30cfb0b674dcbe1f87c9b428d00687c3163f26d6
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwNone_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     _fjsp_v2r8       itab_tmp;
95     _fjsp_v2r8       dummy_mask,cutoff_mask;
96     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
97     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
98     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
99
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
112     charge           = mdatoms->chargeA;
113
114     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
117     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
122     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
123     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
149                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
150
151         fix0             = _fjsp_setzero_v2r8();
152         fiy0             = _fjsp_setzero_v2r8();
153         fiz0             = _fjsp_setzero_v2r8();
154         fix1             = _fjsp_setzero_v2r8();
155         fiy1             = _fjsp_setzero_v2r8();
156         fiz1             = _fjsp_setzero_v2r8();
157         fix2             = _fjsp_setzero_v2r8();
158         fiy2             = _fjsp_setzero_v2r8();
159         fiz2             = _fjsp_setzero_v2r8();
160
161         /* Reset potential sums */
162         velecsum         = _fjsp_setzero_v2r8();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _fjsp_sub_v2r8(ix0,jx0);
180             dy00             = _fjsp_sub_v2r8(iy0,jy0);
181             dz00             = _fjsp_sub_v2r8(iz0,jz0);
182             dx10             = _fjsp_sub_v2r8(ix1,jx0);
183             dy10             = _fjsp_sub_v2r8(iy1,jy0);
184             dz10             = _fjsp_sub_v2r8(iz1,jz0);
185             dx20             = _fjsp_sub_v2r8(ix2,jx0);
186             dy20             = _fjsp_sub_v2r8(iy2,jy0);
187             dz20             = _fjsp_sub_v2r8(iz2,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
191             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
192             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
193
194             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
195             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
196             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
197
198             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
199             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
200             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
204
205             fjx0             = _fjsp_setzero_v2r8();
206             fjy0             = _fjsp_setzero_v2r8();
207             fjz0             = _fjsp_setzero_v2r8();
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _fjsp_mul_v2r8(iq0,jq0);
217
218             /* EWALD ELECTROSTATICS */
219
220             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
221             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
222             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
223             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
224             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
225
226             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
227             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
228             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
229             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
230             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
231             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
232             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
233             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
234             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
235             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _fjsp_add_v2r8(velecsum,velec);
239
240             fscal            = felec;
241
242             /* Update vectorial force */
243             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
244             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
245             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
246             
247             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
248             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
249             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq10             = _fjsp_mul_v2r8(iq1,jq0);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
264             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
265             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
266             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
267
268             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
269             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
270             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
271             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
272             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
273             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
274             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
275             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
276             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
277             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _fjsp_add_v2r8(velecsum,velec);
281
282             fscal            = felec;
283
284             /* Update vectorial force */
285             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
286             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
287             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
288             
289             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
290             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
291             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq20             = _fjsp_mul_v2r8(iq2,jq0);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
306             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
307             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
308             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
309
310             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
311             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
312             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
313             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
314             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
315             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
316             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
317             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
318             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
319             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _fjsp_add_v2r8(velecsum,velec);
323
324             fscal            = felec;
325
326             /* Update vectorial force */
327             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
328             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
329             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
330             
331             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
332             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
333             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
334
335             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
336
337             /* Inner loop uses 135 flops */
338         }
339
340         if(jidx<j_index_end)
341         {
342
343             jnrA             = jjnr[jidx];
344             j_coord_offsetA  = DIM*jnrA;
345
346             /* load j atom coordinates */
347             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
348                                               &jx0,&jy0,&jz0);
349
350             /* Calculate displacement vector */
351             dx00             = _fjsp_sub_v2r8(ix0,jx0);
352             dy00             = _fjsp_sub_v2r8(iy0,jy0);
353             dz00             = _fjsp_sub_v2r8(iz0,jz0);
354             dx10             = _fjsp_sub_v2r8(ix1,jx0);
355             dy10             = _fjsp_sub_v2r8(iy1,jy0);
356             dz10             = _fjsp_sub_v2r8(iz1,jz0);
