Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: None
54  * VdW interaction:            LennardJones
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93     real             rswitch_scalar,d_scalar;
94     _fjsp_v2r8       itab_tmp;
95     _fjsp_v2r8       dummy_mask,cutoff_mask;
96     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
97     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
98     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
99
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     rcutoff_scalar   = fr->rvdw;
116     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
117     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
118
119     rswitch_scalar   = fr->rvdw_switch;
120     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
121     /* Setup switch parameters */
122     d_scalar         = rcutoff_scalar-rswitch_scalar;
123     d                = gmx_fjsp_set1_v2r8(d_scalar);
124     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
125     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
126     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
127     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
128     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
129     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _fjsp_setzero_v2r8();
157         fiy0             = _fjsp_setzero_v2r8();
158         fiz0             = _fjsp_setzero_v2r8();
159
160         /* Load parameters for i particles */
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         vvdwsum          = _fjsp_setzero_v2r8();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _fjsp_sub_v2r8(ix0,jx0);
182             dy00             = _fjsp_sub_v2r8(iy0,jy0);
183             dz00             = _fjsp_sub_v2r8(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
187
188             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
189
190             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             vdwjidx0A        = 2*vdwtype[jnrA+0];
194             vdwjidx0B        = 2*vdwtype[jnrB+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
201             {
202
203             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208
209             /* LENNARD-JONES DISPERSION/REPULSION */
210
211             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
212             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
213             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
214             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
215             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
216
217             d                = _fjsp_sub_v2r8(r00,rswitch);
218             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
219             d2               = _fjsp_mul_v2r8(d,d);
220             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
221
222             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
223
224             /* Evaluate switch function */
225             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
226             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
227             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
228             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
232             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
233
234             fscal            = fvdw;
235
236             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
237
238             /* Update vectorial force */
239             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
240             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
241             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
242             
243             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
244
245             }
246
247             /* Inner loop uses 62 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _fjsp_sub_v2r8(ix0,jx0);
262             dy00             = _fjsp_sub_v2r8(iy0,jy0);
263             dz00             = _fjsp_sub_v2r8(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
267
268             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
269
270             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
280             {
281
282             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286
287             /* LENNARD-JONES DISPERSION/REPULSION */
288
289             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
290             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
291             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
292             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
293             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
294
295             d                = _fjsp_sub_v2r8(r00,rswitch);
296             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
297             d2               = _fjsp_mul_v2r8(d,d);
298             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
299
300             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
301
302             /* Evaluate switch function */
303             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
304             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
305             vvdw             = _fjsp_mul_v2r8(vvdw,sw);
306             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
310             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
311             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
312
313             fscal            = fvdw;
314
315             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
316
317             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
318
319             /* Update vectorial force */
320             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
321             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
322             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
323             
324             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
325
326             }
327
328             /* Inner loop uses 62 flops */
329         }
330
331         /* End of innermost loop */
332
333         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
334                                               f+i_coord_offset,fshift+i_shift_offset);
335
336         ggid                        = gid[iidx];
337         /* Update potential energies */
338         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
339
340         /* Increment number of inner iterations */
341         inneriter                  += j_index_end - j_index_start;
342
343         /* Outer loop uses 7 flops */
344     }
345
346     /* Increment number of outer iterations */
347     outeriter        += nri;
348
349     /* Update outer/inner flops */
350
351     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*62);
352 }
353 /*
354  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
355  * Electrostatics interaction: None
356  * VdW interaction:            LennardJones
357  * Geometry:                   Particle-Particle
358  * Calculate force/pot:        Force
359  */
360 void
361 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sparc64_hpc_ace_double
362                     (t_nblist                    * gmx_restrict       nlist,
363                      rvec                        * gmx_restrict          xx,
364                      rvec                        * gmx_restrict          ff,
365                      t_forcerec                  * gmx_restrict          fr,
366                      t_mdatoms                   * gmx_restrict     mdatoms,
367                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
368                      t_nrnb                      * gmx_restrict        nrnb)
369 {
370     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
371      * just 0 for non-waters.
372      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
373      * jnr indices corresponding to data put in the four positions in the SIMD register.
