fe95fde0fa420d989e1667ee99da89f710cff168
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
89     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
90     _fjsp_v2r8           c6grid_00;
91     real                 *vdwgridparam;
92     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
93     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
94     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
95     _fjsp_v2r8       itab_tmp;
96     _fjsp_v2r8       dummy_mask,cutoff_mask;
97     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
98     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
99     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
100
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115     vdwgridparam     = fr->ljpme_c6grid;
116     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
117     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
118     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _fjsp_setzero_v2r8();
146         fiy0             = _fjsp_setzero_v2r8();
147         fiz0             = _fjsp_setzero_v2r8();
148
149         /* Load parameters for i particles */
150         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         vvdwsum          = _fjsp_setzero_v2r8();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164
165             /* load j atom coordinates */
166             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _fjsp_sub_v2r8(ix0,jx0);
171             dy00             = _fjsp_sub_v2r8(iy0,jy0);
172             dz00             = _fjsp_sub_v2r8(iz0,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
176
177             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
178
179             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
180
181             /* Load parameters for j particles */
182             vdwjidx0A        = 2*vdwtype[jnrA+0];
183             vdwjidx0B        = 2*vdwtype[jnrB+0];
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
193                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
194
195             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
196                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
197
198             /* Analytical LJ-PME */
199             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
200             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
201             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
202             exponent         = gmx_simd_exp_d(ewcljrsq);
203             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
204             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
205             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
206             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
207             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
208             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
209             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
210             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
211
212             /* Update potential sum for this i atom from the interaction with this j atom. */
213             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
214
215             fscal            = fvdw;
216
217             /* Update vectorial force */
218             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
219             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
220             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
221             
222             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
223
224             /* Inner loop uses 50 flops */
225         }
226
227         if(jidx<j_index_end)
228         {
229
230             jnrA             = jjnr[jidx];
231             j_coord_offsetA  = DIM*jnrA;
232
233             /* load j atom coordinates */
234             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
235                                               &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _fjsp_sub_v2r8(ix0,jx0);
239             dy00             = _fjsp_sub_v2r8(iy0,jy0);
240             dz00             = _fjsp_sub_v2r8(iz0,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
244
245             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
246
247             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
248
249             /* Load parameters for j particles */
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
260                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
261
262             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
263                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
264
265             /* Analytical LJ-PME */
266             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
267             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
268             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
269             exponent         = gmx_simd_exp_d(ewcljrsq);
270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
271             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
272             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
273             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
274             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
275             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
276             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
277             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
281             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
286
287             /* Update vectorial force */
288             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
289             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
290             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
291             
292             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
293
294             /* Inner loop uses 50 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
300                                               f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
305
306         /* Increment number of inner iterations */
307         inneriter                  += j_index_end - j_index_start;
308
309         /* Outer loop uses 7 flops */
310     }
311
312     /* Increment number of outer iterations */
313     outeriter        += nri;
314
315     /* Update outer/inner flops */
316
317     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*50);
318 }
319 /*
320  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
321  * Electrostatics interaction: None
322  * VdW interaction:            LJEwald
323  * Geometry:                   Particle-Particle
324  * Calculate force/pot:        Force
325  */
326 void
327 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
328                     (t_nblist                    * gmx_restrict       nlist,
329                      rvec                        * gmx_restrict          xx,
330                      rvec                        * gmx_restrict          ff,
331                      struct t_forcerec           * gmx_restrict          fr,
332                      t_mdatoms                   * gmx_restrict     mdatoms,
333                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
334                      t_nrnb                      * gmx_restrict        nrnb)
335 {
336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
337      * just 0 for non-waters.
338      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
339      * jnr indices corresponding to data put in the four positions in the SIMD register.