357             dx20             = _fjsp_sub_v2r8(ix2,jx0);
358             dy20             = _fjsp_sub_v2r8(iy2,jy0);
359             dz20             = _fjsp_sub_v2r8(iz2,jz0);
360
361             /* Calculate squared distance and things based on it */
362             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
363             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
364             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
365
366             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
367             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
368             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
369
370             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
371             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
372             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
373
374             /* Load parameters for j particles */
375             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
376
377             fjx0             = _fjsp_setzero_v2r8();
378             fjy0             = _fjsp_setzero_v2r8();
379             fjz0             = _fjsp_setzero_v2r8();
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq00             = _fjsp_mul_v2r8(iq0,jq0);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
394             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
395             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
396             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
397
398             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
399             ewtabD           = _fjsp_setzero_v2r8();
400             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
401             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
402             ewtabFn          = _fjsp_setzero_v2r8();
403             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
404             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
405             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
406             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
407             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
411             velecsum         = _fjsp_add_v2r8(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
416
417             /* Update vectorial force */
418             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
419             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
420             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
421             
422             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
423             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
424             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq10             = _fjsp_mul_v2r8(iq1,jq0);
434
435             /* EWALD ELECTROSTATICS */
436
437             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
438             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
439             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
440             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
441             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
442
443             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
444             ewtabD           = _fjsp_setzero_v2r8();
445             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
446             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
447             ewtabFn          = _fjsp_setzero_v2r8();
448             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
449             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
450             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
451             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
452             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
456             velecsum         = _fjsp_add_v2r8(velecsum,velec);
457
458             fscal            = felec;
459
460             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
461
462             /* Update vectorial force */
463             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
464             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
465             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
466             
467             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
468             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
469             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq20             = _fjsp_mul_v2r8(iq2,jq0);
479
480             /* EWALD ELECTROSTATICS */
481
482             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
483             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
484             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
485             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
486             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
487
488             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
489             ewtabD           = _fjsp_setzero_v2r8();
490             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
491             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
492             ewtabFn          = _fjsp_setzero_v2r8();
493             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
494             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
495             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
496             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
497             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
501             velecsum         = _fjsp_add_v2r8(velecsum,velec);
502
503             fscal            = felec;
504
505             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
506
507             /* Update vectorial force */
508             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
509             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
510             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
511             
512             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
513             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
514             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
515
516             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
517
518             /* Inner loop uses 135 flops */
519         }
520
521         /* End of innermost loop */
522
523         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
524                                               f+i_coord_offset,fshift+i_shift_offset);
525
526         ggid                        = gid[iidx];
527         /* Update potential energies */
528         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
529
530         /* Increment number of inner iterations */
531         inneriter                  += j_index_end - j_index_start;
532
533         /* Outer loop uses 19 flops */
534     }
535
536     /* Increment number of outer iterations */
537     outeriter        += nri;
538
539     /* Update outer/inner flops */
540
541     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*135);
542 }
543 /*
544  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_sparc64_hpc_ace_double
545  * Electrostatics interaction: Ewald
546  * VdW interaction:            None
547  * Geometry:                   Water3-Particle
548  * Calculate force/pot:        Force
549  */
550 void
551 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_sparc64_hpc_ace_double
552                     (t_nblist                    * gmx_restrict       nlist,
553                      rvec                        * gmx_restrict          xx,
554                      rvec                        * gmx_restrict          ff,
555                      t_forcerec                  * gmx_restrict          fr,
556                      t_mdatoms                   * gmx_restrict     mdatoms,
557                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
558                      t_nrnb                      * gmx_restrict        nrnb)
559 {
560     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
561      * just 0 for non-waters.
562      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
563      * jnr indices corresponding to data put in the four positions in the SIMD register.
