Add C++ version of t_ilist
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
89     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
90     _fjsp_v2r8           c6grid_00;
91     real                 *vdwgridparam;
92     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
93     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
94     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
95     _fjsp_v2r8       itab_tmp;
96     _fjsp_v2r8       dummy_mask,cutoff_mask;
97     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
98     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
99     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
100
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115     vdwgridparam     = fr->ljpme_c6grid;
116     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
117     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
118     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
119
120     rcutoff_scalar   = fr->ic->rvdw;
121     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
122     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
125     rvdw             = gmx_fjsp_set1_v2r8(fr->ic->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _fjsp_setzero_v2r8();
153         fiy0             = _fjsp_setzero_v2r8();
154         fiz0             = _fjsp_setzero_v2r8();
155
156         /* Load parameters for i particles */
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         vvdwsum          = _fjsp_setzero_v2r8();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171
172             /* load j atom coordinates */
173             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _fjsp_sub_v2r8(ix0,jx0);
178             dy00             = _fjsp_sub_v2r8(iy0,jy0);
179             dz00             = _fjsp_sub_v2r8(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
183
184             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
185
186             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
197             {
198
199             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
200
201             /* Compute parameters for interactions between i and j atoms */
202             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
204
205             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
206                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
207
208             /* Analytical LJ-PME */
209             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
210             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
211             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
212             exponent         = gmx_simd_exp_d(ewcljrsq);
213             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
214             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
215             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
216             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
217             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
218             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
219                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
220             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
221             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
222
223             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
227             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
228
229             fscal            = fvdw;
230
231             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
232
233             /* Update vectorial force */
234             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
235             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
236             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
237             
238             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
239
240             }
241
242             /* Inner loop uses 59 flops */
243         }
244
245         if(jidx<j_index_end)
246         {
247
248             jnrA             = jjnr[jidx];
249             j_coord_offsetA  = DIM*jnrA;
250
251             /* load j atom coordinates */
252             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
253                                               &jx0,&jy0,&jz0);
254
255             /* Calculate displacement vector */
256             dx00             = _fjsp_sub_v2r8(ix0,jx0);
257             dy00             = _fjsp_sub_v2r8(iy0,jy0);
258             dz00             = _fjsp_sub_v2r8(iz0,jz0);
259
260             /* Calculate squared distance and things based on it */
261             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
262
263             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
264
265             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
266
267             /* Load parameters for j particles */
268             vdwjidx0A        = 2*vdwtype[jnrA+0];
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
275             {
276
277             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
281                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
282
283             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
284                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
285
286             /* Analytical LJ-PME */
287             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
288             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
289             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
290             exponent         = gmx_simd_exp_d(ewcljrsq);
291             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
292             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
293             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
294             vvdw6            = _fjsp_mul_v2r8(_fjsp_madd_v2r8(c6grid_00,_fjsp_sub_v2r8(poly,one),c6_00),rinvsix);
295             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
296             vvdw             = _fjsp_msub_v2r8(_fjsp_nmsub_v2r8(c12_00,_fjsp_mul_v2r8(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
297                                _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw6,_fjsp_madd_v2r8(c6grid_00,sh_lj_ewald,_fjsp_mul_v2r8(c6_00,sh_vdw_invrcut6))),one_sixth));
298             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
299             fvdw             = _fjsp_mul_v2r8(_fjsp_add_v2r8(vvdw12,_fjsp_msub_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6),vvdw6)),rinvsq00);
300
301             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdw             = _fjsp_and_v2r8(vvdw,cutoff_mask);
305             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
306             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
311
312             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
313
314             /* Update vectorial force */
315             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
316             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
317             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
318             
319             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
320
321             }
322
323             /* Inner loop uses 59 flops */
324         }
325
326         /* End of innermost loop */
327
328         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
329                                               f+i_coord_offset,fshift+i_shift_offset);
330
331         ggid                        = gid[iidx];
332         /* Update potential energies */
333         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
334
335         /* Increment number of inner iterations */
336         inneriter                  += j_index_end - j_index_start;
337
338         /* Outer loop uses 7 flops */
339     }
340
341     /* Increment number of outer iterations */
342     outeriter        += nri;
343
344     /* Update outer/inner flops */
345
346     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
347 }
348 /*
349  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
350  * Electrostatics interaction: None
351  * VdW interaction:            LJEwald
352  * Geometry:                   Particle-Particle
353  * Calculate force/pot:        Force
354  */
355 void
356 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sparc64_hpc_ace_double
357                     (t_nblist                    * gmx_restrict       nlist,
358                      rvec                        * gmx_restrict          xx,
359                      rvec                        * gmx_restrict          ff,
360                      struct t_forcerec           * gmx_restrict          fr,
361                      t_mdatoms                   * gmx_restrict     mdatoms,
362                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
363                      t_nrnb                      * gmx_restrict        nrnb)
364 {
365     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
366      * just 0 for non-waters.
