f797be75e053ed5f67aa9576a3a2f3746895bc75
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: None
54  * VdW interaction:            LJEwald
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8           c6grid_00;
93     real                 *vdwgridparam;
94     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
96     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
97     _fjsp_v2r8       itab_tmp;
98     _fjsp_v2r8       dummy_mask,cutoff_mask;
99     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
100     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
101     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
119     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
120     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _fjsp_setzero_v2r8();
148         fiy0             = _fjsp_setzero_v2r8();
149         fiz0             = _fjsp_setzero_v2r8();
150
151         /* Load parameters for i particles */
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         vvdwsum          = _fjsp_setzero_v2r8();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _fjsp_sub_v2r8(ix0,jx0);
173             dy00             = _fjsp_sub_v2r8(iy0,jy0);
174             dz00             = _fjsp_sub_v2r8(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
178
179             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
180
181             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
198                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
199
200             /* Analytical LJ-PME */
201             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
202             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
203             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
204             exponent         = gmx_simd_exp_d(-ewcljrsq);
205             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
206             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
207             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
208             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
209             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
210             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
211             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
212             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
216
217             fscal            = fvdw;
218
219             /* Update vectorial force */
220             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
221             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
222             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
223             
224             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
225
226             /* Inner loop uses 50 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             jnrA             = jjnr[jidx];
233             j_coord_offsetA  = DIM*jnrA;
234
235             /* load j atom coordinates */
236             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
237                                               &jx0,&jy0,&jz0);
238
239             /* Calculate displacement vector */
240             dx00             = _fjsp_sub_v2r8(ix0,jx0);
241             dy00             = _fjsp_sub_v2r8(iy0,jy0);
242             dz00             = _fjsp_sub_v2r8(iz0,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
246
247             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
248
249             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
250
251             /* Load parameters for j particles */
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
262
263             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
264
265             /* Analytical LJ-PME */
266             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
267             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
268             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
269             exponent         = gmx_simd_exp_d(-ewcljrsq);
270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
271             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
272             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
273             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(-c6grid_00,_fjsp_sub_v2r8(one,poly),c6_00),rinvsix);
274             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
275             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
276             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
277             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
281             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
286
287             /* Update vectorial force */
288             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
289             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
290             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
291             
292             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
293
294             /* Inner loop uses 50 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
300                                               f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
305
306         /* Increment number of inner iterations */
307         inneriter                  += j_index_end - j_index_start;
308
309         /* Outer loop uses 7 flops */
310     }
311
312     /* Increment number of outer iterations */
313     outeriter        += nri;
314
315     /* Update outer/inner flops */
316
317     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*50);
318 }
319 /*
320  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
321  * Electrostatics interaction: None
322  * VdW interaction:            LJEwald
323  * Geometry:                   Particle-Particle
324  * Calculate force/pot:        Force
325  */
326 void
327 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
328                     (t_nblist                    * gmx_restrict       nlist,
329                      rvec                        * gmx_restrict          xx,
330                      rvec                        * gmx_restrict          ff,
331                      t_forcerec                  * gmx_restrict          fr,
332                      t_mdatoms                   * gmx_restrict     mdatoms,
333                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
334                      t_nrnb                      * gmx_restrict        nrnb)
335 {
336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
337      * just 0 for non-waters.
338      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
339      * jnr indices corresponding to data put in the four positions in the SIMD register.
