Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: GeneralizedBorn
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
96     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
97     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
124
125     invsqrta         = fr->invsqrta;
126     dvda             = fr->dvda;
127     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
128     gbtab            = fr->gbtab.data;
129     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _fjsp_setzero_v2r8();
157         fiy0             = _fjsp_setzero_v2r8();
158         fiz0             = _fjsp_setzero_v2r8();
159
160         /* Load parameters for i particles */
161         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
162         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _fjsp_setzero_v2r8();
167         vgbsum           = _fjsp_setzero_v2r8();
168         vvdwsum          = _fjsp_setzero_v2r8();
169         dvdasum          = _fjsp_setzero_v2r8();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180
181             /* load j atom coordinates */
182             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _fjsp_sub_v2r8(ix0,jx0);
187             dy00             = _fjsp_sub_v2r8(iy0,jy0);
188             dz00             = _fjsp_sub_v2r8(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
192
193             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
197             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _fjsp_mul_v2r8(r00,vftabscale);
214             itab_tmp         = _fjsp_dtox_v2r8(rt);
215             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
216             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
217             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
218
219             vfconv.i[0]     *= 8;
220             vfconv.i[1]     *= 8;
221
222             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
223             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
224             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
225             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
226
227             /* Calculate generalized born table index - this is a separate table from the normal one,
228              * but we use the same procedure by multiplying r with scale and truncating to integer.
229              */
230             rt               = _fjsp_mul_v2r8(r00,gbscale);
231             itab_tmp         = _fjsp_dtox_v2r8(rt);
232             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
233             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
234
235             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
236             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
237             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
238             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
239             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
240             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
241             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
242             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
243             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
244
245             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
246             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
247             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
248             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
249             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
250             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
251             velec            = _fjsp_mul_v2r8(qq00,rinv00);
252             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
256             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
257             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
258             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
259             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
260             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
261             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
262             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
263             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
264             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
265             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
269             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
270             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
271             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
272             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
273             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
274             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
275             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
276             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
277             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
278             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
279             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
280             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _fjsp_add_v2r8(velecsum,velec);
284             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
285             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
286
287             fscal            = _fjsp_add_v2r8(felec,fvdw);
288
289             /* Update vectorial force */
290             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
291             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
292             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
293             
294             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
295
296             /* Inner loop uses 95 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             jnrA             = jjnr[jidx];
303             j_coord_offsetA  = DIM*jnrA;
304
305             /* load j atom coordinates */
306             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
307                                               &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _fjsp_sub_v2r8(ix0,jx0);
311             dy00             = _fjsp_sub_v2r8(iy0,jy0);
312             dz00             = _fjsp_sub_v2r8(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
316
317             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
318
319             /* Load parameters for j particles */
320             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
321             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
322             vdwjidx0A        = 2*vdwtype[jnrA+0];
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq00             = _fjsp_mul_v2r8(iq0,jq0);
332             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
333                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _fjsp_mul_v2r8(r00,vftabscale);
337             itab_tmp         = _fjsp_dtox_v2r8(rt);
338             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
339             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
340             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
341
342             vfconv.i[0]     *= 8;
343             vfconv.i[1]     *= 8;
344
345             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
346             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
347             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
348             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
349
350             /* Calculate generalized born table index - this is a separate table from the normal one,
351              * but we use the same procedure by multiplying r with scale and truncating to integer.
352              */
353             rt               = _fjsp_mul_v2r8(r00,gbscale);
354             itab_tmp         = _fjsp_dtox_v2r8(rt);
355             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
356             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
357
358             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
359             F                = _fjsp_setzero_v2r8();
360             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
361             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
362             H                = _fjsp_setzero_v2r8();
363             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
364             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
365             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
366             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
367
368             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
369             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
370             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
371             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
372             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
373             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
374             velec            = _fjsp_mul_v2r8(qq00,rinv00);
375             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
376
377             /* CUBIC SPLINE TABLE DISPERSION */
378             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
379             F                = _fjsp_setzero_v2r8();
380             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
381             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
382             H                = _fjsp_setzero_v2r8();
383             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
384             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
385             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
386             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
387             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
388             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
389
390             /* CUBIC SPLINE TABLE REPULSION */
391             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
392             F                = _fjsp_setzero_v2r8();
393             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
394             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
395             H                = _fjsp_setzero_v2r8();
396             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
397             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
398             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
399             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
400             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
401             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
402             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
403             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
407             velecsum         = _fjsp_add_v2r8(velecsum,velec);
408             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
409             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
410             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
411             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
412
413             fscal            = _fjsp_add_v2r8(felec,fvdw);
414
415             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
416
417             /* Update vectorial force */
418             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
419             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
420             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
421             
422             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
423
424             /* Inner loop uses 95 flops */
425         }
426
427         /* End of innermost loop */
428
429         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
430                                               f+i_coord_offset,fshift+i_shift_offset);
431
432         ggid                        = gid[iidx];
433         /* Update potential energies */
434         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
435         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
436         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
437         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
438         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
439
440         /* Increment number of inner iterations */
441         inneriter                  += j_index_end - j_index_start;
442
443         /* Outer loop uses 10 flops */
444     }
445
446     /* Increment number of outer iterations */
447     outeriter        += nri;
448
449     /* Update outer/inner flops */
450
451     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
452 }
453 /*
454  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
455  * Electrostatics interaction: GeneralizedBorn
456  * VdW interaction:            CubicSplineTable
457  * Geometry:                   Particle-Particle
458  * Calculate force/pot:        Force
459  */
460 void
461 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
462                     (t_nblist                    * gmx_restrict       nlist,
463                      rvec                        * gmx_restrict          xx,
464                      rvec                        * gmx_restrict          ff,
465                      t_forcerec                  * gmx_restrict          fr,
466                      t_mdatoms                   * gmx_restrict     mdatoms,
467                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
468                      t_nrnb                      * gmx_restrict        nrnb)
469 {
470     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
471      * just 0 for non-waters.
