Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_elec_vdw->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_pd();
149         fiy0             = _mm_setzero_pd();
150         fiz0             = _mm_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_pd(rsq00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* Calculate table index by multiplying r with table scale and truncate to integer */
201             rt               = _mm_mul_pd(r00,vftabscale);
202             vfitab           = _mm_cvttpd_epi32(rt);
203             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
204             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
205
206             /* CUBIC SPLINE TABLE ELECTROSTATICS */
207             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
208             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
209             GMX_MM_TRANSPOSE2_PD(Y,F);
210             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
211             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
212             GMX_MM_TRANSPOSE2_PD(G,H);
213             Heps             = _mm_mul_pd(vfeps,H);
214             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
215             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
216             velec            = _mm_mul_pd(qq00,VV);
217             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
218             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
219
220             /* CUBIC SPLINE TABLE DISPERSION */
221             vfitab           = _mm_add_epi32(vfitab,ifour);
222             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
223             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
224             GMX_MM_TRANSPOSE2_PD(Y,F);
225             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
226             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
227             GMX_MM_TRANSPOSE2_PD(G,H);
228             Heps             = _mm_mul_pd(vfeps,H);
229             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
230             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
231             vvdw6            = _mm_mul_pd(c6_00,VV);
232             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
233             fvdw6            = _mm_mul_pd(c6_00,FF);
234
235             /* CUBIC SPLINE TABLE REPULSION */
236             vfitab           = _mm_add_epi32(vfitab,ifour);
237             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             GMX_MM_TRANSPOSE2_PD(Y,F);
240             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
241             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(G,H);
243             Heps             = _mm_mul_pd(vfeps,H);
244             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
245             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
246             vvdw12           = _mm_mul_pd(c12_00,VV);
247             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
248             fvdw12           = _mm_mul_pd(c12_00,FF);
249             vvdw             = _mm_add_pd(vvdw12,vvdw6);
250             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm_add_pd(velecsum,velec);
254             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
255
256             fscal            = _mm_add_pd(felec,fvdw);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm_mul_pd(fscal,dx00);
260             ty               = _mm_mul_pd(fscal,dy00);
261             tz               = _mm_mul_pd(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm_add_pd(fix0,tx);
265             fiy0             = _mm_add_pd(fiy0,ty);
266             fiz0             = _mm_add_pd(fiz0,tz);
267
268             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
269
270             /* Inner loop uses 73 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             jnrA             = jjnr[jidx];
277             j_coord_offsetA  = DIM*jnrA;
278
279             /* load j atom coordinates */
280             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_pd(ix0,jx0);
285             dy00             = _mm_sub_pd(iy0,jy0);
286             dz00             = _mm_sub_pd(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_pd(rsq00);
292
293             /* Load parameters for j particles */
294             jq0              = _mm_load_sd(charge+jnrA+0);
295             vdwjidx0A        = 2*vdwtype[jnrA+0];
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r00              = _mm_mul_pd(rsq00,rinv00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_pd(iq0,jq0);
305             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm_mul_pd(r00,vftabscale);
309             vfitab           = _mm_cvttpd_epi32(rt);
310             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
311             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
312
313             /* CUBIC SPLINE TABLE ELECTROSTATICS */
314             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
315             F                = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(Y,F);
317             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
318             H                = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(G,H);
320             Heps             = _mm_mul_pd(vfeps,H);
321             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
322             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
323             velec            = _mm_mul_pd(qq00,VV);
324             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
325             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
326
327             /* CUBIC SPLINE TABLE DISPERSION */
328             vfitab           = _mm_add_epi32(vfitab,ifour);
329             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
330             F                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(Y,F);
332             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
333             H                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(G,H);
335             Heps             = _mm_mul_pd(vfeps,H);
336             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
337             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
338             vvdw6            = _mm_mul_pd(c6_00,VV);
339             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
340             fvdw6            = _mm_mul_pd(c6_00,FF);
341
342             /* CUBIC SPLINE TABLE REPULSION */
343             vfitab           = _mm_add_epi32(vfitab,ifour);
344             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
345             F                = _mm_setzero_pd();
346             GMX_MM_TRANSPOSE2_PD(Y,F);
347             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
348             H                = _mm_setzero_pd();
349             GMX_MM_TRANSPOSE2_PD(G,H);
350             Heps             = _mm_mul_pd(vfeps,H);
351             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
352             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
353             vvdw12           = _mm_mul_pd(c12_00,VV);
354             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355             fvdw12           = _mm_mul_pd(c12_00,FF);
356             vvdw             = _mm_add_pd(vvdw12,vvdw6);
357             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
361             velecsum         = _mm_add_pd(velecsum,velec);
362             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
363             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
364
365             fscal            = _mm_add_pd(felec,fvdw);
366
367             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_pd(fscal,dx00);
371             ty               = _mm_mul_pd(fscal,dy00);
372             tz               = _mm_mul_pd(fscal,dz00);
373
374             /* Update vectorial force */
375             fix0             = _mm_add_pd(fix0,tx);
376             fiy0             = _mm_add_pd(fiy0,ty);
377             fiz0             = _mm_add_pd(fiz0,tz);
378
379             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
380
381             /* Inner loop uses 73 flops */
382         }
383
384         /* End of innermost loop */
385
386         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
387                                               f+i_coord_offset,fshift+i_shift_offset);
388
389         ggid                        = gid[iidx];
390         /* Update potential energies */
391         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
392         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
393
394         /* Increment number of inner iterations */
395         inneriter                  += j_index_end - j_index_start;
396
397         /* Outer loop uses 9 flops */
398     }
399
400     /* Increment number of outer iterations */
401     outeriter        += nri;
402
403     /* Update outer/inner flops */
404
405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
406 }
407 /*
408  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_double
409  * Electrostatics interaction: CubicSplineTable
410  * VdW interaction:            CubicSplineTable
411  * Geometry:                   Particle-Particle
412  * Calculate force/pot:        Force
413  */
414 void
415 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_sse2_double
416                     (t_nblist                    * gmx_restrict       nlist,
417                      rvec                        * gmx_restrict          xx,
418                      rvec                        * gmx_restrict          ff,
419                      t_forcerec                  * gmx_restrict          fr,
420                      t_mdatoms                   * gmx_restrict     mdatoms,
421                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
422                      t_nrnb                      * gmx_restrict        nrnb)
423 {
424     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
425      * just 0 for non-waters.