340      */
341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
343     int              jnrA,jnrB;
344     int              j_coord_offsetA,j_coord_offsetB;
345     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
346     real             rcutoff_scalar;
347     real             *shiftvec,*fshift,*x,*f;
348     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
349     int              vdwioffset0;
350     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
351     int              vdwjidx0A,vdwjidx0B;
352     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
353     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
354     int              nvdwtype;
355     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
356     int              *vdwtype;
357     real             *vdwparam;
358     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
359     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
360     _fjsp_v2r8           c6grid_00;
361     real                 *vdwgridparam;
362     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
363     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
364     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
365     _fjsp_v2r8       itab_tmp;
366     _fjsp_v2r8       dummy_mask,cutoff_mask;
367     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
368     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
369     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
370
371     x                = xx[0];
372     f                = ff[0];
373
374     nri              = nlist->nri;
375     iinr             = nlist->iinr;
376     jindex           = nlist->jindex;
377     jjnr             = nlist->jjnr;
378     shiftidx         = nlist->shift;
379     gid              = nlist->gid;
380     shiftvec         = fr->shift_vec[0];
381     fshift           = fr->fshift[0];
382     nvdwtype         = fr->ntype;
383     vdwparam         = fr->nbfp;
384     vdwtype          = mdatoms->typeA;
385     vdwgridparam     = fr->ljpme_c6grid;
386     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
387     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
388     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
389
390     /* Avoid stupid compiler warnings */
391     jnrA = jnrB = 0;
392     j_coord_offsetA = 0;
393     j_coord_offsetB = 0;
394
395     outeriter        = 0;
396     inneriter        = 0;
397
398     /* Start outer loop over neighborlists */
399     for(iidx=0; iidx<nri; iidx++)
400     {
401         /* Load shift vector for this list */
402         i_shift_offset   = DIM*shiftidx[iidx];
403
404         /* Load limits for loop over neighbors */
405         j_index_start    = jindex[iidx];
406         j_index_end      = jindex[iidx+1];
407
408         /* Get outer coordinate index */
409         inr              = iinr[iidx];
410         i_coord_offset   = DIM*inr;
411
412         /* Load i particle coords and add shift vector */
413         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414
415         fix0             = _fjsp_setzero_v2r8();
416         fiy0             = _fjsp_setzero_v2r8();
417         fiz0             = _fjsp_setzero_v2r8();
418
419         /* Load parameters for i particles */
420         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
421
422         /* Start inner kernel loop */
423         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrA             = jjnr[jidx];
428             jnrB             = jjnr[jidx+1];
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431
432             /* load j atom coordinates */
433             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _fjsp_sub_v2r8(ix0,jx0);
438             dy00             = _fjsp_sub_v2r8(iy0,jy0);
439             dz00             = _fjsp_sub_v2r8(iz0,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
443
444             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
445
446             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
447
448             /* Load parameters for j particles */
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450             vdwjidx0B        = 2*vdwtype[jnrB+0];
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
457
458             /* Compute parameters for interactions between i and j atoms */
459             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
460                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
461
462             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
463                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
464
465             /* Analytical LJ-PME */
466             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
467             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
468             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
469             exponent         = gmx_simd_exp_d(-ewcljrsq);
470             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
471             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
472             /* f6A = 6 * C6grid * (1 - poly) */
473             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
474             /* f6B = C6grid * exponent * beta^6 */
475             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
476             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
477             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
478
479             fscal            = fvdw;
480
481             /* Update vectorial force */
482             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
483             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
484             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
485             
486             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
487
488             /* Inner loop uses 48 flops */
489         }
490
491         if(jidx<j_index_end)
492         {
493
494             jnrA             = jjnr[jidx];
495             j_coord_offsetA  = DIM*jnrA;
496
497             /* load j atom coordinates */
498             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
499                                               &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _fjsp_sub_v2r8(ix0,jx0);
503             dy00             = _fjsp_sub_v2r8(iy0,jy0);
504             dz00             = _fjsp_sub_v2r8(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
508
509             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
510
511             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
512
513             /* Load parameters for j particles */
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
524
525             c6grid_00       = gmx_fjsp_load_1real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A);
526
527             /* Analytical LJ-PME */
528             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
529             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
530             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
531             exponent         = gmx_simd_exp_d(-ewcljrsq);
532             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
533             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
534             /* f6A = 6 * C6grid * (1 - poly) */
535             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_msub_v2r8(one,poly));
536             /* f6B = C6grid * exponent * beta^6 */
537             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
538             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
539             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
540
541             fscal            = fvdw;
542
543             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
544
545             /* Update vectorial force */
546             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
547             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
548             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
549             
550             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
551
552             /* Inner loop uses 48 flops */
553         }
554
555         /* End of innermost loop */
556
557         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
558                                               f+i_coord_offset,fshift+i_shift_offset);
559
560         /* Increment number of inner iterations */
561         inneriter                  += j_index_end - j_index_start;
562
563         /* Outer loop uses 6 flops */
564     }
565
566     /* Increment number of outer iterations */
567     outeriter        += nri;
568
569     /* Update outer/inner flops */
570
571     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
572 }