b1ae0df802cf5f7b80c68eed2e2b04e2929d6ed7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: GeneralizedBorn
54  * VdW interaction:            CubicSplineTable
55  * Geometry:                   Particle-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwjidx0A,vdwjidx0B;
84     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
96     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
97     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     _fjsp_v2r8       itab_tmp;
100     _fjsp_v2r8       dummy_mask,cutoff_mask;
101     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
102     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
103     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
104
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
124
125     invsqrta         = fr->invsqrta;
126     dvda             = fr->dvda;
127     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
128     gbtab            = fr->gbtab.data;
129     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _fjsp_setzero_v2r8();
157         fiy0             = _fjsp_setzero_v2r8();
158         fiz0             = _fjsp_setzero_v2r8();
159
160         /* Load parameters for i particles */
161         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
162         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _fjsp_setzero_v2r8();
167         vgbsum           = _fjsp_setzero_v2r8();
168         vvdwsum          = _fjsp_setzero_v2r8();
169         dvdasum          = _fjsp_setzero_v2r8();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180
181             /* load j atom coordinates */
182             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _fjsp_sub_v2r8(ix0,jx0);
187             dy00             = _fjsp_sub_v2r8(iy0,jy0);
188             dz00             = _fjsp_sub_v2r8(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
192
193             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
197             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _fjsp_mul_v2r8(iq0,jq0);
209             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _fjsp_mul_v2r8(r00,vftabscale);
214             itab_tmp         = _fjsp_dtox_v2r8(rt);
215             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
216             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
217             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
218
219             vfconv.i[0]     *= 8;
220             vfconv.i[1]     *= 8;
221
222             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
223             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
224             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
225             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
226
227             /* Calculate generalized born table index - this is a separate table from the normal one,
228              * but we use the same procedure by multiplying r with scale and truncating to integer.
229              */
230             rt               = _fjsp_mul_v2r8(r00,gbscale);
231             itab_tmp         = _fjsp_dtox_v2r8(rt);
232             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
233             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
234
235             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
236             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
237             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
238             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
239             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
240             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
241             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
242             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
243             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
244
245             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
246             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
247             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
248             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
249             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
250             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
251             velec            = _fjsp_mul_v2r8(qq00,rinv00);
252             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
256             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
257             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
258             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
259             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
260             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
261             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
262             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
263             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
264             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
265             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
269             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
270             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
271             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
272             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
273             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
274             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
275             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
276             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
277             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
278             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
279             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
280             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _fjsp_add_v2r8(velecsum,velec);
284             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
285             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
286
287             fscal            = _fjsp_add_v2r8(felec,fvdw);
288
289             /* Update vectorial force */
290             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
291             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
292             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
293             
294             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
295
296             /* Inner loop uses 95 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             jnrA             = jjnr[jidx];
303             j_coord_offsetA  = DIM*jnrA;
304
305             /* load j atom coordinates */
306             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
307                                               &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _fjsp_sub_v2r8(ix0,jx0);
311             dy00             = _fjsp_sub_v2r8(iy0,jy0);
312             dz00             = _fjsp_sub_v2r8(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
316
317             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
318
319             /* Load parameters for j particles */
320             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
321             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
322             vdwjidx0A        = 2*vdwtype[jnrA+0];
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq00             = _fjsp_mul_v2r8(iq0,jq0);
332             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
333
334             /* Calculate table index by multiplying r with table scale and truncate to integer */
335             rt               = _fjsp_mul_v2r8(r00,vftabscale);
336             itab_tmp         = _fjsp_dtox_v2r8(rt);
337             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
338             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
339             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
340
341             vfconv.i[0]     *= 8;
342             vfconv.i[1]     *= 8;
343
344             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
345             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
346             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
347             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
348
349             /* Calculate generalized born table index - this is a separate table from the normal one,
350              * but we use the same procedure by multiplying r with scale and truncating to integer.
