7ea6451beb70f25097f47cde46d34affcd17c898
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: GeneralizedBorn
54  * VdW interaction:            LennardJones
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
96     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
97     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     invsqrta         = fr->invsqrta;
123     dvda             = fr->dvda;
124     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
125     gbtab            = fr->gbtab.data;
126     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _fjsp_setzero_v2r8();
154         fiy0             = _fjsp_setzero_v2r8();
155         fiz0             = _fjsp_setzero_v2r8();
156
157         /* Load parameters for i particles */
158         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
159         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _fjsp_setzero_v2r8();
164         vgbsum           = _fjsp_setzero_v2r8();
165         vvdwsum          = _fjsp_setzero_v2r8();
166         dvdasum          = _fjsp_setzero_v2r8();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _fjsp_sub_v2r8(ix0,jx0);
184             dy00             = _fjsp_sub_v2r8(iy0,jy0);
185             dz00             = _fjsp_sub_v2r8(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
189
190             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
191
192             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
196             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _fjsp_mul_v2r8(iq0,jq0);
208             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
213             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
214             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _fjsp_mul_v2r8(r00,gbscale);
220             itab_tmp         = _fjsp_dtox_v2r8(rt);
221             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
222             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
223
224             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
225             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
226             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
227             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
228             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
229             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
230             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
231             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
232             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
233
234             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
235             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
236             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
237             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
238             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
239             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
240             velec            = _fjsp_mul_v2r8(qq00,rinv00);
241             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
247             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
248             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
249             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _fjsp_add_v2r8(velecsum,velec);
253             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
254             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
255
256             fscal            = _fjsp_add_v2r8(felec,fvdw);
257
258             /* Update vectorial force */
259             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
260             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
261             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
262             
263             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
264
265             /* Inner loop uses 74 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _fjsp_sub_v2r8(ix0,jx0);
280             dy00             = _fjsp_sub_v2r8(iy0,jy0);
281             dz00             = _fjsp_sub_v2r8(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
285
286             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
287
288             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
292             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
293             vdwjidx0A        = 2*vdwtype[jnrA+0];
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq00             = _fjsp_mul_v2r8(iq0,jq0);
303             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
304
305             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
306             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
307             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
308             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
309
310             /* Calculate generalized born table index - this is a separate table from the normal one,
311              * but we use the same procedure by multiplying r with scale and truncating to integer.
312              */
313             rt               = _fjsp_mul_v2r8(r00,gbscale);
314             itab_tmp         = _fjsp_dtox_v2r8(rt);
315             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
316             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
317
318             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
319             F                = _fjsp_setzero_v2r8();
320             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
321             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
322             H                = _fjsp_setzero_v2r8();
323             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
324             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
325             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
326             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
327
328             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
329             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
330             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
331             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
332             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
333             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
334             velec            = _fjsp_mul_v2r8(qq00,rinv00);
335             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
336
337             /* LENNARD-JONES DISPERSION/REPULSION */
338
339             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
340             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
341             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
342             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
343             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
347             velecsum         = _fjsp_add_v2r8(velecsum,velec);
348             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
349             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
350             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
351             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
352
353             fscal            = _fjsp_add_v2r8(felec,fvdw);
354
355             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
356
357             /* Update vectorial force */
358             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
359             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
360             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
361             
362             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
363
364             /* Inner loop uses 74 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
376         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
377         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
378         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
379
380         /* Increment number of inner iterations */
381         inneriter                  += j_index_end - j_index_start;
382
383         /* Outer loop uses 10 flops */
384     }
385
386     /* Increment number of outer iterations */
387     outeriter        += nri;
388
389     /* Update outer/inner flops */
390
391     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
392 }
393 /*
394  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
395  * Electrostatics interaction: GeneralizedBorn
396  * VdW interaction:            LennardJones
397  * Geometry:                   Particle-Particle
398  * Calculate force/pot:        Force
399  */
400 void
401 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
402                     (t_nblist                    * gmx_restrict       nlist,
403                      rvec                        * gmx_restrict          xx,
404                      rvec                        * gmx_restrict          ff,
405                      t_forcerec                  * gmx_restrict          fr,
406                      t_mdatoms                   * gmx_restrict     mdatoms,
407                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
408                      t_nrnb                      * gmx_restrict        nrnb)
409 {
410     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
411      * just 0 for non-waters.
412      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
413      * jnr indices corresponding to data put in the four positions in the SIMD register.