426      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
427      * jnr indices corresponding to data put in the four positions in the SIMD register.
428      */
429     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
430     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
431     int              jnrA,jnrB;
432     int              j_coord_offsetA,j_coord_offsetB;
433     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
434     real             rcutoff_scalar;
435     real             *shiftvec,*fshift,*x,*f;
436     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
437     int              vdwioffset0;
438     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
439     int              vdwjidx0A,vdwjidx0B;
440     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
441     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
442     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
443     real             *charge;
444     int              nvdwtype;
445     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
446     int              *vdwtype;
447     real             *vdwparam;
448     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
449     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
450     __m128i          vfitab;
451     __m128i          ifour       = _mm_set1_epi32(4);
452     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
453     real             *vftab;
454     __m128d          dummy_mask,cutoff_mask;
455     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
456     __m128d          one     = _mm_set1_pd(1.0);
457     __m128d          two     = _mm_set1_pd(2.0);
458     x                = xx[0];
459     f                = ff[0];
460
461     nri              = nlist->nri;
462     iinr             = nlist->iinr;
463     jindex           = nlist->jindex;
464     jjnr             = nlist->jjnr;
465     shiftidx         = nlist->shift;
466     gid              = nlist->gid;
467     shiftvec         = fr->shift_vec[0];
468     fshift           = fr->fshift[0];
469     facel            = _mm_set1_pd(fr->epsfac);
470     charge           = mdatoms->chargeA;
471     nvdwtype         = fr->ntype;
472     vdwparam         = fr->nbfp;
473     vdwtype          = mdatoms->typeA;
474
475     vftab            = kernel_data->table_elec_vdw->data;
476     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
477
478     /* Avoid stupid compiler warnings */
479     jnrA = jnrB = 0;
480     j_coord_offsetA = 0;
481     j_coord_offsetB = 0;
482
483     outeriter        = 0;
484     inneriter        = 0;
485
486     /* Start outer loop over neighborlists */
487     for(iidx=0; iidx<nri; iidx++)
488     {
489         /* Load shift vector for this list */
490         i_shift_offset   = DIM*shiftidx[iidx];
491
492         /* Load limits for loop over neighbors */
493         j_index_start    = jindex[iidx];
494         j_index_end      = jindex[iidx+1];
495
496         /* Get outer coordinate index */
497         inr              = iinr[iidx];
498         i_coord_offset   = DIM*inr;
499
500         /* Load i particle coords and add shift vector */
501         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
502
503         fix0             = _mm_setzero_pd();
504         fiy0             = _mm_setzero_pd();
505         fiz0             = _mm_setzero_pd();
506
507         /* Load parameters for i particles */
508         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
509         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
510
511         /* Start inner kernel loop */
512         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
513         {
514
515             /* Get j neighbor index, and coordinate index */
516             jnrA             = jjnr[jidx];
517             jnrB             = jjnr[jidx+1];
518             j_coord_offsetA  = DIM*jnrA;
519             j_coord_offsetB  = DIM*jnrB;
520
521             /* load j atom coordinates */
522             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
523                                               &jx0,&jy0,&jz0);
524
525             /* Calculate displacement vector */
526             dx00             = _mm_sub_pd(ix0,jx0);
527             dy00             = _mm_sub_pd(iy0,jy0);
528             dz00             = _mm_sub_pd(iz0,jz0);
529
530             /* Calculate squared distance and things based on it */
531             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
532
533             rinv00           = gmx_mm_invsqrt_pd(rsq00);
534
535             /* Load parameters for j particles */
536             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r00              = _mm_mul_pd(rsq00,rinv00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq00             = _mm_mul_pd(iq0,jq0);
548             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
549                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
550
551             /* Calculate table index by multiplying r with table scale and truncate to integer */
552             rt               = _mm_mul_pd(r00,vftabscale);
553             vfitab           = _mm_cvttpd_epi32(rt);
554             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
555             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
556
557             /* CUBIC SPLINE TABLE ELECTROSTATICS */
558             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
559             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
560             GMX_MM_TRANSPOSE2_PD(Y,F);
561             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
562             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
563             GMX_MM_TRANSPOSE2_PD(G,H);
564             Heps             = _mm_mul_pd(vfeps,H);
565             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
566             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
567             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
568
569             /* CUBIC SPLINE TABLE DISPERSION */
570             vfitab           = _mm_add_epi32(vfitab,ifour);
571             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
572             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
573             GMX_MM_TRANSPOSE2_PD(Y,F);
574             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