340      */
341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
343     int              jnrA,jnrB;
344     int              j_coord_offsetA,j_coord_offsetB;
345     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
346     real             rcutoff_scalar;
347     real             *shiftvec,*fshift,*x,*f;
348     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
349     int              vdwioffset0;
350     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
351     int              vdwjidx0A,vdwjidx0B;
352     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
353     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
354     int              nvdwtype;
355     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
356     int              *vdwtype;
357     real             *vdwparam;
358     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
359     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
360     _fjsp_v2r8           c6grid_00;
361     real                 *vdwgridparam;
362     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
363     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
364     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
365     _fjsp_v2r8       itab_tmp;
366     _fjsp_v2r8       dummy_mask,cutoff_mask;
367     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
368     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
369     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
370
371     x                = xx[0];
372     f                = ff[0];
373
374     nri              = nlist->nri;
375     iinr             = nlist->iinr;
376     jindex           = nlist->jindex;
377     jjnr             = nlist->jjnr;
378     shiftidx         = nlist->shift;
379     gid              = nlist->gid;
380     shiftvec         = fr->shift_vec[0];
381     fshift           = fr->fshift[0];
382     nvdwtype         = fr->ntype;
383     vdwparam         = fr->nbfp;
384     vdwtype          = mdatoms->typeA;
385     vdwgridparam     = fr->ljpme_c6grid;
386     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
387     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
388     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
389
390     /* Avoid stupid compiler warnings */
391     jnrA = jnrB = 0;
392     j_coord_offsetA = 0;
393     j_coord_offsetB = 0;
394
395     outeriter        = 0;
396     inneriter        = 0;
397
398     /* Start outer loop over neighborlists */
399     for(iidx=0; iidx<nri; iidx++)
400     {
401         /* Load shift vector for this list */
402         i_shift_offset   = DIM*shiftidx[iidx];
403
404         /* Load limits for loop over neighbors */
405         j_index_start    = jindex[iidx];
406         j_index_end      = jindex[iidx+1];
407
408         /* Get outer coordinate index */
409         inr              = iinr[iidx];
410         i_coord_offset   = DIM*inr;
411
412         /* Load i particle coords and add shift vector */
413         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414
415         fix0             = _fjsp_setzero_v2r8();
416         fiy0             = _fjsp_setzero_v2r8();
417         fiz0             = _fjsp_setzero_v2r8();
418
419         /* Load parameters for i particles */
420         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
421
422         /* Start inner kernel loop */
423         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrA             = jjnr[jidx];
428             jnrB             = jjnr[jidx+1];
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431
432             /* load j atom coordinates */
433             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _fjsp_sub_v2r8(ix0,jx0);
438             dy00             = _fjsp_sub_v2r8(iy0,jy0);
439             dz00             = _fjsp_sub_v2r8(iz0,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
443
444             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
445
446             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
447
448             /* Load parameters for j particles */
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
457
458             /* Compute parameters for interactions between i and j atoms */
459             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
460                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
461
462             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
463                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
464
465             /* Analytical LJ-PME */
466             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
467             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
468             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
469             exponent         = gmx_simd_exp_d(ewcljrsq);
470             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
471             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
472             /* f6A = 6 * C6grid * (1 - poly) */
473             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
474             /* f6B = C6grid * exponent * beta^6 */
475             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
476             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
477             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
478
479             fscal            = fvdw;
480
481             /* Update vectorial force */
482             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
483             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
484             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
485             
486             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
487
488             /* Inner loop uses 48 flops */
489         }
490
491         if(jidx<j_index_end)
492         {
493
494             jnrA             = jjnr[jidx];
495             j_coord_offsetA  = DIM*jnrA;
496
497             /* load j atom coordinates */
498             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
499                                               &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _fjsp_sub_v2r8(ix0,jx0);
503             dy00             = _fjsp_sub_v2r8(iy0,jy0);
504             dz00             = _fjsp_sub_v2r8(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
508
509             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
510
511             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
512
513             /* Load parameters for j particles */
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
524                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
525
526             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
527                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
528
529             /* Analytical LJ-PME */
530             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
531             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
532             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
533             exponent         = gmx_simd_exp_d(ewcljrsq);
534             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
535             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
536             /* f6A = 6 * C6grid * (1 - poly) */
537             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
538             /* f6B = C6grid * exponent * beta^6 */
539             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
540             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
541             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
542
543             fscal            = fvdw;
544
545             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
546
547             /* Update vectorial force */
548             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
549             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
550             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
551             
552             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
553
554             /* Inner loop uses 48 flops */
555         }
556
557         /* End of innermost loop */
558
559         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
560                                               f+i_coord_offset,fshift+i_shift_offset);
561
562         /* Increment number of inner iterations */
563         inneriter                  += j_index_end - j_index_start;
564
565         /* Outer loop uses 6 flops */
566     }
567
568     /* Increment number of outer iterations */
569     outeriter        += nri;
570
571     /* Update outer/inner flops */
572
573     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
574 }