4b3e5b68f08c5b0289bae2788c2de224a473cff9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
87     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
88     real             *invsqrta,*dvda,*gbtab;
89     int              nvdwtype;
90     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
94     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
95     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     _fjsp_v2r8       itab_tmp;
98     _fjsp_v2r8       dummy_mask,cutoff_mask;
99     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
100     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
101     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
122
123     invsqrta         = fr->invsqrta;
124     dvda             = fr->dvda;
125     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab->scale);
126     gbtab            = fr->gbtab->data;
127     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _fjsp_setzero_v2r8();
155         fiy0             = _fjsp_setzero_v2r8();
156         fiz0             = _fjsp_setzero_v2r8();
157
158         /* Load parameters for i particles */
159         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
160         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _fjsp_setzero_v2r8();
165         vgbsum           = _fjsp_setzero_v2r8();
166         vvdwsum          = _fjsp_setzero_v2r8();
167         dvdasum          = _fjsp_setzero_v2r8();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _fjsp_sub_v2r8(ix0,jx0);
185             dy00             = _fjsp_sub_v2r8(iy0,jy0);
186             dz00             = _fjsp_sub_v2r8(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
190
191             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
195             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _fjsp_mul_v2r8(iq0,jq0);
207             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _fjsp_mul_v2r8(r00,vftabscale);
212             itab_tmp         = _fjsp_dtox_v2r8(rt);
213             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
214             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
215             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
216
217             vfconv.i[0]     *= 8;
218             vfconv.i[1]     *= 8;
219
220             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
221             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
222             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
223             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
224
225             /* Calculate generalized born table index - this is a separate table from the normal one,
226              * but we use the same procedure by multiplying r with scale and truncating to integer.
227              */
228             rt               = _fjsp_mul_v2r8(r00,gbscale);
229             itab_tmp         = _fjsp_dtox_v2r8(rt);
230             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
231             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
232
233             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
234             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
235             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
236             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
237             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
238             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
239             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
240             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
241             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
242
243             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
244             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
245             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
246             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
247             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
248             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
249             velec            = _fjsp_mul_v2r8(qq00,rinv00);
250             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
254             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
255             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
256             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
257             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
258             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
259             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
260             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
261             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
262             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
263             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
267             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
268             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
269             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
270             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
271             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
272             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
273             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
274             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
275             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
276             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
277             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
278             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _fjsp_add_v2r8(velecsum,velec);
282             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
283             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
284
285             fscal            = _fjsp_add_v2r8(felec,fvdw);
286
287             /* Update vectorial force */
288             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
289             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
290             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
291             
292             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
293
294             /* Inner loop uses 95 flops */
295         }
296
297         if(jidx<j_index_end)
298         {
299
300             jnrA             = jjnr[jidx];
301             j_coord_offsetA  = DIM*jnrA;
302
303             /* load j atom coordinates */
304             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
305                                               &jx0,&jy0,&jz0);
306
307             /* Calculate displacement vector */
308             dx00             = _fjsp_sub_v2r8(ix0,jx0);
309             dy00             = _fjsp_sub_v2r8(iy0,jy0);
310             dz00             = _fjsp_sub_v2r8(iz0,jz0);
311
312             /* Calculate squared distance and things based on it */
313             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
314
315             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
316
317             /* Load parameters for j particles */
318             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
319             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
320             vdwjidx0A        = 2*vdwtype[jnrA+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _fjsp_mul_v2r8(iq0,jq0);
330             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
331                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
332
333             /* Calculate table index by multiplying r with table scale and truncate to integer */
334             rt               = _fjsp_mul_v2r8(r00,vftabscale);
335             itab_tmp         = _fjsp_dtox_v2r8(rt);
336             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
337             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
338             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
339
340             vfconv.i[0]     *= 8;
341             vfconv.i[1]     *= 8;
342
343             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
344             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
345             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
346             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
347
348             /* Calculate generalized born table index - this is a separate table from the normal one,
349              * but we use the same procedure by multiplying r with scale and truncating to integer.