351              */
352             rt               = _fjsp_mul_v2r8(r00,gbscale);
353             itab_tmp         = _fjsp_dtox_v2r8(rt);
354             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
355             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
356
357             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
358             F                = _fjsp_setzero_v2r8();
359             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
360             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
361             H                = _fjsp_setzero_v2r8();
362             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
363             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
364             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
365             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
366
367             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
368             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
369             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
370             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
371             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
372             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
373             velec            = _fjsp_mul_v2r8(qq00,rinv00);
374             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
375
376             /* CUBIC SPLINE TABLE DISPERSION */
377             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
378             F                = _fjsp_setzero_v2r8();
379             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
380             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
381             H                = _fjsp_setzero_v2r8();
382             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
383             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
384             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
385             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
386             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
387             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
388
389             /* CUBIC SPLINE TABLE REPULSION */
390             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
391             F                = _fjsp_setzero_v2r8();
392             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
393             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
394             H                = _fjsp_setzero_v2r8();
395             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
396             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
397             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
398             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
399             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
400             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
401             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
402             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
406             velecsum         = _fjsp_add_v2r8(velecsum,velec);
407             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
408             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
409             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
410             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
411
412             fscal            = _fjsp_add_v2r8(felec,fvdw);
413
414             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
415
416             /* Update vectorial force */
417             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
418             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
419             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
420             
421             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
422
423             /* Inner loop uses 95 flops */
424         }
425
426         /* End of innermost loop */
427
428         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
429                                               f+i_coord_offset,fshift+i_shift_offset);
430
431         ggid                        = gid[iidx];
432         /* Update potential energies */
433         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
434         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
435         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
436         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
437         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
438
439         /* Increment number of inner iterations */
440         inneriter                  += j_index_end - j_index_start;
441
442         /* Outer loop uses 10 flops */
443     }
444
445     /* Increment number of outer iterations */
446     outeriter        += nri;
447
448     /* Update outer/inner flops */
449
450     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
451 }
452 /*
453  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
454  * Electrostatics interaction: GeneralizedBorn
455  * VdW interaction:            CubicSplineTable
456  * Geometry:                   Particle-Particle
457  * Calculate force/pot:        Force
458  */
459 void
460 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
461                     (t_nblist                    * gmx_restrict       nlist,
462                      rvec                        * gmx_restrict          xx,
463                      rvec                        * gmx_restrict          ff,
464                      t_forcerec                  * gmx_restrict          fr,
465                      t_mdatoms                   * gmx_restrict     mdatoms,
466                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
467                      t_nrnb                      * gmx_restrict        nrnb)
468 {
469     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
470      * just 0 for non-waters.
471      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
472      * jnr indices corresponding to data put in the four positions in the SIMD register.
473      */
474     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
475     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
476     int              jnrA,jnrB;
477     int              j_coord_offsetA,j_coord_offsetB;
478     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
479     real             rcutoff_scalar;
480     real             *shiftvec,*fshift,*x,*f;
481     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
482     int              vdwioffset0;
483     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
484     int              vdwjidx0A,vdwjidx0B;
485     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
486     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
487     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
488     real             *charge;
489     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
490     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
491     real             *invsqrta,*dvda,*gbtab;
492     int              nvdwtype;
493     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
494     int              *vdwtype;
495     real             *vdwparam;
496     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
497     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
498     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
499     real             *vftab;
500     _fjsp_v2r8       itab_tmp;
501     _fjsp_v2r8       dummy_mask,cutoff_mask;
502     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
503     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
504     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
505
506     x                = xx[0];
507     f                = ff[0];
508
509     nri              = nlist->nri;
510     iinr             = nlist->iinr;
511     jindex           = nlist->jindex;
512     jjnr             = nlist->jjnr;
513     shiftidx         = nlist->shift;
514     gid              = nlist->gid;
515     shiftvec         = fr->shift_vec[0];
516     fshift           = fr->fshift[0];
517     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
518     charge           = mdatoms->chargeA;
519     nvdwtype         = fr->ntype;
520     vdwparam         = fr->nbfp;
521     vdwtype          = mdatoms->typeA;
522
523     vftab            = kernel_data->table_vdw->data;
524     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
525
526     invsqrta         = fr->invsqrta;
527     dvda             = fr->dvda;
528     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
529     gbtab            = fr->gbtab.data;
530     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
531
532     /* Avoid stupid compiler warnings */
533     jnrA = jnrB = 0;
534     j_coord_offsetA = 0;
535     j_coord_offsetB = 0;
536
537     outeriter        = 0;
538     inneriter        = 0;
539
540     /* Start outer loop over neighborlists */
541     for(iidx=0; iidx<nri; iidx++)
542     {
543         /* Load shift vector for this list */
544         i_shift_offset   = DIM*shiftidx[iidx];
545
546         /* Load limits for loop over neighbors */
547         j_index_start    = jindex[iidx];
548         j_index_end      = jindex[iidx+1];
549
550         /* Get outer coordinate index */
551         inr              = iinr[iidx];
552         i_coord_offset   = DIM*inr;
553
554         /* Load i particle coords and add shift vector */
555         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
556
557         fix0             = _fjsp_setzero_v2r8();
558         fiy0             = _fjsp_setzero_v2r8();
559         fiz0             = _fjsp_setzero_v2r8();
560
561         /* Load parameters for i particles */
562         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
563         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
564         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
565
566         dvdasum          = _fjsp_setzero_v2r8();
567
568         /* Start inner kernel loop */
569         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrA             = jjnr[jidx];
574             jnrB             = jjnr[jidx+1];
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577
578             /* load j atom coordinates */
579             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
580                                               &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _fjsp_sub_v2r8(ix0,jx0);
584             dy00             = _fjsp_sub_v2r8(iy0,jy0);
585             dz00             = _fjsp_sub_v2r8(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
589
590             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
591
592             /* Load parameters for j particles */
593             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
594             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
595             vdwjidx0A        = 2*vdwtype[jnrA+0];
596             vdwjidx0B        = 2*vdwtype[jnrB+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq00             = _fjsp_mul_v2r8(iq0,jq0);
606             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
607                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
608
609             /* Calculate table index by multiplying r with table scale and truncate to integer */
610             rt               = _fjsp_mul_v2r8(r00,vftabscale);
611             itab_tmp         = _fjsp_dtox_v2r8(rt);
612             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
613             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
614             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
615
616             vfconv.i[0]     *= 8;
617             vfconv.i[1]     *= 8;
618
619             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
620             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
621             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
622             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
623
624             /* Calculate generalized born table index - this is a separate table from the normal one,
625              * but we use the same procedure by multiplying r with scale and truncating to integer.
