Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: GeneralizedBorn
54  * VdW interaction:            LennardJones
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
96     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
97     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     invsqrta         = fr->invsqrta;
123     dvda             = fr->dvda;
124     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
125     gbtab            = fr->gbtab.data;
126     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _fjsp_setzero_v2r8();
154         fiy0             = _fjsp_setzero_v2r8();
155         fiz0             = _fjsp_setzero_v2r8();
156
157         /* Load parameters for i particles */
158         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
159         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _fjsp_setzero_v2r8();
164         vgbsum           = _fjsp_setzero_v2r8();
165         vvdwsum          = _fjsp_setzero_v2r8();
166         dvdasum          = _fjsp_setzero_v2r8();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _fjsp_sub_v2r8(ix0,jx0);
184             dy00             = _fjsp_sub_v2r8(iy0,jy0);
185             dz00             = _fjsp_sub_v2r8(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
189
190             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
191
192             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
196             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _fjsp_mul_v2r8(iq0,jq0);
208             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
213             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
214             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _fjsp_mul_v2r8(r00,gbscale);
220             itab_tmp         = _fjsp_dtox_v2r8(rt);
221             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
222             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
223
224             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
225             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
226             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
227             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
228             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
229             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
230             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
231             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
232             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
233
234             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
235             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
236             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
237             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
238             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
239             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
240             velec            = _fjsp_mul_v2r8(qq00,rinv00);
241             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
247             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
248             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
249             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _fjsp_add_v2r8(velecsum,velec);
253             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
254             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
255
256             fscal            = _fjsp_add_v2r8(felec,fvdw);
257
258             /* Update vectorial force */
259             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
260             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
261             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
262             
263             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
264
265             /* Inner loop uses 74 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _fjsp_sub_v2r8(ix0,jx0);
280             dy00             = _fjsp_sub_v2r8(iy0,jy0);
281             dz00             = _fjsp_sub_v2r8(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
285
286             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
287
288             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
292             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
293             vdwjidx0A        = 2*vdwtype[jnrA+0];
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq00             = _fjsp_mul_v2r8(iq0,jq0);
303             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
304                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
305
306             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
307             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
308             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
309             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
310
311             /* Calculate generalized born table index - this is a separate table from the normal one,
312              * but we use the same procedure by multiplying r with scale and truncating to integer.
313              */
314             rt               = _fjsp_mul_v2r8(r00,gbscale);
315             itab_tmp         = _fjsp_dtox_v2r8(rt);
316             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
317             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
318
319             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
320             F                = _fjsp_setzero_v2r8();
321             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
322             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
323             H                = _fjsp_setzero_v2r8();
324             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
325             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
326             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
327             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
328
329             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
330             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
331             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
332             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
333             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
334             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
335             velec            = _fjsp_mul_v2r8(qq00,rinv00);
336             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
337
338             /* LENNARD-JONES DISPERSION/REPULSION */
339
340             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
341             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
342             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
343             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
344             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
348             velecsum         = _fjsp_add_v2r8(velecsum,velec);
349             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
350             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
351             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
352             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
353
354             fscal            = _fjsp_add_v2r8(felec,fvdw);
355
356             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
357
358             /* Update vectorial force */
359             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
360             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
361             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
362             
363             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
364
365             /* Inner loop uses 74 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
376         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
377         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
378         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
379         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
380
381         /* Increment number of inner iterations */
382         inneriter                  += j_index_end - j_index_start;
383
384         /* Outer loop uses 10 flops */
385     }
386
387     /* Increment number of outer iterations */
388     outeriter        += nri;
389
390     /* Update outer/inner flops */
391
392     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
393 }
394 /*
395  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
396  * Electrostatics interaction: GeneralizedBorn
397  * VdW interaction:            LennardJones
398  * Geometry:                   Particle-Particle
399  * Calculate force/pot:        Force
400  */
401 void
402 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
403                     (t_nblist                    * gmx_restrict       nlist,
404                      rvec                        * gmx_restrict          xx,
405                      rvec                        * gmx_restrict          ff,
406                      t_forcerec                  * gmx_restrict          fr,
407                      t_mdatoms                   * gmx_restrict     mdatoms,
408                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
409                      t_nrnb                      * gmx_restrict        nrnb)
410 {
411     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
412      * just 0 for non-waters.
413      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
414      * jnr indices corresponding to data put in the four positions in the SIMD register.