367      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
368      * jnr indices corresponding to data put in the four positions in the SIMD register.
369      */
370     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
371     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
372     int              jnrA,jnrB;
373     int              j_coord_offsetA,j_coord_offsetB;
374     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
375     real             rcutoff_scalar;
376     real             *shiftvec,*fshift,*x,*f;
377     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
378     int              vdwioffset0;
379     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
380     int              vdwjidx0A,vdwjidx0B;
381     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
382     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
383     int              nvdwtype;
384     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
385     int              *vdwtype;
386     real             *vdwparam;
387     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
388     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
389     _fjsp_v2r8           c6grid_00;
390     real                 *vdwgridparam;
391     _fjsp_v2r8           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
392     _fjsp_v2r8           one_half = gmx_fjsp_set1_v2r8(0.5);
393     _fjsp_v2r8           minus_one = gmx_fjsp_set1_v2r8(-1.0);
394     _fjsp_v2r8       itab_tmp;
395     _fjsp_v2r8       dummy_mask,cutoff_mask;
396     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
397     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
398     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
399
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     nvdwtype         = fr->ntype;
412     vdwparam         = fr->nbfp;
413     vdwtype          = mdatoms->typeA;
414     vdwgridparam     = fr->ljpme_c6grid;
415     sh_lj_ewald      = gmx_fjsp_set1_v2r8(fr->ic->sh_lj_ewald);
416     ewclj            = gmx_fjsp_set1_v2r8(fr->ic->ewaldcoeff_lj);
417     ewclj2           = _fjsp_mul_v2r8(minus_one,_fjsp_mul_v2r8(ewclj,ewclj));
418
419     rcutoff_scalar   = fr->ic->rvdw;
420     rcutoff          = gmx_fjsp_set1_v2r8(rcutoff_scalar);
421     rcutoff2         = _fjsp_mul_v2r8(rcutoff,rcutoff);
422
423     sh_vdw_invrcut6  = gmx_fjsp_set1_v2r8(fr->ic->sh_invrc6);
424     rvdw             = gmx_fjsp_set1_v2r8(fr->ic->rvdw);
425
426     /* Avoid stupid compiler warnings */
427     jnrA = jnrB = 0;
428     j_coord_offsetA = 0;
429     j_coord_offsetB = 0;
430
431     outeriter        = 0;
432     inneriter        = 0;
433
434     /* Start outer loop over neighborlists */
435     for(iidx=0; iidx<nri; iidx++)
436     {
437         /* Load shift vector for this list */
438         i_shift_offset   = DIM*shiftidx[iidx];
439
440         /* Load limits for loop over neighbors */
441         j_index_start    = jindex[iidx];
442         j_index_end      = jindex[iidx+1];
443
444         /* Get outer coordinate index */
445         inr              = iinr[iidx];
446         i_coord_offset   = DIM*inr;
447
448         /* Load i particle coords and add shift vector */
449         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
450
451         fix0             = _fjsp_setzero_v2r8();
452         fiy0             = _fjsp_setzero_v2r8();
453         fiz0             = _fjsp_setzero_v2r8();
454
455         /* Load parameters for i particles */
456         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
457
458         /* Start inner kernel loop */
459         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrA             = jjnr[jidx];
464             jnrB             = jjnr[jidx+1];
465             j_coord_offsetA  = DIM*jnrA;
466             j_coord_offsetB  = DIM*jnrB;
467
468             /* load j atom coordinates */
469             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
470                                               &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _fjsp_sub_v2r8(ix0,jx0);
474             dy00             = _fjsp_sub_v2r8(iy0,jy0);
475             dz00             = _fjsp_sub_v2r8(iz0,jz0);
476
477             /* Calculate squared distance and things based on it */
478             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
479
480             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
481
482             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
483
484             /* Load parameters for j particles */
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486             vdwjidx0B        = 2*vdwtype[jnrB+0];
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
493             {
494
495             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
496
497             /* Compute parameters for interactions between i and j atoms */
498             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
499                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