626              */
627             rt               = _fjsp_mul_v2r8(r00,gbscale);
628             itab_tmp         = _fjsp_dtox_v2r8(rt);
629             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
630             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
631
632             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
633             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
634             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
635             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
636             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
637             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
638             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
639             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
640             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
641
642             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
643             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
644             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
645             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
646             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
647             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
648             velec            = _fjsp_mul_v2r8(qq00,rinv00);
649             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
650
651             /* CUBIC SPLINE TABLE DISPERSION */
652             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
653             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
654             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
655             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
656             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
657             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
658             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
659             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
660             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
661
662             /* CUBIC SPLINE TABLE REPULSION */
663             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
664             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
665             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
666             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
667             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
668             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
669             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
670             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
671             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
672             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
673
674             fscal            = _fjsp_add_v2r8(felec,fvdw);
675
676             /* Update vectorial force */
677             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
678             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
679             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
680             
681             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
682
683             /* Inner loop uses 85 flops */
684         }
685
686         if(jidx<j_index_end)
687         {
688
689             jnrA             = jjnr[jidx];
690             j_coord_offsetA  = DIM*jnrA;
691
692             /* load j atom coordinates */
693             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
694                                               &jx0,&jy0,&jz0);
695
696             /* Calculate displacement vector */
697             dx00             = _fjsp_sub_v2r8(ix0,jx0);
698             dy00             = _fjsp_sub_v2r8(iy0,jy0);
699             dz00             = _fjsp_sub_v2r8(iz0,jz0);
700
701             /* Calculate squared distance and things based on it */
702             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
703
704             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
705
706             /* Load parameters for j particles */
707             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
708             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
709             vdwjidx0A        = 2*vdwtype[jnrA+0];
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq00             = _fjsp_mul_v2r8(iq0,jq0);
719             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
720
721             /* Calculate table index by multiplying r with table scale and truncate to integer */
722             rt               = _fjsp_mul_v2r8(r00,vftabscale);
723             itab_tmp         = _fjsp_dtox_v2r8(rt);
724             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
725             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
726             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
727
728             vfconv.i[0]     *= 8;
729             vfconv.i[1]     *= 8;
730
731             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
732             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
733             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
734             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
735
736             /* Calculate generalized born table index - this is a separate table from the normal one,
737              * but we use the same procedure by multiplying r with scale and truncating to integer.
738              */
739             rt               = _fjsp_mul_v2r8(r00,gbscale);
740             itab_tmp         = _fjsp_dtox_v2r8(rt);
741             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
742             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
743
744             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
745             F                = _fjsp_setzero_v2r8();
746             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
747             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
748             H                = _fjsp_setzero_v2r8();
749             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
750             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
751             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
752             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
753
754             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
755             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
756             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
757             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
758             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
759             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
760             velec            = _fjsp_mul_v2r8(qq00,rinv00);
761             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
762
763             /* CUBIC SPLINE TABLE DISPERSION */
764             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
765             F                = _fjsp_setzero_v2r8();
766             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
767             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
768             H                = _fjsp_setzero_v2r8();
769             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
770             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
771             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
772             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
773
774             /* CUBIC SPLINE TABLE REPULSION */
775             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
776             F                = _fjsp_setzero_v2r8();
777             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
778             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
779             H                = _fjsp_setzero_v2r8();
780             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
781             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
782             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
783             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
784             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
785
786             fscal            = _fjsp_add_v2r8(felec,fvdw);
787
788             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
789
790             /* Update vectorial force */
791             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
792             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
793             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
794             
795             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
796
797             /* Inner loop uses 85 flops */
798         }
799
800         /* End of innermost loop */
801
802         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
803                                               f+i_coord_offset,fshift+i_shift_offset);
804
805         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
806         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
807
808         /* Increment number of inner iterations */
809         inneriter                  += j_index_end - j_index_start;
810
811         /* Outer loop uses 7 flops */
812     }
813
814     /* Increment number of outer iterations */
815     outeriter        += nri;
816
817     /* Update outer/inner flops */
818
819     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
820 }