350              */
351             rt               = _fjsp_mul_v2r8(r00,gbscale);
352             itab_tmp         = _fjsp_dtox_v2r8(rt);
353             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
354             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
355
356             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
357             F                = _fjsp_setzero_v2r8();
358             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
359             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
360             H                = _fjsp_setzero_v2r8();
361             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
362             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
363             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
364             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
365
366             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
367             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
368             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
369             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
370             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
371             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
372             velec            = _fjsp_mul_v2r8(qq00,rinv00);
373             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
374
375             /* CUBIC SPLINE TABLE DISPERSION */
376             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
377             F                = _fjsp_setzero_v2r8();
378             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
379             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
380             H                = _fjsp_setzero_v2r8();
381             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
382             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
383             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
384             vvdw6            = _fjsp_mul_v2r8(c6_00,VV);
385             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
386             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
387
388             /* CUBIC SPLINE TABLE REPULSION */
389             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
390             F                = _fjsp_setzero_v2r8();
391             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
392             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
393             H                = _fjsp_setzero_v2r8();
394             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
395             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
396             VV               = _fjsp_madd_v2r8(vfeps,Fp,Y);
397             vvdw12           = _fjsp_mul_v2r8(c12_00,VV);
398             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
399             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
400             vvdw             = _fjsp_add_v2r8(vvdw12,vvdw6);
401             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
405             velecsum         = _fjsp_add_v2r8(velecsum,velec);
406             vgb              = _fjsp_unpacklo_v2r8(vgb,_fjsp_setzero_v2r8());
407             vgbsum           = _fjsp_add_v2r8(vgbsum,vgb);
408             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
409             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
410
411             fscal            = _fjsp_add_v2r8(felec,fvdw);
412
413             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
414
415             /* Update vectorial force */
416             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
417             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
418             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
419             
420             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
421
422             /* Inner loop uses 95 flops */
423         }
424
425         /* End of innermost loop */
426
427         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
428                                               f+i_coord_offset,fshift+i_shift_offset);
429
430         ggid                        = gid[iidx];
431         /* Update potential energies */
432         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
433         gmx_fjsp_update_1pot_v2r8(vgbsum,kernel_data->energygrp_polarization+ggid);
434         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
435         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
436         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
437
438         /* Increment number of inner iterations */
439         inneriter                  += j_index_end - j_index_start;
440
441         /* Outer loop uses 10 flops */
442     }
443
444     /* Increment number of outer iterations */
445     outeriter        += nri;
446
447     /* Update outer/inner flops */
448
449     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
450 }
451 /*
452  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
453  * Electrostatics interaction: GeneralizedBorn
454  * VdW interaction:            CubicSplineTable
455  * Geometry:                   Particle-Particle
456  * Calculate force/pot:        Force
457  */
458 void
459 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sparc64_hpc_ace_double
460                     (t_nblist                    * gmx_restrict       nlist,
461                      rvec                        * gmx_restrict          xx,
462                      rvec                        * gmx_restrict          ff,
463                      struct t_forcerec           * gmx_restrict          fr,
464                      t_mdatoms                   * gmx_restrict     mdatoms,
465                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
466                      t_nrnb                      * gmx_restrict        nrnb)
467 {
468     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
469      * just 0 for non-waters.
470      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
471      * jnr indices corresponding to data put in the four positions in the SIMD register.