415      */
416     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
417     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
418     int              jnrA,jnrB;
419     int              j_coord_offsetA,j_coord_offsetB;
420     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
421     real             rcutoff_scalar;
422     real             *shiftvec,*fshift,*x,*f;
423     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
424     int              vdwioffset0;
425     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
426     int              vdwjidx0A,vdwjidx0B;
427     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
428     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
429     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
430     real             *charge;
431     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
432     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
433     real             *invsqrta,*dvda,*gbtab;
434     int              nvdwtype;
435     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
436     int              *vdwtype;
437     real             *vdwparam;
438     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
439     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
440     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
441     real             *vftab;
442     _fjsp_v2r8       itab_tmp;
443     _fjsp_v2r8       dummy_mask,cutoff_mask;
444     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
445     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
446     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
447
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
460     charge           = mdatoms->chargeA;
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     invsqrta         = fr->invsqrta;
466     dvda             = fr->dvda;
467     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
468     gbtab            = fr->gbtab.data;
469     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
470
471     /* Avoid stupid compiler warnings */
472     jnrA = jnrB = 0;
473     j_coord_offsetA = 0;
474     j_coord_offsetB = 0;
475
476     outeriter        = 0;
477     inneriter        = 0;
478
479     /* Start outer loop over neighborlists */
480     for(iidx=0; iidx<nri; iidx++)
481     {
482         /* Load shift vector for this list */
483         i_shift_offset   = DIM*shiftidx[iidx];
484
485         /* Load limits for loop over neighbors */
486         j_index_start    = jindex[iidx];
487         j_index_end      = jindex[iidx+1];
488
489         /* Get outer coordinate index */
490         inr              = iinr[iidx];
491         i_coord_offset   = DIM*inr;
492
493         /* Load i particle coords and add shift vector */
494         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
495
496         fix0             = _fjsp_setzero_v2r8();
497         fiy0             = _fjsp_setzero_v2r8();
498         fiz0             = _fjsp_setzero_v2r8();
499
500         /* Load parameters for i particles */
501         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
502         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
503         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
504
505         dvdasum          = _fjsp_setzero_v2r8();
506
507         /* Start inner kernel loop */
508         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrA             = jjnr[jidx];
513             jnrB             = jjnr[jidx+1];
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516
517             /* load j atom coordinates */
518             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
519                                               &jx0,&jy0,&jz0);
520
521             /* Calculate displacement vector */
522             dx00             = _fjsp_sub_v2r8(ix0,jx0);
523             dy00             = _fjsp_sub_v2r8(iy0,jy0);
524             dz00             = _fjsp_sub_v2r8(iz0,jz0);
525
526             /* Calculate squared distance and things based on it */
527             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
528
529             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
530
531             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
535             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
536             vdwjidx0A        = 2*vdwtype[jnrA+0];
537             vdwjidx0B        = 2*vdwtype[jnrB+0];
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq00             = _fjsp_mul_v2r8(iq0,jq0);
547             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
548                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
549
550             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
551             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
552             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
553             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
554
555             /* Calculate generalized born table index - this is a separate table from the normal one,
556              * but we use the same procedure by multiplying r with scale and truncating to integer.
557              */
558             rt               = _fjsp_mul_v2r8(r00,gbscale);
559             itab_tmp         = _fjsp_dtox_v2r8(rt);
560             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
561             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
562
563             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
564             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
565             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
566             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
567             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
568             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
569             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
570             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
571             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
572
573             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
574             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
575             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
576             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
577             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
578             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
579             velec            = _fjsp_mul_v2r8(qq00,rinv00);
580             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
581
582             /* LENNARD-JONES DISPERSION/REPULSION */
583
584             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
585             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
586
587             fscal            = _fjsp_add_v2r8(felec,fvdw);
588
589             /* Update vectorial force */
590             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
591             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
592             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
593             
594             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
595
596             /* Inner loop uses 67 flops */
597         }
598
599         if(jidx<j_index_end)
600         {
601
602             jnrA             = jjnr[jidx];
603             j_coord_offsetA  = DIM*jnrA;
604
605             /* load j atom coordinates */
606             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
607                                               &jx0,&jy0,&jz0);
608
609             /* Calculate displacement vector */
610             dx00             = _fjsp_sub_v2r8(ix0,jx0);
611             dy00             = _fjsp_sub_v2r8(iy0,jy0);
612             dz00             = _fjsp_sub_v2r8(iz0,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
616
617             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
618
619             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
620
621             /* Load parameters for j particles */
622             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
623             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
624             vdwjidx0A        = 2*vdwtype[jnrA+0];
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq00             = _fjsp_mul_v2r8(iq0,jq0);
634             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
635                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
636
637             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
638             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
639             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
640             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
641
642             /* Calculate generalized born table index - this is a separate table from the normal one,
643              * but we use the same procedure by multiplying r with scale and truncating to integer.
644              */
645             rt               = _fjsp_mul_v2r8(r00,gbscale);
646             itab_tmp         = _fjsp_dtox_v2r8(rt);
647             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
648             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
649
650             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
651             F                = _fjsp_setzero_v2r8();
652             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
653             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
654             H                = _fjsp_setzero_v2r8();
655             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
656             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
657             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
658             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
659
660             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
661             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
662             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
663             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
664             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
665             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
666             velec            = _fjsp_mul_v2r8(qq00,rinv00);
667             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
668
669             /* LENNARD-JONES DISPERSION/REPULSION */
670
671             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
672             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
673
674             fscal            = _fjsp_add_v2r8(felec,fvdw);
675
676             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
677
678             /* Update vectorial force */
679             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
680             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
681             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
682             
683             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
684
685             /* Inner loop uses 67 flops */
686         }
687
688         /* End of innermost loop */
689
690         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
691                                               f+i_coord_offset,fshift+i_shift_offset);
692
693         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
694         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
695
696         /* Increment number of inner iterations */
697         inneriter                  += j_index_end - j_index_start;
698
699         /* Outer loop uses 7 flops */
700     }
701
702     /* Increment number of outer iterations */
703     outeriter        += nri;
704
705     /* Update outer/inner flops */
706
707     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
708 }