500
501             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
502                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
503
504             /* Analytical LJ-PME */
505             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
506             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
507             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
508             exponent         = gmx_simd_exp_d(ewcljrsq);
509             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
510             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
511             /* f6A = 6 * C6grid * (1 - poly) */
512             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
513             /* f6B = C6grid * exponent * beta^6 */
514             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
515             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
516             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
517
518             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
519
520             fscal            = fvdw;
521
522             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
523
524             /* Update vectorial force */
525             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
526             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
527             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
528             
529             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
530
531             }
532
533             /* Inner loop uses 51 flops */
534         }
535
536         if(jidx<j_index_end)
537         {
538
539             jnrA             = jjnr[jidx];
540             j_coord_offsetA  = DIM*jnrA;
541
542             /* load j atom coordinates */
543             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _fjsp_sub_v2r8(ix0,jx0);
548             dy00             = _fjsp_sub_v2r8(iy0,jy0);
549             dz00             = _fjsp_sub_v2r8(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
553
554             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
555
556             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
557
558             /* Load parameters for j particles */
559             vdwjidx0A        = 2*vdwtype[jnrA+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_fjsp_any_lt_v2r8(rsq00,rcutoff2))
566             {
567
568             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
569
570             /* Compute parameters for interactions between i and j atoms */
571             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
572                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
573
574             c6grid_00       = gmx_fjsp_load_2real_swizzle_v2r8(vdwgridparam+vdwioffset0+vdwjidx0A,
575                                                                    vdwgridparam+vdwioffset0+vdwjidx0B);
576
577             /* Analytical LJ-PME */
578             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
579             ewcljrsq         = _fjsp_mul_v2r8(ewclj2,rsq00);
580             ewclj6           = _fjsp_mul_v2r8(ewclj2,_fjsp_mul_v2r8(ewclj2,ewclj2));
581             exponent         = gmx_simd_exp_d(ewcljrsq);
582             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
583             poly             = _fjsp_mul_v2r8(exponent,_fjsp_madd_v2r8(_fjsp_mul_v2r8(ewcljrsq,ewcljrsq),one_half,_fjsp_sub_v2r8(one,ewcljrsq)));
584             /* f6A = 6 * C6grid * (1 - poly) */
585             f6A              = _fjsp_mul_v2r8(c6grid_00,_fjsp_sub_v2r8(one,poly));
586             /* f6B = C6grid * exponent * beta^6 */
587             f6B              = _fjsp_mul_v2r8(_fjsp_mul_v2r8(c6grid_00,one_sixth),_fjsp_mul_v2r8(exponent,ewclj6));
588             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
589             fvdw              = _fjsp_mul_v2r8(_fjsp_madd_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,_fjsp_sub_v2r8(c6_00,f6A)),rinvsix,f6B),rinvsq00);
590
591             cutoff_mask      = _fjsp_cmplt_v2r8(rsq00,rcutoff2);
592
593             fscal            = fvdw;
594
595             fscal            = _fjsp_and_v2r8(fscal,cutoff_mask);
596
597             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
598
599             /* Update vectorial force */
600             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
601             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
602             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
603             
604             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
605
606             }
607
608             /* Inner loop uses 51 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
614                                               f+i_coord_offset,fshift+i_shift_offset);
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 6 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*51);
628 }