472      */
473     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
474     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
475     int              jnrA,jnrB;
476     int              j_coord_offsetA,j_coord_offsetB;
477     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
478     real             rcutoff_scalar;
479     real             *shiftvec,*fshift,*x,*f;
480     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
481     int              vdwioffset0;
482     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
483     int              vdwjidx0A,vdwjidx0B;
484     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
485     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
486     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
487     real             *charge;
488     _fjsp_v2r8       vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
489     _fjsp_v2r8       minushalf = gmx_fjsp_set1_v2r8(-0.5);
490     real             *invsqrta,*dvda,*gbtab;
491     int              nvdwtype;
492     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
493     int              *vdwtype;
494     real             *vdwparam;
495     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
496     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
497     _fjsp_v2r8       rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
498     real             *vftab;
499     _fjsp_v2r8       itab_tmp;
500     _fjsp_v2r8       dummy_mask,cutoff_mask;
501     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
502     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
503     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
504
505     x                = xx[0];
506     f                = ff[0];
507
508     nri              = nlist->nri;
509     iinr             = nlist->iinr;
510     jindex           = nlist->jindex;
511     jjnr             = nlist->jjnr;
512     shiftidx         = nlist->shift;
513     gid              = nlist->gid;
514     shiftvec         = fr->shift_vec[0];
515     fshift           = fr->fshift[0];
516     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
517     charge           = mdatoms->chargeA;
518     nvdwtype         = fr->ntype;
519     vdwparam         = fr->nbfp;
520     vdwtype          = mdatoms->typeA;
521
522     vftab            = kernel_data->table_vdw->data;
523     vftabscale       = gmx_fjsp_set1_v2r8(kernel_data->table_vdw->scale);
524
525     invsqrta         = fr->invsqrta;
526     dvda             = fr->dvda;
527     gbtabscale       = gmx_fjsp_set1_v2r8(fr->gbtab->scale);
528     gbtab            = fr->gbtab->data;
529     gbinvepsdiff     = gmx_fjsp_set1_v2r8((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
530
531     /* Avoid stupid compiler warnings */
532     jnrA = jnrB = 0;
533     j_coord_offsetA = 0;
534     j_coord_offsetB = 0;
535
536     outeriter        = 0;
537     inneriter        = 0;
538
539     /* Start outer loop over neighborlists */
540     for(iidx=0; iidx<nri; iidx++)
541     {
542         /* Load shift vector for this list */
543         i_shift_offset   = DIM*shiftidx[iidx];
544
545         /* Load limits for loop over neighbors */
546         j_index_start    = jindex[iidx];
547         j_index_end      = jindex[iidx+1];
548
549         /* Get outer coordinate index */
550         inr              = iinr[iidx];
551         i_coord_offset   = DIM*inr;
552
553         /* Load i particle coords and add shift vector */
554         gmx_fjsp_load_shift_and_1rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
555
556         fix0             = _fjsp_setzero_v2r8();
557         fiy0             = _fjsp_setzero_v2r8();
558         fiz0             = _fjsp_setzero_v2r8();
559
560         /* Load parameters for i particles */
561         iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_load1_v2r8(charge+inr+0));
562         isai0            = gmx_fjsp_load1_v2r8(invsqrta+inr+0);
563         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
564
565         dvdasum          = _fjsp_setzero_v2r8();
566
567         /* Start inner kernel loop */
568         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
569         {
570
571             /* Get j neighbor index, and coordinate index */
572             jnrA             = jjnr[jidx];
573             jnrB             = jjnr[jidx+1];
574             j_coord_offsetA  = DIM*jnrA;
575             j_coord_offsetB  = DIM*jnrB;
576
577             /* load j atom coordinates */
578             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
579                                               &jx0,&jy0,&jz0);
580
581             /* Calculate displacement vector */
582             dx00             = _fjsp_sub_v2r8(ix0,jx0);
583             dy00             = _fjsp_sub_v2r8(iy0,jy0);
584             dz00             = _fjsp_sub_v2r8(iz0,jz0);
585
586             /* Calculate squared distance and things based on it */
587             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
588
589             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
590
591             /* Load parameters for j particles */
592             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
593             isaj0            = gmx_fjsp_load_2real_swizzle_v2r8(invsqrta+jnrA+0,invsqrta+jnrB+0);
594             vdwjidx0A        = 2*vdwtype[jnrA+0];
595             vdwjidx0B        = 2*vdwtype[jnrB+0];
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq00             = _fjsp_mul_v2r8(iq0,jq0);
605             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
606                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
607
608             /* Calculate table index by multiplying r with table scale and truncate to integer */
609             rt               = _fjsp_mul_v2r8(r00,vftabscale);
610             itab_tmp         = _fjsp_dtox_v2r8(rt);
611             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
612             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
613             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
614
615             vfconv.i[0]     *= 8;
616             vfconv.i[1]     *= 8;
617
618             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
619             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
620             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
621             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
622
623             /* Calculate generalized born table index - this is a separate table from the normal one,
624              * but we use the same procedure by multiplying r with scale and truncating to integer.