564      */
565     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
566     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
567     int              jnrA,jnrB;
568     int              j_coord_offsetA,j_coord_offsetB;
569     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
570     real             rcutoff_scalar;
571     real             *shiftvec,*fshift,*x,*f;
572     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
573     int              vdwioffset0;
574     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
575     int              vdwioffset1;
576     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
577     int              vdwioffset2;
578     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
579     int              vdwjidx0A,vdwjidx0B;
580     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
581     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
582     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
583     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
584     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
585     real             *charge;
586     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
587     real             *ewtab;
588     _fjsp_v2r8       itab_tmp;
589     _fjsp_v2r8       dummy_mask,cutoff_mask;
590     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
591     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
592     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
593
594     x                = xx[0];
595     f                = ff[0];
596
597     nri              = nlist->nri;
598     iinr             = nlist->iinr;
599     jindex           = nlist->jindex;
600     jjnr             = nlist->jjnr;
601     shiftidx         = nlist->shift;
602     gid              = nlist->gid;
603     shiftvec         = fr->shift_vec[0];
604     fshift           = fr->fshift[0];
605     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
606     charge           = mdatoms->chargeA;
607
608     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
609     ewtab            = fr->ic->tabq_coul_F;
610     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
611     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
612
613     /* Setup water-specific parameters */
614     inr              = nlist->iinr[0];
615     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
616     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
617     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
618
619     /* Avoid stupid compiler warnings */
620     jnrA = jnrB = 0;
621     j_coord_offsetA = 0;
622     j_coord_offsetB = 0;
623
624     outeriter        = 0;
625     inneriter        = 0;
626
627     /* Start outer loop over neighborlists */
628     for(iidx=0; iidx<nri; iidx++)
629     {
630         /* Load shift vector for this list */
631         i_shift_offset   = DIM*shiftidx[iidx];
632
633         /* Load limits for loop over neighbors */
634         j_index_start    = jindex[iidx];
635         j_index_end      = jindex[iidx+1];
636
637         /* Get outer coordinate index */
638         inr              = iinr[iidx];
639         i_coord_offset   = DIM*inr;
640
641         /* Load i particle coords and add shift vector */
642         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
643                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
644
645         fix0             = _fjsp_setzero_v2r8();
646         fiy0             = _fjsp_setzero_v2r8();
647         fiz0             = _fjsp_setzero_v2r8();
648         fix1             = _fjsp_setzero_v2r8();
649         fiy1             = _fjsp_setzero_v2r8();
650         fiz1             = _fjsp_setzero_v2r8();
651         fix2             = _fjsp_setzero_v2r8();
652         fiy2             = _fjsp_setzero_v2r8();
653         fiz2             = _fjsp_setzero_v2r8();
654
655         /* Start inner kernel loop */
656         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
657         {
658
659             /* Get j neighbor index, and coordinate index */
660             jnrA             = jjnr[jidx];
661             jnrB             = jjnr[jidx+1];
662             j_coord_offsetA  = DIM*jnrA;
663             j_coord_offsetB  = DIM*jnrB;
664
665             /* load j atom coordinates */
666             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
667                                               &jx0,&jy0,&jz0);
668
669             /* Calculate displacement vector */
670             dx00             = _fjsp_sub_v2r8(ix0,jx0);
671             dy00             = _fjsp_sub_v2r8(iy0,jy0);
672             dz00             = _fjsp_sub_v2r8(iz0,jz0);
673             dx10             = _fjsp_sub_v2r8(ix1,jx0);
674             dy10             = _fjsp_sub_v2r8(iy1,jy0);
675             dz10             = _fjsp_sub_v2r8(iz1,jz0);
676             dx20             = _fjsp_sub_v2r8(ix2,jx0);
677             dy20             = _fjsp_sub_v2r8(iy2,jy0);
678             dz20             = _fjsp_sub_v2r8(iz2,jz0);
679
680             /* Calculate squared distance and things based on it */
681             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
682             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
683             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
684
685             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
686             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
687             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
688
689             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
690             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
691             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
692
693             /* Load parameters for j particles */
694             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
695
696             fjx0             = _fjsp_setzero_v2r8();
697             fjy0             = _fjsp_setzero_v2r8();
698             fjz0             = _fjsp_setzero_v2r8();
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
705
706             /* Compute parameters for interactions between i and j atoms */
707             qq00             = _fjsp_mul_v2r8(iq0,jq0);
708
709             /* EWALD ELECTROSTATICS */
710
711             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
713             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
714             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
715             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
716
717             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
718                                          &ewtabF,&ewtabFn);
719             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
720             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
721
722             fscal            = felec;
723
724             /* Update vectorial force */
725             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
726             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
727             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
728             
729             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
730             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
731             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
732
733             /**************************
734              * CALCULATE INTERACTIONS *
735              **************************/
736
737             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
738
739             /* Compute parameters for interactions between i and j atoms */
740             qq10             = _fjsp_mul_v2r8(iq1,jq0);
741
742             /* EWALD ELECTROSTATICS */
743
744             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
745             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
746             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
747             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
748             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
749
750             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
751                                          &ewtabF,&ewtabFn);
752             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
753             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
