df8f97d19e7b5dd52fda797a1e54fd6b391848fd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sparc64_hpc_ace_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_sparc64_hpc_ace_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
97     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
98     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     _fjsp_v2r8       itab_tmp;
101     _fjsp_v2r8       dummy_mask,cutoff_mask;
102     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
103     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
104     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
105
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
126     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
131     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
132     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _fjsp_setzero_v2r8();
162         fiy0             = _fjsp_setzero_v2r8();
163         fiz0             = _fjsp_setzero_v2r8();
164         fix1             = _fjsp_setzero_v2r8();
165         fiy1             = _fjsp_setzero_v2r8();
166         fiz1             = _fjsp_setzero_v2r8();
167         fix2             = _fjsp_setzero_v2r8();
168         fiy2             = _fjsp_setzero_v2r8();
169         fiz2             = _fjsp_setzero_v2r8();
170
171         /* Reset potential sums */
172         velecsum         = _fjsp_setzero_v2r8();
173         vvdwsum          = _fjsp_setzero_v2r8();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _fjsp_sub_v2r8(ix0,jx0);
191             dy00             = _fjsp_sub_v2r8(iy0,jy0);
192             dz00             = _fjsp_sub_v2r8(iz0,jz0);
193             dx10             = _fjsp_sub_v2r8(ix1,jx0);
194             dy10             = _fjsp_sub_v2r8(iy1,jy0);
195             dz10             = _fjsp_sub_v2r8(iz1,jz0);
196             dx20             = _fjsp_sub_v2r8(ix2,jx0);
197             dy20             = _fjsp_sub_v2r8(iy2,jy0);
198             dz20             = _fjsp_sub_v2r8(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
202             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
203             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
204
205             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
206             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
207             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
208
209             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
210             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
211             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217
218             fjx0             = _fjsp_setzero_v2r8();
219             fjy0             = _fjsp_setzero_v2r8();
220             fjz0             = _fjsp_setzero_v2r8();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _fjsp_mul_v2r8(iq0,jq0);
230             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* EWALD ELECTROSTATICS */
234
235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
237             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
238             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
239             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
240
241             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
242             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
243             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
244             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
245             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
246             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
247             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
248             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
249             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
250             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
256             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
257             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
258             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
259
260             /* Update potential sum for this i atom from the interaction with this j atom. */
261             velecsum         = _fjsp_add_v2r8(velecsum,velec);
262             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
263
264             fscal            = _fjsp_add_v2r8(felec,fvdw);
265
266             /* Update vectorial force */
267             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
268             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
269             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
270             
271             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
272             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
273             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _fjsp_mul_v2r8(iq1,jq0);
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
287             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
288             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
289             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
290             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
291
292             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
293             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
294             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
295             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
296             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
297             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
298             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
299             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
300             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
301             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _fjsp_add_v2r8(velecsum,velec);
305
306             fscal            = felec;
307
308             /* Update vectorial force */
309             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
310             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
311             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
312             
313             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
314             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
315             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq20             = _fjsp_mul_v2r8(iq2,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
330             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
331             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
332             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
333
334             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
335             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
336             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
337             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
338             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
339             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
340             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
341             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
342             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
343             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _fjsp_add_v2r8(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Update vectorial force */
351             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
352             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
353             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
354             
355             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
356             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
357             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
358
359             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
360
361             /* Inner loop uses 147 flops */
362         }
363
364         if(jidx<j_index_end)
365         {
366
367             jnrA             = jjnr[jidx];
368             j_coord_offsetA  = DIM*jnrA;
369
370             /* load j atom coordinates */
371             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
372                                               &jx0,&jy0,&jz0);
373
374             /* Calculate displacement vector */
375             dx00             = _fjsp_sub_v2r8(ix0,jx0);
376             dy00             = _fjsp_sub_v2r8(iy0,jy0);
377             dz00             = _fjsp_sub_v2r8(iz0,jz0);
378             dx10             = _fjsp_sub_v2r8(ix1,jx0);
379             dy10             = _fjsp_sub_v2r8(iy1,jy0);
380             dz10             = _fjsp_sub_v2r8(iz1,jz0);
381             dx20             = _fjsp_sub_v2r8(ix2,jx0);
382             dy20             = _fjsp_sub_v2r8(iy2,jy0);
383             dz20             = _fjsp_sub_v2r8(iz2,jz0);
384
385             /* Calculate squared distance and things based on it */
386             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
387             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
388             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
389
390             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
391             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
392             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
