K-computer specific modifications
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: None
54  * VdW interaction:            LJEwald
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     int              nvdwtype;
87     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
91     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
92     _fjsp_v2r8           c6grid_00;
93     real                 *vdwgridparam;
94     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
96     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
97     _fjsp_v2r8       itab_tmp;
98     _fjsp_v2r8       dummy_mask,cutoff_mask;
99     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
100     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
101     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
119     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
120     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _fjsp_setzero_v2r8();
148         fiy0             = _fjsp_setzero_v2r8();
149         fiz0             = _fjsp_setzero_v2r8();
150
151         /* Load parameters for i particles */
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         vvdwsum          = _fjsp_setzero_v2r8();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _fjsp_sub_v2r8(ix0,jx0);
173             dy00             = _fjsp_sub_v2r8(iy0,jy0);
174             dz00             = _fjsp_sub_v2r8(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
178
179             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
180
181             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
198                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
199
200             /* Analytical LJ-PME */
201             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
202             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
203             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
204             exponent         = gmx_simd_exp_d(ewcljrsq);
205             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
206             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
207             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
208             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
209             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
210             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
211             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
212             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
213
214             /* Update potential sum for this i atom from the interaction with this j atom. */
215             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
216
217             fscal            = fvdw;
218
219             /* Update vectorial force */
220             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
221             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
222             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
223             
224             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
225
226             /* Inner loop uses 50 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             jnrA             = jjnr[jidx];
233             j_coord_offsetA  = DIM*jnrA;
234
235             /* load j atom coordinates */
236             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
237                                               &jx0,&jy0,&jz0);
238
239             /* Calculate displacement vector */
240             dx00             = _fjsp_sub_v2r8(ix0,jx0);
241             dy00             = _fjsp_sub_v2r8(iy0,jy0);
242             dz00             = _fjsp_sub_v2r8(iz0,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
246
247             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
248
249             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
250
251             /* Load parameters for j particles */
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
263
264             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
265                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
266
267             /* Analytical LJ-PME */
268             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
269             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
270             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
271             exponent         = gmx_simd_exp_d(ewcljrsq);
272             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
273             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
274             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
275             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
276             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
277             vvdw             = _fjsp_msub_v2r8(vvdw12,one_twelfth,_fjsp_mul_v2r8(vvdw6,one_sixth));         
278             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
279             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
283             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
284
285             fscal            = fvdw;
286
287             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
288
289             /* Update vectorial force */
290             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
291             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
292             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
293             
294             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
295
296             /* Inner loop uses 50 flops */
297         }
298
299         /* End of innermost loop */
300
301         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
302                                               f+i_coord_offset,fshift+i_shift_offset);
303
304         ggid                        = gid[iidx];
305         /* Update potential energies */
306         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
307
308         /* Increment number of inner iterations */
309         inneriter                  += j_index_end - j_index_start;
310
311         /* Outer loop uses 7 flops */
312     }
313
314     /* Increment number of outer iterations */
315     outeriter        += nri;
316
317     /* Update outer/inner flops */
318
319     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*50);
320 }
321 /*
322  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
323  * Electrostatics interaction: None
324  * VdW interaction:            LJEwald
325  * Geometry:                   Particle-Particle
326  * Calculate force/pot:        Force
327  */
328 void
329 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sparc64_hpc_ace_double
330                     (t_nblist                    * gmx_restrict       nlist,
331                      rvec                        * gmx_restrict          xx,
332                      rvec                        * gmx_restrict          ff,
333                      t_forcerec                  * gmx_restrict          fr,
334                      t_mdatoms                   * gmx_restrict     mdatoms,
335                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
336                      t_nrnb                      * gmx_restrict        nrnb)
337 {
338     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
339      * just 0 for non-waters.
340      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
341      * jnr indices corresponding to data put in the four positions in the SIMD register.
