Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
87     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
88     real             *invsqrta,*dvda,*gbtab;
89     int              nvdwtype;
90     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
94     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
95     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     _fjsp_v2r8       itab_tmp;
98     _fjsp_v2r8       dummy_mask,cutoff_mask;
99     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
100     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
101     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
122
123     invsqrta         = fr->invsqrta;
124     dvda             = fr->dvda;
125     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
126     gbtab            = fr->gbtab.data;
127     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _fjsp_setzero_v2r8();
155         fiy0             = _fjsp_setzero_v2r8();
156         fiz0             = _fjsp_setzero_v2r8();
157
158         /* Load parameters for i particles */
159         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
160         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _fjsp_setzero_v2r8();
165         vgbsum           = _fjsp_setzero_v2r8();
166         vvdwsum          = _fjsp_setzero_v2r8();
167         dvdasum          = _fjsp_setzero_v2r8();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _fjsp_sub_v2r8(ix0,jx0);
185             dy00             = _fjsp_sub_v2r8(iy0,jy0);
186             dz00             = _fjsp_sub_v2r8(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
190
191             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
195             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _fjsp_mul_v2r8(iq0,jq0);
207             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _fjsp_mul_v2r8(r00,vftabscale);
212             itab_tmp         = _fjsp_dtox_v2r8(rt);
213             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
214             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
215             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
216
217             vfconv.i[0]     *= 8;
218             vfconv.i[1]     *= 8;
219
220             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
221             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
222             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
223             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
224
225             /* Calculate generalized born table index - this is a separate table from the normal one,
226              * but we use the same procedure by multiplying r with scale and truncating to integer.
227              */
228             rt               = _fjsp_mul_v2r8(r00,gbscale);
229             itab_tmp         = _fjsp_dtox_v2r8(rt);
230             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
231             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
232
233             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
234             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
235             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
236             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
237             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
238             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
239             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
240             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
241             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
242
243             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
244             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
245             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
246             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
247             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
248             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
249             velec            = _fjsp_mul_v2r8(qq00,rinv00);
250             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
254             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
255             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
256             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
257             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
258             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
259             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
260             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
261             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
262             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
263             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
267             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
268             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
269             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
270             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
271             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
272             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
273             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
274             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
275             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
276             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
277             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
278             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _fjsp_add_v2r8(velecsum,velec);
282             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
283             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
284
285             fscal            = _fjsp_add_v2r8(felec,fvdw);
286
287             /* Update vectorial force */
288             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
289             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
290             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
291             
292             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
293
294             /* Inner loop uses 95 flops */
295         }
296
297         if(jidx<j_index_end)
298         {
299
300             jnrA             = jjnr[jidx];
301             j_coord_offsetA  = DIM*jnrA;
302
303             /* load j atom coordinates */
304             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
305                                               &jx0,&jy0,&jz0);
306
307             /* Calculate displacement vector */
308             dx00             = _fjsp_sub_v2r8(ix0,jx0);
309             dy00             = _fjsp_sub_v2r8(iy0,jy0);
310             dz00             = _fjsp_sub_v2r8(iz0,jz0);
311
312             /* Calculate squared distance and things based on it */
313             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
314
315             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
316
317             /* Load parameters for j particles */
318             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
319             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
320             vdwjidx0A        = 2*vdwtype[jnrA+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _fjsp_mul_v2r8(iq0,jq0);
330             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
331
332             /* Calculate table index by multiplying r with table scale and truncate to integer */
333             rt               = _fjsp_mul_v2r8(r00,vftabscale);
334             itab_tmp         = _fjsp_dtox_v2r8(rt);
335             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
336             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
337             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
338
339             vfconv.i[0]     *= 8;
340             vfconv.i[1]     *= 8;
341
342             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
343             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
344             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
345             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
346
347             /* Calculate generalized born table index - this is a separate table from the normal one,
348              * but we use the same procedure by multiplying r with scale and truncating to integer.