472      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
473      * jnr indices corresponding to data put in the four positions in the SIMD register.
474      */
475     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
476     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
477     int              jnrA,jnrB;
478     int              j_coord_offsetA,j_coord_offsetB;
479     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
480     real             rcutoff_scalar;
481     real             *shiftvec,*fshift,*x,*f;
482     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
483     int              vdwioffset0;
484     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
485     int              vdwjidx0A,vdwjidx0B;
486     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
487     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
488     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
489     real             *charge;
490     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
491     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
492     real             *invsqrta,*dvda,*gbtab;
493     int              nvdwtype;
494     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
495     int              *vdwtype;
496     real             *vdwparam;
497     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
498     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
499     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
500     real             *vftab;
501     _fjsp_v2r8       itab_tmp;
502     _fjsp_v2r8       dummy_mask,cutoff_mask;
503     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
504     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
505     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
506
507     x                = xx[0];
508     f                = ff[0];
509
510     nri              = nlist->nri;
511     iinr             = nlist->iinr;
512     jindex           = nlist->jindex;
513     jjnr             = nlist->jjnr;
514     shiftidx         = nlist->shift;
515     gid              = nlist->gid;
516     shiftvec         = fr->shift_vec[0];
517     fshift           = fr->fshift[0];
518     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
519     charge           = mdatoms->chargeA;
520     nvdwtype         = fr->ntype;
521     vdwparam         = fr->nbfp;
522     vdwtype          = mdatoms->typeA;
523
524     vftab            = kernel_data->table_vdw->data;
525     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
526
527     invsqrta         = fr->invsqrta;
528     dvda             = fr->dvda;
529     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
530     gbtab            = fr->gbtab.data;
531     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
532
533     /* Avoid stupid compiler warnings */
534     jnrA = jnrB = 0;
535     j_coord_offsetA = 0;
536     j_coord_offsetB = 0;
537
538     outeriter        = 0;
539     inneriter        = 0;
540
541     /* Start outer loop over neighborlists */
542     for(iidx=0; iidx<nri; iidx++)
543     {
544         /* Load shift vector for this list */
545         i_shift_offset   = DIM*shiftidx[iidx];
546
547         /* Load limits for loop over neighbors */
548         j_index_start    = jindex[iidx];
549         j_index_end      = jindex[iidx+1];
550
551         /* Get outer coordinate index */
552         inr              = iinr[iidx];
553         i_coord_offset   = DIM*inr;
554
555         /* Load i particle coords and add shift vector */
556         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
557
558         fix0             = _fjsp_setzero_v2r8();
559         fiy0             = _fjsp_setzero_v2r8();
560         fiz0             = _fjsp_setzero_v2r8();
561
562         /* Load parameters for i particles */
563         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
564         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
565         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
566
567         dvdasum          = _fjsp_setzero_v2r8();
568
569         /* Start inner kernel loop */
570         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
571         {
572
573             /* Get j neighbor index, and coordinate index */
574             jnrA             = jjnr[jidx];
575             jnrB             = jjnr[jidx+1];
576             j_coord_offsetA  = DIM*jnrA;
577             j_coord_offsetB  = DIM*jnrB;
578
579             /* load j atom coordinates */
580             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
581                                               &jx0,&jy0,&jz0);
582
583             /* Calculate displacement vector */
584             dx00             = _fjsp_sub_v2r8(ix0,jx0);
585             dy00             = _fjsp_sub_v2r8(iy0,jy0);
586             dz00             = _fjsp_sub_v2r8(iz0,jz0);
587
588             /* Calculate squared distance and things based on it */
589             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
590
591             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
592
593             /* Load parameters for j particles */
594             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
595             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
596             vdwjidx0A        = 2*vdwtype[jnrA+0];
597             vdwjidx0B        = 2*vdwtype[jnrB+0];
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq00             = _fjsp_mul_v2r8(iq0,jq0);
607             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
608                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
609
610             /* Calculate table index by multiplying r with table scale and truncate to integer */
611             rt               = _fjsp_mul_v2r8(r00,vftabscale);
612             itab_tmp         = _fjsp_dtox_v2r8(rt);
613             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
614             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
615             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
616
617             vfconv.i[0]     *= 8;
618             vfconv.i[1]     *= 8;
619
620             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
621             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
622             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
623             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
624
625             /* Calculate generalized born table index - this is a separate table from the normal one,
626              * but we use the same procedure by multiplying r with scale and truncating to integer.