414      */
415     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
416     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
417     int              jnrA,jnrB;
418     int              j_coord_offsetA,j_coord_offsetB;
419     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
420     real             rcutoff_scalar;
421     real             *shiftvec,*fshift,*x,*f;
422     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
423     int              vdwioffset0;
424     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
425     int              vdwjidx0A,vdwjidx0B;
426     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
427     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
428     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
429     real             *charge;
430     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
431     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
432     real             *invsqrta,*dvda,*gbtab;
433     int              nvdwtype;
434     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
435     int              *vdwtype;
436     real             *vdwparam;
437     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
438     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
439     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
440     real             *vftab;
441     _fjsp_v2r8       itab_tmp;
442     _fjsp_v2r8       dummy_mask,cutoff_mask;
443     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
444     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
445     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
446
447     x                = xx[0];
448     f                = ff[0];
449
450     nri              = nlist->nri;
451     iinr             = nlist->iinr;
452     jindex           = nlist->jindex;
453     jjnr             = nlist->jjnr;
454     shiftidx         = nlist->shift;
455     gid              = nlist->gid;
456     shiftvec         = fr->shift_vec[0];
457     fshift           = fr->fshift[0];
458     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
459     charge           = mdatoms->chargeA;
460     nvdwtype         = fr->ntype;
461     vdwparam         = fr->nbfp;
462     vdwtype          = mdatoms->typeA;
463
464     invsqrta         = fr->invsqrta;
465     dvda             = fr->dvda;
466     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
467     gbtab            = fr->gbtab.data;
468     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
469
470     /* Avoid stupid compiler warnings */
471     jnrA = jnrB = 0;
472     j_coord_offsetA = 0;
473     j_coord_offsetB = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     /* Start outer loop over neighborlists */
479     for(iidx=0; iidx<nri; iidx++)
480     {
481         /* Load shift vector for this list */
482         i_shift_offset   = DIM*shiftidx[iidx];
483
484         /* Load limits for loop over neighbors */
485         j_index_start    = jindex[iidx];
486         j_index_end      = jindex[iidx+1];
487
488         /* Get outer coordinate index */
489         inr              = iinr[iidx];
490         i_coord_offset   = DIM*inr;
491
492         /* Load i particle coords and add shift vector */
493         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
494
495         fix0             = _fjsp_setzero_v2r8();
496         fiy0             = _fjsp_setzero_v2r8();
497         fiz0             = _fjsp_setzero_v2r8();
498
499         /* Load parameters for i particles */
500         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
501         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
502         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
503
504         dvdasum          = _fjsp_setzero_v2r8();
505
506         /* Start inner kernel loop */
507         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
508         {
509
510             /* Get j neighbor index, and coordinate index */
511             jnrA             = jjnr[jidx];
512             jnrB             = jjnr[jidx+1];
513             j_coord_offsetA  = DIM*jnrA;
514             j_coord_offsetB  = DIM*jnrB;
515
516             /* load j atom coordinates */
517             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
518                                               &jx0,&jy0,&jz0);
519
520             /* Calculate displacement vector */
521             dx00             = _fjsp_sub_v2r8(ix0,jx0);
522             dy00             = _fjsp_sub_v2r8(iy0,jy0);
523             dz00             = _fjsp_sub_v2r8(iz0,jz0);
524
525             /* Calculate squared distance and things based on it */
526             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
527
528             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
529
530             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
531
532             /* Load parameters for j particles */
533             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
534             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
535             vdwjidx0A        = 2*vdwtype[jnrA+0];
536             vdwjidx0B        = 2*vdwtype[jnrB+0];
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq00             = _fjsp_mul_v2r8(iq0,jq0);
546             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
547                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
548
549             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
550             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
551             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
552             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
553
554             /* Calculate generalized born table index - this is a separate table from the normal one,
555              * but we use the same procedure by multiplying r with scale and truncating to integer.
556              */
557             rt               = _fjsp_mul_v2r8(r00,gbscale);
558             itab_tmp         = _fjsp_dtox_v2r8(rt);
559             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
560             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
561
562             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
563             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
564             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
565             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
566             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
567             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
568             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
569             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
570             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
571
572             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
573             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
574             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
575             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
576             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
577             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
578             velec            = _fjsp_mul_v2r8(qq00,rinv00);
579             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
580
581             /* LENNARD-JONES DISPERSION/REPULSION */
582
583             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
584             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
585
586             fscal            = _fjsp_add_v2r8(felec,fvdw);
587
588             /* Update vectorial force */
589             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
590             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
591             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
592             
593             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
594
595             /* Inner loop uses 67 flops */
596         }
597
598         if(jidx<j_index_end)
599         {
600
601             jnrA             = jjnr[jidx];
602             j_coord_offsetA  = DIM*jnrA;
603
604             /* load j atom coordinates */
605             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
606                                               &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _fjsp_sub_v2r8(ix0,jx0);
610             dy00             = _fjsp_sub_v2r8(iy0,jy0);
611             dz00             = _fjsp_sub_v2r8(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
615
616             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
617
618             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
622             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
623             vdwjidx0A        = 2*vdwtype[jnrA+0];
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq00             = _fjsp_mul_v2r8(iq0,jq0);
633             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
634
635             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
636             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
637             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
638             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
639
640             /* Calculate generalized born table index - this is a separate table from the normal one,
641              * but we use the same procedure by multiplying r with scale and truncating to integer.
642              */
643             rt               = _fjsp_mul_v2r8(r00,gbscale);
644             itab_tmp         = _fjsp_dtox_v2r8(rt);
645             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
646             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
647
648             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
649             F                = _fjsp_setzero_v2r8();
650             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
651             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
652             H                = _fjsp_setzero_v2r8();
653             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
654             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
655             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
656             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
657
658             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
659             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
660             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
661             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
662             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
663             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
664             velec            = _fjsp_mul_v2r8(qq00,rinv00);
665             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
666
667             /* LENNARD-JONES DISPERSION/REPULSION */
668
669             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
670             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
671
672             fscal            = _fjsp_add_v2r8(felec,fvdw);
673
674             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
675
676             /* Update vectorial force */
677             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
678             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
679             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
680             
681             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
682
683             /* Inner loop uses 67 flops */
684         }
685
686         /* End of innermost loop */
687
688         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
689                                               f+i_coord_offset,fshift+i_shift_offset);
690
691         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
692         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
693
694         /* Increment number of inner iterations */
695         inneriter                  += j_index_end - j_index_start;
696
697         /* Outer loop uses 7 flops */
698     }
699
700     /* Increment number of outer iterations */
701     outeriter        += nri;
702
703     /* Update outer/inner flops */
704
705     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
706 }