Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: GeneralizedBorn
54  * VdW interaction:            None
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
92     real             *vftab;
93     _fjsp_v2r8       itab_tmp;
94     _fjsp_v2r8       dummy_mask,cutoff_mask;
95     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
96     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
97     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
98
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     invsqrta         = fr->invsqrta;
114     dvda             = fr->dvda;
115     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
116     gbtab            = fr->gbtab.data;
117     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _fjsp_setzero_v2r8();
145         fiy0             = _fjsp_setzero_v2r8();
146         fiz0             = _fjsp_setzero_v2r8();
147
148         /* Load parameters for i particles */
149         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
150         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
151
152         /* Reset potential sums */
153         velecsum         = _fjsp_setzero_v2r8();
154         vgbsum           = _fjsp_setzero_v2r8();
155         dvdasum          = _fjsp_setzero_v2r8();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _fjsp_sub_v2r8(ix0,jx0);
173             dy00             = _fjsp_sub_v2r8(iy0,jy0);
174             dz00             = _fjsp_sub_v2r8(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
178
179             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _fjsp_mul_v2r8(iq0,jq0);
193
194             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
195             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
196             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
197             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
198
199             /* Calculate generalized born table index - this is a separate table from the normal one,
200              * but we use the same procedure by multiplying r with scale and truncating to integer.
201              */
202             rt               = _fjsp_mul_v2r8(r00,gbscale);
203             itab_tmp         = _fjsp_dtox_v2r8(rt);
204             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
205             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
206
207             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
208             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
209             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
210             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
211             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
212             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
213             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
214             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
215             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
216
217             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
218             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
219             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
220             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
221             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
222             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
223             velec            = _fjsp_mul_v2r8(qq00,rinv00);
224             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velecsum         = _fjsp_add_v2r8(velecsum,velec);
228             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
229
230             fscal            = felec;
231
232             /* Update vectorial force */
233             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
234             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
235             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
236             
237             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
238
239             /* Inner loop uses 61 flops */
240         }
241
242         if(jidx<j_index_end)
243         {
244
245             jnrA             = jjnr[jidx];
246             j_coord_offsetA  = DIM*jnrA;
247
248             /* load j atom coordinates */
249             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
250                                               &jx0,&jy0,&jz0);
251
252             /* Calculate displacement vector */
253             dx00             = _fjsp_sub_v2r8(ix0,jx0);
254             dy00             = _fjsp_sub_v2r8(iy0,jy0);
255             dz00             = _fjsp_sub_v2r8(iz0,jz0);
256
257             /* Calculate squared distance and things based on it */
258             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
259
260             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
261
262             /* Load parameters for j particles */
263             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
264             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             qq00             = _fjsp_mul_v2r8(iq0,jq0);
274
275             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
276             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
277             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
278             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
279
280             /* Calculate generalized born table index - this is a separate table from the normal one,
281              * but we use the same procedure by multiplying r with scale and truncating to integer.
282              */
283             rt               = _fjsp_mul_v2r8(r00,gbscale);
284             itab_tmp         = _fjsp_dtox_v2r8(rt);
285             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
286             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
287
288             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
289             F                = _fjsp_setzero_v2r8();
290             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
291             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
292             H                = _fjsp_setzero_v2r8();
293             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
294             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
295             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
296             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
297
298             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
299             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
300             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
301             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
302             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
303             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
304             velec            = _fjsp_mul_v2r8(qq00,rinv00);
305             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
309             velecsum         = _fjsp_add_v2r8(velecsum,velec);
310             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
311             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
312
313             fscal            = felec;
314
315             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
316
317             /* Update vectorial force */
318             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
319             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
320             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
321             
322             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
323
324             /* Inner loop uses 61 flops */
325         }
326
327         /* End of innermost loop */
328
329         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
330                                               f+i_coord_offset,fshift+i_shift_offset);
331
332         ggid                        = gid[iidx];
333         /* Update potential energies */
334         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
335         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
336         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
337         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
338
339         /* Increment number of inner iterations */
340         inneriter                  += j_index_end - j_index_start;
341
342         /* Outer loop uses 9 flops */
343     }
344
345     /* Increment number of outer iterations */
346     outeriter        += nri;
347
348     /* Update outer/inner flops */
349
350     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
351 }
352 /*
353  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
354  * Electrostatics interaction: GeneralizedBorn
355  * VdW interaction:            None
356  * Geometry:                   Particle-Particle
357  * Calculate force/pot:        Force
358  */
359 void
360 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sparc64_hpc_ace_double
361                     (t_nblist                    * gmx_restrict       nlist,
362                      rvec                        * gmx_restrict          xx,
363                      rvec                        * gmx_restrict          ff,
364                      t_forcerec                  * gmx_restrict          fr,
365                      t_mdatoms                   * gmx_restrict     mdatoms,
366                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
367                      t_nrnb                      * gmx_restrict        nrnb)
368 {
369     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
370      * just 0 for non-waters.
371      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
372      * jnr indices corresponding to data put in the four positions in the SIMD register.
