Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
87     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
88     real             *invsqrta,*dvda,*gbtab;
89     int              nvdwtype;
90     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
94     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
95     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     _fjsp_v2r8       itab_tmp;
98     _fjsp_v2r8       dummy_mask,cutoff_mask;
99     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
100     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
101     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     invsqrta         = fr->invsqrta;
121     dvda             = fr->dvda;
122     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
123     gbtab            = fr->gbtab.data;
124     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _fjsp_setzero_v2r8();
152         fiy0             = _fjsp_setzero_v2r8();
153         fiz0             = _fjsp_setzero_v2r8();
154
155         /* Load parameters for i particles */
156         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
157         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _fjsp_setzero_v2r8();
162         vgbsum           = _fjsp_setzero_v2r8();
163         vvdwsum          = _fjsp_setzero_v2r8();
164         dvdasum          = _fjsp_setzero_v2r8();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _fjsp_sub_v2r8(ix0,jx0);
182             dy00             = _fjsp_sub_v2r8(iy0,jy0);
183             dz00             = _fjsp_sub_v2r8(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
187
188             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
189
190             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
194             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _fjsp_mul_v2r8(iq0,jq0);
206             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208
209             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
210             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
211             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
212             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
213
214             /* Calculate generalized born table index - this is a separate table from the normal one,
215              * but we use the same procedure by multiplying r with scale and truncating to integer.
216              */
217             rt               = _fjsp_mul_v2r8(r00,gbscale);
218             itab_tmp         = _fjsp_dtox_v2r8(rt);
219             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
220             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
221
222             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
223             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
224             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
225             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
226             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
227             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
228             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
229             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
230             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
231
232             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
233             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
234             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
235             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
236             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
237             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
238             velec            = _fjsp_mul_v2r8(qq00,rinv00);
239             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
245             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
246             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
247             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _fjsp_add_v2r8(velecsum,velec);
251             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
252             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
253
254             fscal            = _fjsp_add_v2r8(felec,fvdw);
255
256             /* Update vectorial force */
257             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
258             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
259             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
260             
261             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
262
263             /* Inner loop uses 74 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             jnrA             = jjnr[jidx];
270             j_coord_offsetA  = DIM*jnrA;
271
272             /* load j atom coordinates */
273             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _fjsp_sub_v2r8(ix0,jx0);
278             dy00             = _fjsp_sub_v2r8(iy0,jy0);
279             dz00             = _fjsp_sub_v2r8(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
283
284             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
285
286             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
290             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _fjsp_mul_v2r8(iq0,jq0);
301             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
302
303             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
304             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
305             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
306             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
307
308             /* Calculate generalized born table index - this is a separate table from the normal one,
309              * but we use the same procedure by multiplying r with scale and truncating to integer.
310              */
311             rt               = _fjsp_mul_v2r8(r00,gbscale);
312             itab_tmp         = _fjsp_dtox_v2r8(rt);
313             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
314             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
315
316             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
317             F                = _fjsp_setzero_v2r8();
318             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
319             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
320             H                = _fjsp_setzero_v2r8();
321             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
322             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
323             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
324             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
325
326             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
327             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
328             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
329             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
330             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
331             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
332             velec            = _fjsp_mul_v2r8(qq00,rinv00);
333             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
334
335             /* LENNARD-JONES DISPERSION/REPULSION */
336
337             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
338             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
339             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
340             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
341             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
345             velecsum         = _fjsp_add_v2r8(velecsum,velec);
346             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
347             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
348             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
349             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
350
351             fscal            = _fjsp_add_v2r8(felec,fvdw);
352
353             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
354
355             /* Update vectorial force */
356             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
357             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
358             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
359             
360             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
361
362             /* Inner loop uses 74 flops */
363         }
364
365         /* End of innermost loop */
366
367         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
368                                               f+i_coord_offset,fshift+i_shift_offset);
369
370         ggid                        = gid[iidx];
371         /* Update potential energies */
372         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
373         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
374         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
375         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
376         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 10 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
393  * Electrostatics interaction: GeneralizedBorn
394  * VdW interaction:            LennardJones
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sparc64_hpc_ace_double
400                     (t_nblist                    * gmx_restrict       nlist,
401                      rvec                        * gmx_restrict          xx,
402                      rvec                        * gmx_restrict          ff,
403                      t_forcerec                  * gmx_restrict          fr,
404                      t_mdatoms                   * gmx_restrict     mdatoms,
405                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
406                      t_nrnb                      * gmx_restrict        nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
409      * just 0 for non-waters.