342      */
343     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
344     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
345     int              jnrA,jnrB;
346     int              j_coord_offsetA,j_coord_offsetB;
347     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
348     real             rcutoff_scalar;
349     real             *shiftvec,*fshift,*x,*f;
350     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
351     int              vdwioffset0;
352     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
353     int              vdwjidx0A,vdwjidx0B;
354     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
355     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
356     int              nvdwtype;
357     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
358     int              *vdwtype;
359     real             *vdwparam;
360     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
361     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
362     _fjsp_v2r8           c6grid_00;
363     real                 *vdwgridparam;
364     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
365     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
366     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
367     _fjsp_v2r8       itab_tmp;
368     _fjsp_v2r8       dummy_mask,cutoff_mask;
369     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
370     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
371     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
372
373     x                = xx[0];
374     f                = ff[0];
375
376     nri              = nlist->nri;
377     iinr             = nlist->iinr;
378     jindex           = nlist->jindex;
379     jjnr             = nlist->jjnr;
380     shiftidx         = nlist->shift;
381     gid              = nlist->gid;
382     shiftvec         = fr->shift_vec[0];
383     fshift           = fr->fshift[0];
384     nvdwtype         = fr->ntype;
385     vdwparam         = fr->nbfp;
386     vdwtype          = mdatoms->typeA;
387     vdwgridparam     = fr->ljpme_c6grid;
388     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
389     ewclj            = gmx_fjsp_set1_v2r8(fr->ewaldcoeff_lj);
390     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
391
392     /* Avoid stupid compiler warnings */
393     jnrA = jnrB = 0;
394     j_coord_offsetA = 0;
395     j_coord_offsetB = 0;
396
397     outeriter        = 0;
398     inneriter        = 0;
399
400     /* Start outer loop over neighborlists */
401     for(iidx=0; iidx<nri; iidx++)
402     {
403         /* Load shift vector for this list */
404         i_shift_offset   = DIM*shiftidx[iidx];
405
406         /* Load limits for loop over neighbors */
407         j_index_start    = jindex[iidx];
408         j_index_end      = jindex[iidx+1];
409
410         /* Get outer coordinate index */
411         inr              = iinr[iidx];
412         i_coord_offset   = DIM*inr;
413
414         /* Load i particle coords and add shift vector */
415         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
416
417         fix0             = _fjsp_setzero_v2r8();
418         fiy0             = _fjsp_setzero_v2r8();
419         fiz0             = _fjsp_setzero_v2r8();
420
421         /* Load parameters for i particles */
422         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
423
424         /* Start inner kernel loop */
425         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
426         {
427
428             /* Get j neighbor index, and coordinate index */
429             jnrA             = jjnr[jidx];
430             jnrB             = jjnr[jidx+1];
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433
434             /* load j atom coordinates */
435             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
436                                               &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _fjsp_sub_v2r8(ix0,jx0);
440             dy00             = _fjsp_sub_v2r8(iy0,jy0);
441             dz00             = _fjsp_sub_v2r8(iz0,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
445
446             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
447
448             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
449
450             /* Load parameters for j particles */
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
459
460             /* Compute parameters for interactions between i and j atoms */
461             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
462                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
463
464             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
465                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
466
467             /* Analytical LJ-PME */
468             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
469             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
470             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
471             exponent         = gmx_simd_exp_d(ewcljrsq);
472             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
473             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
474             /* f6A = 6 * C6grid * (1 - poly) */
475             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
476             /* f6B = C6grid * exponent * beta^6 */
477             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
478             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
479             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
480
481             fscal            = fvdw;
482
483             /* Update vectorial force */
484             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
485             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
486             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
487             
488             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
489
490             /* Inner loop uses 48 flops */
491         }
492
493         if(jidx<j_index_end)
494         {
495
496             jnrA             = jjnr[jidx];
497             j_coord_offsetA  = DIM*jnrA;
498
499             /* load j atom coordinates */
500             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _fjsp_sub_v2r8(ix0,jx0);
505             dy00             = _fjsp_sub_v2r8(iy0,jy0);
506             dz00             = _fjsp_sub_v2r8(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
510
511             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
512
513             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             vdwjidx0A        = 2*vdwtype[jnrA+0];
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
526                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
527
528             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
529                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
530
531             /* Analytical LJ-PME */
532             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
533             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
534             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
535             exponent         = gmx_simd_exp_d(ewcljrsq);
536             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
537             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
538             /* f6A = 6 * C6grid * (1 - poly) */
539             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
540             /* f6B = C6grid * exponent * beta^6 */
541             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
542             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
543             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
544
545             fscal            = fvdw;
546
547             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
548
549             /* Update vectorial force */
550             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
551             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
552             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
553             
554             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
555
556             /* Inner loop uses 48 flops */
557         }
558
559         /* End of innermost loop */
560
561         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
562                                               f+i_coord_offset,fshift+i_shift_offset);
563
564         /* Increment number of inner iterations */
565         inneriter                  += j_index_end - j_index_start;
566
567         /* Outer loop uses 6 flops */
568     }
569
570     /* Increment number of outer iterations */
571     outeriter        += nri;
572
573     /* Update outer/inner flops */
574
575     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
576 }