349              */
350             rt               = _fjsp_mul_v2r8(r00,gbscale);
351             itab_tmp         = _fjsp_dtox_v2r8(rt);
352             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
353             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
354
355             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
356             F                = _fjsp_setzero_v2r8();
357             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
358             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
359             H                = _fjsp_setzero_v2r8();
360             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
361             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
362             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
363             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
364
365             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
366             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
367             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
368             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
369             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
370             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
371             velec            = _fjsp_mul_v2r8(qq00,rinv00);
372             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
373
374             /* CUBIC SPLINE TABLE DISPERSION */
375             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
376             F                = _fjsp_setzero_v2r8();
377             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
378             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
379             H                = _fjsp_setzero_v2r8();
380             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
381             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
382             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
383             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
384             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
385             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
386
387             /* CUBIC SPLINE TABLE REPULSION */
388             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
389             F                = _fjsp_setzero_v2r8();
390             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
391             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
392             H                = _fjsp_setzero_v2r8();
393             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
394             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
395             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
396             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
397             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
398             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
399             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
400             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
401
402             /* Update potential sum for this i atom from the interaction with this j atom. */
403             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
404             velecsum         = _fjsp_add_v2r8(velecsum,velec);
405             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
406             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
407             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
408             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
409
410             fscal            = _fjsp_add_v2r8(felec,fvdw);
411
412             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
413
414             /* Update vectorial force */
415             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
416             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
417             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
418             
419             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
420
421             /* Inner loop uses 95 flops */
422         }
423
424         /* End of innermost loop */
425
426         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
427                                               f+i_coord_offset,fshift+i_shift_offset);
428
429         ggid                        = gid[iidx];
430         /* Update potential energies */
431         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
432         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
433         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
434         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
435         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
436
437         /* Increment number of inner iterations */
438         inneriter                  += j_index_end - j_index_start;
439
440         /* Outer loop uses 10 flops */
441     }
442
443     /* Increment number of outer iterations */
444     outeriter        += nri;
445
446     /* Update outer/inner flops */
447
448     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
449 }
450 /*
451  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
452  * Electrostatics interaction: GeneralizedBorn
453  * VdW interaction:            CubicSplineTable
454  * Geometry:                   Particle-Particle
455  * Calculate force/pot:        Force
456  */
457 void
458 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
459                     (t_nblist                    * gmx_restrict       nlist,
460                      rvec                        * gmx_restrict          xx,
461                      rvec                        * gmx_restrict          ff,
462                      t_forcerec                  * gmx_restrict          fr,
463                      t_mdatoms                   * gmx_restrict     mdatoms,
464                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
465                      t_nrnb                      * gmx_restrict        nrnb)
466 {
467     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
468      * just 0 for non-waters.
469      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
470      * jnr indices corresponding to data put in the four positions in the SIMD register.
471      */
472     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
473     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
474     int              jnrA,jnrB;
475     int              j_coord_offsetA,j_coord_offsetB;
476     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
477     real             rcutoff_scalar;
478     real             *shiftvec,*fshift,*x,*f;
479     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
480     int              vdwioffset0;
481     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
482     int              vdwjidx0A,vdwjidx0B;
483     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
484     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
485     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
486     real             *charge;
487     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
488     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
489     real             *invsqrta,*dvda,*gbtab;
490     int              nvdwtype;
491     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
492     int              *vdwtype;
493     real             *vdwparam;
494     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
495     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
496     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
497     real             *vftab;
498     _fjsp_v2r8       itab_tmp;
499     _fjsp_v2r8       dummy_mask,cutoff_mask;
500     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
501     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
502     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
503
504     x                = xx[0];
505     f                = ff[0];
506
507     nri              = nlist->nri;
508     iinr             = nlist->iinr;
509     jindex           = nlist->jindex;
510     jjnr             = nlist->jjnr;
511     shiftidx         = nlist->shift;
512     gid              = nlist->gid;
513     shiftvec         = fr->shift_vec[0];
514     fshift           = fr->fshift[0];
515     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
516     charge           = mdatoms->chargeA;
517     nvdwtype         = fr->ntype;
518     vdwparam         = fr->nbfp;
519     vdwtype          = mdatoms->typeA;
520
521     vftab            = kernel_data->table_vdw->data;
522     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
523
524     invsqrta         = fr->invsqrta;
525     dvda             = fr->dvda;
526     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab.scale);
527     gbtab            = fr->gbtab.data;
528     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
529
530     /* Avoid stupid compiler warnings */
531     jnrA = jnrB = 0;
532     j_coord_offsetA = 0;
533     j_coord_offsetB = 0;
534
535     outeriter        = 0;
536     inneriter        = 0;
537
538     /* Start outer loop over neighborlists */
539     for(iidx=0; iidx<nri; iidx++)
540     {
541         /* Load shift vector for this list */
542         i_shift_offset   = DIM*shiftidx[iidx];
543
544         /* Load limits for loop over neighbors */
545         j_index_start    = jindex[iidx];
546         j_index_end      = jindex[iidx+1];
547
548         /* Get outer coordinate index */
549         inr              = iinr[iidx];
550         i_coord_offset   = DIM*inr;
551
552         /* Load i particle coords and add shift vector */
553         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
554
555         fix0             = _fjsp_setzero_v2r8();
556         fiy0             = _fjsp_setzero_v2r8();
557         fiz0             = _fjsp_setzero_v2r8();
558
559         /* Load parameters for i particles */
560         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
561         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
562         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
563
564         dvdasum          = _fjsp_setzero_v2r8();
565
566         /* Start inner kernel loop */
567         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrA             = jjnr[jidx];
572             jnrB             = jjnr[jidx+1];
573             j_coord_offsetA  = DIM*jnrA;
574             j_coord_offsetB  = DIM*jnrB;
575
576             /* load j atom coordinates */
577             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
578                                               &jx0,&jy0,&jz0);
579
580             /* Calculate displacement vector */
581             dx00             = _fjsp_sub_v2r8(ix0,jx0);
582             dy00             = _fjsp_sub_v2r8(iy0,jy0);
583             dz00             = _fjsp_sub_v2r8(iz0,jz0);
584
585             /* Calculate squared distance and things based on it */
586             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
587
588             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
589
590             /* Load parameters for j particles */
591             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
592             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
593             vdwjidx0A        = 2*vdwtype[jnrA+0];
594             vdwjidx0B        = 2*vdwtype[jnrB+0];
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq00             = _fjsp_mul_v2r8(iq0,jq0);
604             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
605                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
606
607             /* Calculate table index by multiplying r with table scale and truncate to integer */
608             rt               = _fjsp_mul_v2r8(r00,vftabscale);
609             itab_tmp         = _fjsp_dtox_v2r8(rt);
610             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
611             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
612             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
613
614             vfconv.i[0]     *= 8;
615             vfconv.i[1]     *= 8;
616
617             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
618             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
619             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
620             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
621
622             /* Calculate generalized born table index - this is a separate table from the normal one,
623              * but we use the same procedure by multiplying r with scale and truncating to integer.