625              */
626             rt               = _fjsp_mul_v2r8(r00,gbscale);
627             itab_tmp         = _fjsp_dtox_v2r8(rt);
628             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
629             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
630
631             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
632             F                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] );
633             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
634             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
635             H                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[1] +2);
636             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
637             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
638             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
639             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
640
641             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
642             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
643             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
644             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
645             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
646             gmx_fjsp_increment_2real_swizzle_v2r8(dvda+jnrA,dvda+jnrB,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
647             velec            = _fjsp_mul_v2r8(qq00,rinv00);
648             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
649
650             /* CUBIC SPLINE TABLE DISPERSION */
651             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
652             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] );
653             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
654             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
655             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 2 );
656             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
657             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
658             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
659             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
660
661             /* CUBIC SPLINE TABLE REPULSION */
662             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
663             F                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 4 );
664             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
665             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
666             H                = _fjsp_load_v2r8( vftab + vfconv.i[1] + 6 );
667             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
668             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
669             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
670             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
671             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
672
673             fscal            = _fjsp_add_v2r8(felec,fvdw);
674
675             /* Update vectorial force */
676             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
677             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
678             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
679             
680             gmx_fjsp_decrement_fma_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fscal,dx00,dy00,dz00);
681
682             /* Inner loop uses 85 flops */
683         }
684
685         if(jidx<j_index_end)
686         {
687
688             jnrA             = jjnr[jidx];
689             j_coord_offsetA  = DIM*jnrA;
690
691             /* load j atom coordinates */
692             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
693                                               &jx0,&jy0,&jz0);
694
695             /* Calculate displacement vector */
696             dx00             = _fjsp_sub_v2r8(ix0,jx0);
697             dy00             = _fjsp_sub_v2r8(iy0,jy0);
698             dz00             = _fjsp_sub_v2r8(iz0,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
702
703             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
704
705             /* Load parameters for j particles */
706             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
707             isaj0            = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),invsqrta+jnrA+0);
708             vdwjidx0A        = 2*vdwtype[jnrA+0];
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq00             = _fjsp_mul_v2r8(iq0,jq0);
718             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
719                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
720
721             /* Calculate table index by multiplying r with table scale and truncate to integer */
722             rt               = _fjsp_mul_v2r8(r00,vftabscale);
723             itab_tmp         = _fjsp_dtox_v2r8(rt);
724             vfeps            = _fjsp_sub_v2r8(rt, _fjsp_xtod_v2r8(itab_tmp));
725             twovfeps         = _fjsp_add_v2r8(vfeps,vfeps);
726             _fjsp_store_v2r8(&vfconv.simd,itab_tmp);
727
728             vfconv.i[0]     *= 8;
729             vfconv.i[1]     *= 8;
730
731             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
732             isaprod          = _fjsp_mul_v2r8(isai0,isaj0);
733             gbqqfactor       = _fjsp_neg_v2r8(_fjsp_mul_v2r8(qq00,_fjsp_mul_v2r8(isaprod,gbinvepsdiff)));
734             gbscale          = _fjsp_mul_v2r8(isaprod,gbtabscale);
735
736             /* Calculate generalized born table index - this is a separate table from the normal one,
737              * but we use the same procedure by multiplying r with scale and truncating to integer.