374      */
375     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
376     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377     int              jnrA,jnrB;
378     int              j_coord_offsetA,j_coord_offsetB;
379     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
380     real             rcutoff_scalar;
381     real             *shiftvec,*fshift,*x,*f;
382     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
383     int              vdwioffset0;
384     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
385     int              vdwjidx0A,vdwjidx0B;
386     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
387     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
388     int              nvdwtype;
389     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
390     int              *vdwtype;
391     real             *vdwparam;
392     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
393     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
394     _fjsp_v2r8       rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
395     real             rswitch_scalar,d_scalar;
396     _fjsp_v2r8       itab_tmp;
397     _fjsp_v2r8       dummy_mask,cutoff_mask;
398     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
399     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
400     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
401
402     x                = xx[0];
403     f                = ff[0];
404
405     nri              = nlist->nri;
406     iinr             = nlist->iinr;
407     jindex           = nlist->jindex;
408     jjnr             = nlist->jjnr;
409     shiftidx         = nlist->shift;
410     gid              = nlist->gid;
411     shiftvec         = fr->shift_vec[0];
412     fshift           = fr->fshift[0];
413     nvdwtype         = fr->ntype;
414     vdwparam         = fr->nbfp;
415     vdwtype          = mdatoms->typeA;
416
417     rcutoff_scalar   = fr->rvdw;
418     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
419     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
420
421     rswitch_scalar   = fr->rvdw_switch;
422     rswitch          = gmx_fjsp_set1_v2r8(rswitch_scalar);
423     /* Setup switch parameters */
424     d_scalar         = rcutoff_scalar-rswitch_scalar;
425     d                = gmx_fjsp_set1_v2r8(d_scalar);
426     swV3             = gmx_fjsp_set1_v2r8(-10.0/(d_scalar*d_scalar*d_scalar));
427     swV4             = gmx_fjsp_set1_v2r8( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
428     swV5             = gmx_fjsp_set1_v2r8( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
429     swF2             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar));
430     swF3             = gmx_fjsp_set1_v2r8( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
431     swF4             = gmx_fjsp_set1_v2r8(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
432
433     /* Avoid stupid compiler warnings */
434     jnrA = jnrB = 0;
435     j_coord_offsetA = 0;
436     j_coord_offsetB = 0;
437
438     outeriter        = 0;
439     inneriter        = 0;
440
441     /* Start outer loop over neighborlists */
442     for(iidx=0; iidx<nri; iidx++)
443     {
444         /* Load shift vector for this list */
445         i_shift_offset   = DIM*shiftidx[iidx];
446
447         /* Load limits for loop over neighbors */
448         j_index_start    = jindex[iidx];
449         j_index_end      = jindex[iidx+1];
450
451         /* Get outer coordinate index */
452         inr              = iinr[iidx];
453         i_coord_offset   = DIM*inr;
454
455         /* Load i particle coords and add shift vector */
456         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
457
458         fix0             = _fjsp_setzero_v2r8();
459         fiy0             = _fjsp_setzero_v2r8();
460         fiz0             = _fjsp_setzero_v2r8();
461
462         /* Load parameters for i particles */
463         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
464
465         /* Start inner kernel loop */
466         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
467         {
468
469             /* Get j neighbor index, and coordinate index */
470             jnrA             = jjnr[jidx];
471             jnrB             = jjnr[jidx+1];
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474
475             /* load j atom coordinates */
476             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _fjsp_sub_v2r8(ix0,jx0);
481             dy00             = _fjsp_sub_v2r8(iy0,jy0);
482             dz00             = _fjsp_sub_v2r8(iz0,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
486
487             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
488
489             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
490
491             /* Load parameters for j particles */
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
500             {
501
502             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
506                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
507
508             /* LENNARD-JONES DISPERSION/REPULSION */
509
510             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
511             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
512             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
513             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
514             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
515
516             d                = _fjsp_sub_v2r8(r00,rswitch);
517             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
518             d2               = _fjsp_mul_v2r8(d,d);
519             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
520
521             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
522
523             /* Evaluate switch function */
524             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
525             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
526             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
527
528             fscal            = fvdw;
529
530             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
531
532             /* Update vectorial force */
533             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
534             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
535             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
536             
537             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
538
539             }
540
541             /* Inner loop uses 59 flops */
542         }
543
544         if(jidx<j_index_end)
545         {
546
547             jnrA             = jjnr[jidx];
548             j_coord_offsetA  = DIM*jnrA;
549
550             /* load j atom coordinates */
551             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
552                                               &jx0,&jy0,&jz0);
553
554             /* Calculate displacement vector */
555             dx00             = _fjsp_sub_v2r8(ix0,jx0);
556             dy00             = _fjsp_sub_v2r8(iy0,jy0);
557             dz00             = _fjsp_sub_v2r8(iz0,jz0);
558
559             /* Calculate squared distance and things based on it */
560             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
561
562             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
563
564             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
565
566             /* Load parameters for j particles */
567             vdwjidx0A        = 2*vdwtype[jnrA+0];
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
574             {
575
576             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
580
581             /* LENNARD-JONES DISPERSION/REPULSION */
582
583             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
584             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
585             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
586             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
587             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
588
589             d                = _fjsp_sub_v2r8(r00,rswitch);
590             d                = _fjsp_max_v2r8(d,_fjsp_setzero_v2r8());
591             d2               = _fjsp_mul_v2r8(d,d);
592             sw               = _fjsp_add_v2r8(one,_fjsp_mul_v2r8(d2,_fjsp_mul_v2r8(d,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swV5,swV4),swV3))));
593
594             dsw              = _fjsp_mul_v2r8(d2,_fjsp_madd_v2r8(d,_fjsp_madd_v2r8(d,swF4,swF3),swF2));
595
596             /* Evaluate switch function */
597             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
598             fvdw             = _fjsp_msub_v2r8( fvdw,sw , _fjsp_mul_v2r8(rinv00,_fjsp_mul_v2r8(vvdw,dsw)) );
599             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
600
601             fscal            = fvdw;
602
603             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
604
605             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
606
607             /* Update vectorial force */
608             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
609             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
610             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
611             
612             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
613
614             }
615
616             /* Inner loop uses 59 flops */
617         }
618
619         /* End of innermost loop */
620
621         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
622                                               f+i_coord_offset,fshift+i_shift_offset);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 6 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*59);
636 }