624              */
625             rt               = _fjsp_mul_v2r8(r00,gbscale);
626             itab_tmp         = _fjsp_dtox_v2r8(rt);
627             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
628             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
629
630             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
631             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
632             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
633             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
634             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
635             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
636             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
637             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
638             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
639
640             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
641             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
642             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
643             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
644             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
645             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
646             velec            = _fjsp_mul_v2r8(qq00,rinv00);
647             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
648
649             /* CUBIC SPLINE TABLE DISPERSION */
650             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
651             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
652             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
653             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
654             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
655             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
656             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
657             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
658             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
659
660             /* CUBIC SPLINE TABLE REPULSION */
661             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
662             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
663             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
664             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
665             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
666             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
667             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
668             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
669             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
670             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
671
672             fscal            = _fjsp_add_v2r8(felec,fvdw);
673
674             /* Update vectorial force */
675             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
676             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
677             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
678             
679             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
680
681             /* Inner loop uses 85 flops */
682         }
683
684         if(jidx<j_index_end)
685         {
686
687             jnrA             = jjnr[jidx];
688             j_coord_offsetA  = DIM*jnrA;
689
690             /* load j atom coordinates */
691             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
692                                               &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx00             = _fjsp_sub_v2r8(ix0,jx0);
696             dy00             = _fjsp_sub_v2r8(iy0,jy0);
697             dz00             = _fjsp_sub_v2r8(iz0,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
701
702             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
703
704             /* Load parameters for j particles */
705             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
706             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
707             vdwjidx0A        = 2*vdwtype[jnrA+0];
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq00             = _fjsp_mul_v2r8(iq0,jq0);
717             gmx_fjsp_load_1pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
718
719             /* Calculate table index by multiplying r with table scale and truncate to integer */
720             rt               = _fjsp_mul_v2r8(r00,vftabscale);
721             itab_tmp         = _fjsp_dtox_v2r8(rt);
722             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
723             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
724             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
725
726             vfconv.i[0]     *= 8;
727             vfconv.i[1]     *= 8;
728
729             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
730             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
731             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
732             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
733
734             /* Calculate generalized born table index - this is a separate table from the normal one,
735              * but we use the same procedure by multiplying r with scale and truncating to integer.
736              */
737             rt               = _fjsp_mul_v2r8(r00,gbscale);
738             itab_tmp         = _fjsp_dtox_v2r8(rt);
739             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
740             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
741
742             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
743             F                = _fjsp_setzero_v2r8();
744             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
745             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
746             H                = _fjsp_setzero_v2r8();
747             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
748             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
749             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
750             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
751
752             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
753             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
754             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
755             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
756             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
757             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
758             velec            = _fjsp_mul_v2r8(qq00,rinv00);
759             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
760
761             /* CUBIC SPLINE TABLE DISPERSION */
762             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
763             F                = _fjsp_setzero_v2r8();
764             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
765             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
766             H                = _fjsp_setzero_v2r8();
767             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
768             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
769             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
770             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
771
772             /* CUBIC SPLINE TABLE REPULSION */
773             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
774             F                = _fjsp_setzero_v2r8();
775             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
776             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
777             H                = _fjsp_setzero_v2r8();
778             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
779             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
780             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
781             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
782             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
783
784             fscal            = _fjsp_add_v2r8(felec,fvdw);
785
786             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
787
788             /* Update vectorial force */
789             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
790             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
791             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
792             
793             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
794
795             /* Inner loop uses 85 flops */
796         }
797
798         /* End of innermost loop */
799
800         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
801                                               f+i_coord_offset,fshift+i_shift_offset);
802
803         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
804         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
805
806         /* Increment number of inner iterations */
807         inneriter                  += j_index_end - j_index_start;
808
809         /* Outer loop uses 7 flops */
810     }
811
812     /* Increment number of outer iterations */
813     outeriter        += nri;
814
815     /* Update outer/inner flops */
816
817     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
818 }