738              */
739             rt               = _fjsp_mul_v2r8(r00,gbscale);
740             itab_tmp         = _fjsp_dtox_v2r8(rt);
741             gbeps            = _fjsp_sub_v2r8(rt,_fjsp_xtod_v2r8(itab_tmp));
742             _fjsp_store_v2r8(&gbconv.simd,itab_tmp);
743
744             Y                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] );
745             F                = _fjsp_setzero_v2r8();
746             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
747             G                = _fjsp_load_v2r8( gbtab + 4*gbconv.i[0] +2);
748             H                = _fjsp_setzero_v2r8();
749             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
750             Fp               = _fjsp_madd_v2r8(gbeps,_fjsp_madd_v2r8(gbeps,H,G),F);
751             VV               = _fjsp_madd_v2r8(gbeps,Fp,Y);
752             vgb              = _fjsp_mul_v2r8(gbqqfactor,VV);
753
754             twogbeps         = _fjsp_add_v2r8(gbeps,gbeps);
755             FF               = _fjsp_madd_v2r8(_fjsp_madd_v2r8(twogbeps,H,G),gbeps,Fp);
756             fgb              = _fjsp_mul_v2r8(gbqqfactor,_fjsp_mul_v2r8(FF,gbscale));
757             dvdatmp          = _fjsp_mul_v2r8(minushalf,_fjsp_madd_v2r8(fgb,r00,vgb));
758             dvdasum          = _fjsp_add_v2r8(dvdasum,dvdatmp);
759             gmx_fjsp_increment_1real_v2r8(dvda+jnrA,_fjsp_mul_v2r8(dvdatmp,_fjsp_mul_v2r8(isaj0,isaj0)));
760             velec            = _fjsp_mul_v2r8(qq00,rinv00);
761             felec            = _fjsp_mul_v2r8(_fjsp_msub_v2r8(velec,rinv00,fgb),rinv00);
762
763             /* CUBIC SPLINE TABLE DISPERSION */
764             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] );
765             F                = _fjsp_setzero_v2r8();
766             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
767             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 2 );
768             H                = _fjsp_setzero_v2r8();
769             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
770             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
771             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
772             fvdw6            = _fjsp_mul_v2r8(c6_00,FF);
773
774             /* CUBIC SPLINE TABLE REPULSION */
775             Y                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 4 );
776             F                = _fjsp_setzero_v2r8();
777             GMX_FJSP_TRANSPOSE2_V2R8(Y,F);
778             G                = _fjsp_load_v2r8( vftab + vfconv.i[0] + 6 );
779             H                = _fjsp_setzero_v2r8();
780             GMX_FJSP_TRANSPOSE2_V2R8(G,H);
781             Fp               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(H,vfeps,G),F);
782             FF               = _fjsp_madd_v2r8(vfeps,_fjsp_madd_v2r8(twovfeps,H,G),Fp);
783             fvdw12           = _fjsp_mul_v2r8(c12_00,FF);
784             fvdw             = _fjsp_neg_v2r8(_fjsp_mul_v2r8(_fjsp_add_v2r8(fvdw6,fvdw12),_fjsp_mul_v2r8(vftabscale,rinv00)));
785
786             fscal            = _fjsp_add_v2r8(felec,fvdw);
787
788             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
789
790             /* Update vectorial force */
791             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
792             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
793             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
794             
795             gmx_fjsp_decrement_fma_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fscal,dx00,dy00,dz00);
796
797             /* Inner loop uses 85 flops */
798         }
799
800         /* End of innermost loop */
801
802         gmx_fjsp_update_iforce_1atom_swizzle_v2r8(fix0,fiy0,fiz0,
803                                               f+i_coord_offset,fshift+i_shift_offset);
804
805         dvdasum = _fjsp_mul_v2r8(dvdasum, _fjsp_mul_v2r8(isai0,isai0));
806         gmx_fjsp_update_1pot_v2r8(dvdasum,dvda+inr);
807
808         /* Increment number of inner iterations */
809         inneriter                  += j_index_end - j_index_start;
810
811         /* Outer loop uses 7 flops */
812     }
813
814     /* Increment number of outer iterations */
815     outeriter        += nri;
816
817     /* Update outer/inner flops */
818
819     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
820 }