754
755             fscal            = felec;
756
757             /* Update vectorial force */
758             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
759             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
760             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
761             
762             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
763             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
764             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq20             = _fjsp_mul_v2r8(iq2,jq0);
774
775             /* EWALD ELECTROSTATICS */
776
777             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
778             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
779             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
780             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
781             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
782
783             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
784                                          &ewtabF,&ewtabFn);
785             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
786             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
787
788             fscal            = felec;
789
790             /* Update vectorial force */
791             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
792             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
793             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
794             
795             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
796             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
797             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
798
799             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
800
801             /* Inner loop uses 120 flops */
802         }
803
804         if(jidx<j_index_end)
805         {
806
807             jnrA             = jjnr[jidx];
808             j_coord_offsetA  = DIM*jnrA;
809
810             /* load j atom coordinates */
811             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
812                                               &jx0,&jy0,&jz0);
813
814             /* Calculate displacement vector */
815             dx00             = _fjsp_sub_v2r8(ix0,jx0);
816             dy00             = _fjsp_sub_v2r8(iy0,jy0);
817             dz00             = _fjsp_sub_v2r8(iz0,jz0);
818             dx10             = _fjsp_sub_v2r8(ix1,jx0);
819             dy10             = _fjsp_sub_v2r8(iy1,jy0);
820             dz10             = _fjsp_sub_v2r8(iz1,jz0);
821             dx20             = _fjsp_sub_v2r8(ix2,jx0);
822             dy20             = _fjsp_sub_v2r8(iy2,jy0);
823             dz20             = _fjsp_sub_v2r8(iz2,jz0);
824
825             /* Calculate squared distance and things based on it */
826             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
827             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
828             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
829
830             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
831             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
832             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
833
834             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
835             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
836             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
837
838             /* Load parameters for j particles */
839             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
840
841             fjx0             = _fjsp_setzero_v2r8();
842             fjy0             = _fjsp_setzero_v2r8();
843             fjz0             = _fjsp_setzero_v2r8();
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
850
851             /* Compute parameters for interactions between i and j atoms */
852             qq00             = _fjsp_mul_v2r8(iq0,jq0);
853
854             /* EWALD ELECTROSTATICS */
855
856             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
857             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
858             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
859             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
860             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
861
862             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
863             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
864             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
865
866             fscal            = felec;
867
868             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
869
870             /* Update vectorial force */
871             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
872             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
873             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
874             
875             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
876             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
877             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _fjsp_mul_v2r8(iq1,jq0);
887
888             /* EWALD ELECTROSTATICS */
889
890             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
891             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
892             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
893             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
894             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
895
896             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
897             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
898             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
899
900             fscal            = felec;
901
902             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
903
904             /* Update vectorial force */
905             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
906             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
907             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
908             
909             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
910             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
911             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq20             = _fjsp_mul_v2r8(iq2,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
926             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
927             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
928             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
929
930             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
931             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
932             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
933
934             fscal            = felec;
935
936             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
937
938             /* Update vectorial force */
939             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
940             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
941             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
942             
943             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
944             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
945             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
946
947             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
948
949             /* Inner loop uses 120 flops */
950         }
951
952         /* End of innermost loop */
953
954         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
955                                               f+i_coord_offset,fshift+i_shift_offset);
956
957         /* Increment number of inner iterations */
958         inneriter                  += j_index_end - j_index_start;
959
960         /* Outer loop uses 18 flops */
961     }
962
963     /* Increment number of outer iterations */
964     outeriter        += nri;
965
966     /* Update outer/inner flops */
967
968     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*120);
969 }