373      */
374     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
375     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
376     int              jnrA,jnrB;
377     int              j_coord_offsetA,j_coord_offsetB;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
382     int              vdwioffset0;
383     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
384     int              vdwjidx0A,vdwjidx0B;
385     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
386     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
387     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
388     real             *charge;
389     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
390     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
391     real             *invsqrta,*dvda,*gbtab;
392     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
393     real             *vftab;
394     _fjsp_v2r8       itab_tmp;
395     _fjsp_v2r8       dummy_mask,cutoff_mask;
396     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
397     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
398     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
399
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
412     charge           = mdatoms->chargeA;
413
414     invsqrta         = fr->invsqrta;
415     dvda             = fr->dvda;
416     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
417     gbtab            = fr->gbtab.data;
418     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
419
420     /* Avoid stupid compiler warnings */
421     jnrA = jnrB = 0;
422     j_coord_offsetA = 0;
423     j_coord_offsetB = 0;
424
425     outeriter        = 0;
426     inneriter        = 0;
427
428     /* Start outer loop over neighborlists */
429     for(iidx=0; iidx<nri; iidx++)
430     {
431         /* Load shift vector for this list */
432         i_shift_offset   = DIM*shiftidx[iidx];
433
434         /* Load limits for loop over neighbors */
435         j_index_start    = jindex[iidx];
436         j_index_end      = jindex[iidx+1];
437
438         /* Get outer coordinate index */
439         inr              = iinr[iidx];
440         i_coord_offset   = DIM*inr;
441
442         /* Load i particle coords and add shift vector */
443         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
444
445         fix0             = _fjsp_setzero_v2r8();
446         fiy0             = _fjsp_setzero_v2r8();
447         fiz0             = _fjsp_setzero_v2r8();
448
449         /* Load parameters for i particles */
450         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
451         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
452
453         dvdasum          = _fjsp_setzero_v2r8();
454
455         /* Start inner kernel loop */
456         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrA             = jjnr[jidx];
461             jnrB             = jjnr[jidx+1];
462             j_coord_offsetA  = DIM*jnrA;
463             j_coord_offsetB  = DIM*jnrB;
464
465             /* load j atom coordinates */
466             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
467                                               &jx0,&jy0,&jz0);
468
469             /* Calculate displacement vector */
470             dx00             = _fjsp_sub_v2r8(ix0,jx0);
471             dy00             = _fjsp_sub_v2r8(iy0,jy0);
472             dz00             = _fjsp_sub_v2r8(iz0,jz0);
473
474             /* Calculate squared distance and things based on it */
475             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
476
477             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
478
479             /* Load parameters for j particles */
480             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
481             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq00             = _fjsp_mul_v2r8(iq0,jq0);
491
492             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
493             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
494             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
495             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
496
497             /* Calculate generalized born table index - this is a separate table from the normal one,
498              * but we use the same procedure by multiplying r with scale and truncating to integer.
499              */
500             rt               = _fjsp_mul_v2r8(r00,gbscale);
501             itab_tmp         = _fjsp_dtox_v2r8(rt);
502             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
503             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
504
505             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
506             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
507             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
508             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
509             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
510             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
511             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
512             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
513             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
514
515             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
516             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
517             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
518             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
519             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
520             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
521             velec            = _fjsp_mul_v2r8(qq00,rinv00);
522             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
523
524             fscal            = felec;
525
526             /* Update vectorial force */
527             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
528             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
529             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
530             
531             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
532
533             /* Inner loop uses 59 flops */
534         }
535
536         if(jidx<j_index_end)
537         {
538
539             jnrA             = jjnr[jidx];
540             j_coord_offsetA  = DIM*jnrA;
541
542             /* load j atom coordinates */
543             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _fjsp_sub_v2r8(ix0,jx0);
548             dy00             = _fjsp_sub_v2r8(iy0,jy0);
549             dz00             = _fjsp_sub_v2r8(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
553
554             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
555
556             /* Load parameters for j particles */
557             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
558             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq00             = _fjsp_mul_v2r8(iq0,jq0);
568
569             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
570             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
571             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
572             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
573
574             /* Calculate generalized born table index - this is a separate table from the normal one,
575              * but we use the same procedure by multiplying r with scale and truncating to integer.
576              */
577             rt               = _fjsp_mul_v2r8(r00,gbscale);
578             itab_tmp         = _fjsp_dtox_v2r8(rt);
579             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
580             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
581
582             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
583             F                = _fjsp_setzero_v2r8();
584             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
585             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
586             H                = _fjsp_setzero_v2r8();
587             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
588             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
589             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
590             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
591
592             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
593             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
594             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
595             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
596             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
597             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
598             velec            = _fjsp_mul_v2r8(qq00,rinv00);
599             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
600
601             fscal            = felec;
602
603             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
604
605             /* Update vectorial force */
606             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
607             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
608             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
609             
610             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
611
612             /* Inner loop uses 59 flops */
613         }
614
615         /* End of innermost loop */
616
617         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
618                                               f+i_coord_offset,fshift+i_shift_offset);
619
620         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
621         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 7 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
635 }