _mm_mul_pd(rsq20,rinv20);
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq20             = _mm_mul_pd(iq2,jq0);
940
941             /* Calculate table index by multiplying r with table scale and truncate to integer */
942             rt               = _mm_mul_pd(r20,vftabscale);
943             vfitab           = _mm_cvttpd_epi32(rt);
944             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
945             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
946
947             /* CUBIC SPLINE TABLE ELECTROSTATICS */
948             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
949             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
950             GMX_MM_TRANSPOSE2_PD(Y,F);
951             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
952             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
953             GMX_MM_TRANSPOSE2_PD(G,H);
954             Heps             = _mm_mul_pd(vfeps,H);
955             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
956             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
957             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
958
959             fscal            = felec;
960
961             /* Calculate temporary vectorial force */
962             tx               = _mm_mul_pd(fscal,dx20);
963             ty               = _mm_mul_pd(fscal,dy20);
964             tz               = _mm_mul_pd(fscal,dz20);
965
966             /* Update vectorial force */
967             fix2             = _mm_add_pd(fix2,tx);
968             fiy2             = _mm_add_pd(fiy2,ty);
969             fiz2             = _mm_add_pd(fiz2,tz);
970
971             fjx0             = _mm_add_pd(fjx0,tx);
972             fjy0             = _mm_add_pd(fjy0,ty);
973             fjz0             = _mm_add_pd(fjz0,tz);
974
975             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
976
977             /* Inner loop uses 142 flops */
978         }
979
980         if(jidx<j_index_end)
981         {
982
983             jnrA             = jjnr[jidx];
984             j_coord_offsetA  = DIM*jnrA;
985
986             /* load j atom coordinates */
987             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
988                                               &jx0,&jy0,&jz0);
989
990             /* Calculate displacement vector */
991             dx00             = _mm_sub_pd(ix0,jx0);
992             dy00             = _mm_sub_pd(iy0,jy0);
993             dz00             = _mm_sub_pd(iz0,jz0);
994             dx10             = _mm_sub_pd(ix1,jx0);
995             dy10             = _mm_sub_pd(iy1,jy0);
996             dz10             = _mm_sub_pd(iz1,jz0);
997             dx20             = _mm_sub_pd(ix2,jx0);
998             dy20             = _mm_sub_pd(iy2,jy0);
999             dz20             = _mm_sub_pd(iz2,jz0);
1000
1001             /* Calculate squared distance and things based on it */
1002             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1003             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1004             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1005
1006             rinv00           = sse2_invsqrt_d(rsq00);
1007             rinv10           = sse2_invsqrt_d(rsq10);
1008             rinv20           = sse2_invsqrt_d(rsq20);
1009
1010             /* Load parameters for j particles */
1011             jq0              = _mm_load_sd(charge+jnrA+0);
1012             vdwjidx0A        = 2*vdwtype[jnrA+0];
1013
1014             fjx0             = _mm_setzero_pd();
1015             fjy0             = _mm_setzero_pd();
1016             fjz0             = _mm_setzero_pd();
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             r00              = _mm_mul_pd(rsq00,rinv00);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq00             = _mm_mul_pd(iq0,jq0);
1026             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1027
1028             /* Calculate table index by multiplying r with table scale and truncate to integer */
1029             rt               = _mm_mul_pd(r00,vftabscale);
1030             vfitab           = _mm_cvttpd_epi32(rt);
1031             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1032             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1033
1034             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1035             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1036             F                = _mm_setzero_pd();
1037             GMX_MM_TRANSPOSE2_PD(Y,F);
1038             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1039             H                = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(G,H);
1041             Heps             = _mm_mul_pd(vfeps,H);
1042             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1043             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1044             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1045
1046             /* CUBIC SPLINE TABLE DISPERSION */
1047             vfitab           = _mm_add_epi32(vfitab,ifour);
1048             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1049             F                = _mm_setzero_pd();
1050             GMX_MM_TRANSPOSE2_PD(Y,F);
1051             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1052             H                = _mm_setzero_pd();
1053             GMX_MM_TRANSPOSE2_PD(G,H);
1054             Heps             = _mm_mul_pd(vfeps,H);
1055             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1056             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1057             fvdw6            = _mm_mul_pd(c6_00,FF);
1058
1059             /* CUBIC SPLINE TABLE REPULSION */
1060             vfitab           = _mm_add_epi32(vfitab,ifour);
1061             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1062             F                = _mm_setzero_pd();