410      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB;
416     int              j_coord_offsetA,j_coord_offsetB;
417     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
418     real             rcutoff_scalar;
419     real             *shiftvec,*fshift,*x,*f;
420     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
421     int              vdwioffset0;
422     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
423     int              vdwjidx0A,vdwjidx0B;
424     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
425     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
426     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
427     real             *charge;
428     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
429     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
430     real             *invsqrta,*dvda,*gbtab;
431     int              nvdwtype;
432     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
433     int              *vdwtype;
434     real             *vdwparam;
435     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
436     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
437     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
438     real             *vftab;
439     _fjsp_v2r8       itab_tmp;
440     _fjsp_v2r8       dummy_mask,cutoff_mask;
441     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
442     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
443     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
444
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
457     charge           = mdatoms->chargeA;
458     nvdwtype         = fr->ntype;
459     vdwparam         = fr->nbfp;
460     vdwtype          = mdatoms->typeA;
461
462     invsqrta         = fr->invsqrta;
463     dvda             = fr->dvda;
464     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
465     gbtab            = fr->gbtab.data;
466     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     /* Start outer loop over neighborlists */
477     for(iidx=0; iidx<nri; iidx++)
478     {
479         /* Load shift vector for this list */
480         i_shift_offset   = DIM*shiftidx[iidx];
481
482         /* Load limits for loop over neighbors */
483         j_index_start    = jindex[iidx];
484         j_index_end      = jindex[iidx+1];
485
486         /* Get outer coordinate index */
487         inr              = iinr[iidx];
488         i_coord_offset   = DIM*inr;
489
490         /* Load i particle coords and add shift vector */
491         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
492
493         fix0             = _fjsp_setzero_v2r8();
494         fiy0             = _fjsp_setzero_v2r8();
495         fiz0             = _fjsp_setzero_v2r8();
496
497         /* Load parameters for i particles */
498         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
499         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
500         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
501
502         dvdasum          = _fjsp_setzero_v2r8();
503
504         /* Start inner kernel loop */
505         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
506         {
507
508             /* Get j neighbor index, and coordinate index */
509             jnrA             = jjnr[jidx];
510             jnrB             = jjnr[jidx+1];
511             j_coord_offsetA  = DIM*jnrA;
512             j_coord_offsetB  = DIM*jnrB;
513
514             /* load j atom coordinates */
515             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
516                                               &jx0,&jy0,&jz0);
517
518             /* Calculate displacement vector */
519             dx00             = _fjsp_sub_v2r8(ix0,jx0);
520             dy00             = _fjsp_sub_v2r8(iy0,jy0);
521             dz00             = _fjsp_sub_v2r8(iz0,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
525
526             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
527
528             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
532             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
533             vdwjidx0A        = 2*vdwtype[jnrA+0];
534             vdwjidx0B        = 2*vdwtype[jnrB+0];
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq00             = _fjsp_mul_v2r8(iq0,jq0);
544             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
545                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
546
547             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
548             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
549             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
550             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
551
552             /* Calculate generalized born table index - this is a separate table from the normal one,
553              * but we use the same procedure by multiplying r with scale and truncating to integer.
554              */
555             rt               = _fjsp_mul_v2r8(r00,gbscale);
556             itab_tmp         = _fjsp_dtox_v2r8(rt);
557             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
558             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
559
560             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
561             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
562             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
563             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
564             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
565             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
566             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
567             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
568             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
569
570             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
571             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
572             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
573             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
574             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
575             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
576             velec            = _fjsp_mul_v2r8(qq00,rinv00);
577             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
578
579             /* LENNARD-JONES DISPERSION/REPULSION */
580
581             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
582             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
583
584             fscal            = _fjsp_add_v2r8(felec,fvdw);
585
586             /* Update vectorial force */
587             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
588             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
589             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
590             
591             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
592
593             /* Inner loop uses 67 flops */
594         }
595
596         if(jidx<j_index_end)
597         {
598
599             jnrA             = jjnr[jidx];
600             j_coord_offsetA  = DIM*jnrA;
601
602             /* load j atom coordinates */
603             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
604                                               &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _fjsp_sub_v2r8(ix0,jx0);
608             dy00             = _fjsp_sub_v2r8(iy0,jy0);
609             dz00             = _fjsp_sub_v2r8(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
613
614             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
615
616             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
620             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
621             vdwjidx0A        = 2*vdwtype[jnrA+0];
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq00             = _fjsp_mul_v2r8(iq0,jq0);
631             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
632
633             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
634             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
635             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
636             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
637
638             /* Calculate generalized born table index - this is a separate table from the normal one,
639              * but we use the same procedure by multiplying r with scale and truncating to integer.
640              */
641             rt               = _fjsp_mul_v2r8(r00,gbscale);
642             itab_tmp         = _fjsp_dtox_v2r8(rt);
643             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
644             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
645
646             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
647             F                = _fjsp_setzero_v2r8();
648             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
649             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
650             H                = _fjsp_setzero_v2r8();
651             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
652             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
653             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
654             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
655
656             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
657             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
658             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
659             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
660             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
661             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
662             velec            = _fjsp_mul_v2r8(qq00,rinv00);
663             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
664
665             /* LENNARD-JONES DISPERSION/REPULSION */
666
667             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
668             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
669
670             fscal            = _fjsp_add_v2r8(felec,fvdw);
671
672             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
673
674             /* Update vectorial force */
675             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
676             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
677             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
678             
679             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
680
681             /* Inner loop uses 67 flops */
682         }
683
684         /* End of innermost loop */
685
686         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
687                                               f+i_coord_offset,fshift+i_shift_offset);
688
689         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
690         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 7 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
704 }