627              */
628             rt               = _fjsp_mul_v2r8(r00,gbscale);
629             itab_tmp         = _fjsp_dtox_v2r8(rt);
630             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
631             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
632
633             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
634             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
635             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
636             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
637             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
638             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
639             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
640             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
641             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
642
643             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
644             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
645             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
646             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
647             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
648             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
649             velec            = _fjsp_mul_v2r8(qq00,rinv00);
650             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
651
652             /* CUBIC SPLINE TABLE DISPERSION */
653             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
654             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
655             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
656             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
657             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
658             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
659             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
660             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
661             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
662
663             /* CUBIC SPLINE TABLE REPULSION */
664             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
665             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
666             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
667             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
668             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
669             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
670             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
671             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
672             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
673             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
674
675             fscal            = _fjsp_add_v2r8(felec,fvdw);
676
677             /* Update vectorial force */
678             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
679             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
680             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
681             
682             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
683
684             /* Inner loop uses 85 flops */
685         }
686
687         if(jidx<j_index_end)
688         {
689
690             jnrA             = jjnr[jidx];
691             j_coord_offsetA  = DIM*jnrA;
692
693             /* load j atom coordinates */
694             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _fjsp_sub_v2r8(ix0,jx0);
699             dy00             = _fjsp_sub_v2r8(iy0,jy0);
700             dz00             = _fjsp_sub_v2r8(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
704
705             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
706
707             /* Load parameters for j particles */
708             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
709             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
710             vdwjidx0A        = 2*vdwtype[jnrA+0];
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
717
718             /* Compute parameters for interactions between i and j atoms */
719             qq00             = _fjsp_mul_v2r8(iq0,jq0);
720             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
721                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
722
723             /* Calculate table index by multiplying r with table scale and truncate to integer */
724             rt               = _fjsp_mul_v2r8(r00,vftabscale);
725             itab_tmp         = _fjsp_dtox_v2r8(rt);
726             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
727             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
728             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
729
730             vfconv.i[0]     *= 8;
731             vfconv.i[1]     *= 8;
732
733             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
734             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
735             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
736             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
737
738             /* Calculate generalized born table index - this is a separate table from the normal one,
739              * but we use the same procedure by multiplying r with scale and truncating to integer.
740              */
741             rt               = _fjsp_mul_v2r8(r00,gbscale);
742             itab_tmp         = _fjsp_dtox_v2r8(rt);
743             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
744             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
745
746             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
747             F                = _fjsp_setzero_v2r8();
748             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
749             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
750             H                = _fjsp_setzero_v2r8();
751             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
752             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
753             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
754             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
755
756             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
757             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
758             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
759             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
760             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
761             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
762             velec            = _fjsp_mul_v2r8(qq00,rinv00);
763             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
764
765             /* CUBIC SPLINE TABLE DISPERSION */
766             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
767             F                = _fjsp_setzero_v2r8();
768             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
769             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
770             H                = _fjsp_setzero_v2r8();
771             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
772             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
773             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
774             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
775
776             /* CUBIC SPLINE TABLE REPULSION */
777             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
778             F                = _fjsp_setzero_v2r8();
779             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
780             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
781             H                = _fjsp_setzero_v2r8();
782             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
783             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
784             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
785             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
786             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
787
788             fscal            = _fjsp_add_v2r8(felec,fvdw);
789
790             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
791
792             /* Update vectorial force */
793             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
794             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
795             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
796             
797             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
798
799             /* Inner loop uses 85 flops */
800         }
801
802         /* End of innermost loop */
803
804         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
805                                               f+i_coord_offset,fshift+i_shift_offset);
806
807         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
808         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
809
810         /* Increment number of inner iterations */
811         inneriter                  += j_index_end - j_index_start;
812
813         /* Outer loop uses 7 flops */
814     }
815
816     /* Increment number of outer iterations */
817     outeriter        += nri;
818
819     /* Update outer/inner flops */
820
821     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
822 }