1063             GMX_MM_TRANSPOSE2_PD(Y,F);
1064             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1065             H                = _mm_setzero_pd();
1066             GMX_MM_TRANSPOSE2_PD(G,H);
1067             Heps             = _mm_mul_pd(vfeps,H);
1068             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1069             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1070             fvdw12           = _mm_mul_pd(c12_00,FF);
1071             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1072
1073             fscal            = _mm_add_pd(felec,fvdw);
1074
1075             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm_mul_pd(fscal,dx00);
1079             ty               = _mm_mul_pd(fscal,dy00);
1080             tz               = _mm_mul_pd(fscal,dz00);
1081
1082             /* Update vectorial force */
1083             fix0             = _mm_add_pd(fix0,tx);
1084             fiy0             = _mm_add_pd(fiy0,ty);
1085             fiz0             = _mm_add_pd(fiz0,tz);
1086
1087             fjx0             = _mm_add_pd(fjx0,tx);
1088             fjy0             = _mm_add_pd(fjy0,ty);
1089             fjz0             = _mm_add_pd(fjz0,tz);
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             r10              = _mm_mul_pd(rsq10,rinv10);
1096
1097             /* Compute parameters for interactions between i and j atoms */
1098             qq10             = _mm_mul_pd(iq1,jq0);
1099
1100             /* Calculate table index by multiplying r with table scale and truncate to integer */
1101             rt               = _mm_mul_pd(r10,vftabscale);
1102             vfitab           = _mm_cvttpd_epi32(rt);
1103             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1104             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1105
1106             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1107             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1108             F                = _mm_setzero_pd();
1109             GMX_MM_TRANSPOSE2_PD(Y,F);
1110             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1111             H                = _mm_setzero_pd();
1112             GMX_MM_TRANSPOSE2_PD(G,H);
1113             Heps             = _mm_mul_pd(vfeps,H);
1114             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1115             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1116             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1117
1118             fscal            = felec;
1119
1120             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = _mm_mul_pd(fscal,dx10);
1124             ty               = _mm_mul_pd(fscal,dy10);
1125             tz               = _mm_mul_pd(fscal,dz10);
1126
1127             /* Update vectorial force */
1128             fix1             = _mm_add_pd(fix1,tx);
1129             fiy1             = _mm_add_pd(fiy1,ty);
1130             fiz1             = _mm_add_pd(fiz1,tz);
1131
1132             fjx0             = _mm_add_pd(fjx0,tx);
1133             fjy0             = _mm_add_pd(fjy0,ty);
1134             fjz0             = _mm_add_pd(fjz0,tz);
1135
1136             /**************************
1137              * CALCULATE INTERACTIONS *
1138              **************************/
1139
1140             r20              = _mm_mul_pd(rsq20,rinv20);
1141
1142             /* Compute parameters for interactions between i and j atoms */
1143             qq20             = _mm_mul_pd(iq2,jq0);
1144
1145             /* Calculate table index by multiplying r with table scale and truncate to integer */
1146             rt               = _mm_mul_pd(r20,vftabscale);
1147             vfitab           = _mm_cvttpd_epi32(rt);
1148             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1149             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1150
1151             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1152             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1153             F                = _mm_setzero_pd();
1154             GMX_MM_TRANSPOSE2_PD(Y,F);
1155             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1156             H                = _mm_setzero_pd();
1157             GMX_MM_TRANSPOSE2_PD(G,H);
1158             Heps             = _mm_mul_pd(vfeps,H);
1159             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1160             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1161             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm_mul_pd(fscal,dx20);
1169             ty               = _mm_mul_pd(fscal,dy20);
1170             tz               = _mm_mul_pd(fscal,dz20);
1171
1172             /* Update vectorial force */
1173             fix2             = _mm_add_pd(fix2,tx);
1174             fiy2             = _mm_add_pd(fiy2,ty);
1175             fiz2             = _mm_add_pd(fiz2,tz);
1176
1177             fjx0             = _mm_add_pd(fjx0,tx);
1178             fjy0             = _mm_add_pd(fjy0,ty);
1179             fjz0             = _mm_add_pd(fjz0,tz);
1180
1181             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1182
1183             /* Inner loop uses 142 flops */
1184         }
1185
1186         /* End of innermost loop */
1187
1188         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1189                                               f+i_coord_offset,fshift+i_shift_offset);
1190
1191         /* Increment number of inner iterations */
1192         inneriter                  += j_index_end - j_index_start;
1193
1194         /* Outer loop uses 18 flops */
1195     }
1196
1197     /* Increment number of outer iterations */
1198     outeriter        += nri;
1199
1200     /* Update outer/inner flops */
1201
1202     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1203 }