575             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
576             GMX_MM_TRANSPOSE2_PD(G,H);
577             Heps             = _mm_mul_pd(vfeps,H);
578             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
579             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
580             fvdw6            = _mm_mul_pd(c6_00,FF);
581
582             /* CUBIC SPLINE TABLE REPULSION */
583             vfitab           = _mm_add_epi32(vfitab,ifour);
584             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
585             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
586             GMX_MM_TRANSPOSE2_PD(Y,F);
587             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
588             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
589             GMX_MM_TRANSPOSE2_PD(G,H);
590             Heps             = _mm_mul_pd(vfeps,H);
591             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
592             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
593             fvdw12           = _mm_mul_pd(c12_00,FF);
594             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
595
596             fscal            = _mm_add_pd(felec,fvdw);
597
598             /* Calculate temporary vectorial force */
599             tx               = _mm_mul_pd(fscal,dx00);
600             ty               = _mm_mul_pd(fscal,dy00);
601             tz               = _mm_mul_pd(fscal,dz00);
602
603             /* Update vectorial force */
604             fix0             = _mm_add_pd(fix0,tx);
605             fiy0             = _mm_add_pd(fiy0,ty);
606             fiz0             = _mm_add_pd(fiz0,tz);
607
608             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
609
610             /* Inner loop uses 61 flops */
611         }
612
613         if(jidx<j_index_end)
614         {
615
616             jnrA             = jjnr[jidx];
617             j_coord_offsetA  = DIM*jnrA;
618
619             /* load j atom coordinates */
620             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
621                                               &jx0,&jy0,&jz0);
622
623             /* Calculate displacement vector */
624             dx00             = _mm_sub_pd(ix0,jx0);
625             dy00             = _mm_sub_pd(iy0,jy0);
626             dz00             = _mm_sub_pd(iz0,jz0);
627
628             /* Calculate squared distance and things based on it */
629             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
630
631             rinv00           = gmx_mm_invsqrt_pd(rsq00);
632
633             /* Load parameters for j particles */
634             jq0              = _mm_load_sd(charge+jnrA+0);
635             vdwjidx0A        = 2*vdwtype[jnrA+0];
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             r00              = _mm_mul_pd(rsq00,rinv00);
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq00             = _mm_mul_pd(iq0,jq0);
645             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
646
647             /* Calculate table index by multiplying r with table scale and truncate to integer */
648             rt               = _mm_mul_pd(r00,vftabscale);
649             vfitab           = _mm_cvttpd_epi32(rt);
650             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
651             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
652
653             /* CUBIC SPLINE TABLE ELECTROSTATICS */
654             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
655             F                = _mm_setzero_pd();
656             GMX_MM_TRANSPOSE2_PD(Y,F);
657             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
658             H                = _mm_setzero_pd();
659             GMX_MM_TRANSPOSE2_PD(G,H);
660             Heps             = _mm_mul_pd(vfeps,H);
661             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
662             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
663             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
664
665             /* CUBIC SPLINE TABLE DISPERSION */
666             vfitab           = _mm_add_epi32(vfitab,ifour);
667             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
668             F                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(Y,F);
670             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
671             H                = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(G,H);
673             Heps             = _mm_mul_pd(vfeps,H);
674             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
675             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
676             fvdw6            = _mm_mul_pd(c6_00,FF);
677
678             /* CUBIC SPLINE TABLE REPULSION */
679             vfitab           = _mm_add_epi32(vfitab,ifour);
680             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
681             F                = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(Y,F);
683             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
684             H                = _mm_setzero_pd();
685             GMX_MM_TRANSPOSE2_PD(G,H);
686             Heps             = _mm_mul_pd(vfeps,H);
687             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
688             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
689             fvdw12           = _mm_mul_pd(c12_00,FF);
690             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
691
692             fscal            = _mm_add_pd(felec,fvdw);
693
694             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm_mul_pd(fscal,dx00);
698             ty               = _mm_mul_pd(fscal,dy00);
699             tz               = _mm_mul_pd(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm_add_pd(fix0,tx);
703             fiy0             = _mm_add_pd(fiy0,ty);
704             fiz0             = _mm_add_pd(fiz0,tz);
705
706             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
707
708             /* Inner loop uses 61 flops */
709         }
710
711         /* End of innermost loop */
712
713         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
714                                               f+i_coord_offset,fshift+i_shift_offset);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 7 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
728 }