393
394             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
395             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
396             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
397
398             /* Load parameters for j particles */
399             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
400             vdwjidx0A        = 2*vdwtype[jnrA+0];
401
402             fjx0             = _fjsp_setzero_v2r8();
403             fjy0             = _fjsp_setzero_v2r8();
404             fjz0             = _fjsp_setzero_v2r8();
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq00             = _fjsp_mul_v2r8(iq0,jq0);
414             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
415                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
421             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
422             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
423             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
424
425             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
426             ewtabD           = _fjsp_setzero_v2r8();
427             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
428             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
429             ewtabFn          = _fjsp_setzero_v2r8();
430             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
431             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
432             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
433             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
434             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
435
436             /* LENNARD-JONES DISPERSION/REPULSION */
437
438             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
439             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
440             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
441             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
442             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
446             velecsum         = _fjsp_add_v2r8(velecsum,velec);
447             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
448             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
449
450             fscal            = _fjsp_add_v2r8(felec,fvdw);
451
452             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
453
454             /* Update vectorial force */
455             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
456             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
457             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
458             
459             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
460             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
461             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq10             = _fjsp_mul_v2r8(iq1,jq0);
471
472             /* EWALD ELECTROSTATICS */
473
474             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
475             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
476             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
477             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
478             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
479
480             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
481             ewtabD           = _fjsp_setzero_v2r8();
482             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
483             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
484             ewtabFn          = _fjsp_setzero_v2r8();
485             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
486             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
487             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
488             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
489             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
493             velecsum         = _fjsp_add_v2r8(velecsum,velec);
494
495             fscal            = felec;
496
497             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
498
499             /* Update vectorial force */
500             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
501             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
502             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
503             
504             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
505             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
506             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq20             = _fjsp_mul_v2r8(iq2,jq0);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
520             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
521             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
522             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
523             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
524
525             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
526             ewtabD           = _fjsp_setzero_v2r8();
527             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
528             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
529             ewtabFn          = _fjsp_setzero_v2r8();
530             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
531             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
532             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
533             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
534             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
538             velecsum         = _fjsp_add_v2r8(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
543
544             /* Update vectorial force */
545             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
546             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
547             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
548             
549             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
550             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
551             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
552
553             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
554
555             /* Inner loop uses 147 flops */
556         }
557
558         /* End of innermost loop */
559
560         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
561                                               f+i_coord_offset,fshift+i_shift_offset);
562
563         ggid                        = gid[iidx];
564         /* Update potential energies */
565         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
566         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
567
568         /* Increment number of inner iterations */
569         inneriter                  += j_index_end - j_index_start;
570
571         /* Outer loop uses 20 flops */
572     }
573
574     /* Increment number of outer iterations */
575     outeriter        += nri;
576
577     /* Update outer/inner flops */
578
579     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
580 }
581 /*
582  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
583  * Electrostatics interaction: Ewald
584  * VdW interaction:            LennardJones
585  * Geometry:                   Water3-Particle
586  * Calculate force/pot:        Force
587  */
588 void
589 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
590                     (t_nblist                    * gmx_restrict       nlist,
591                      rvec                        * gmx_restrict          xx,
592                      rvec                        * gmx_restrict          ff,
593                      struct t_forcerec           * gmx_restrict          fr,
594                      t_mdatoms                   * gmx_restrict     mdatoms,
595                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
596                      t_nrnb                      * gmx_restrict        nrnb)
597 {
598     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
599      * just 0 for non-waters.
600      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
601      * jnr indices corresponding to data put in the four positions in the SIMD register.
602      */
603     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
604     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
605     int              jnrA,jnrB;
606     int              j_coord_offsetA,j_coord_offsetB;
607     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
608     real             rcutoff_scalar;
609     real             *shiftvec,*fshift,*x,*f;
610     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
611     int              vdwioffset0;
612     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
613     int              vdwioffset1;
614     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
615     int              vdwioffset2;
616     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
617     int              vdwjidx0A,vdwjidx0B;
618     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
619     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
620     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
621     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
622     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
623     real             *charge;
624     int              nvdwtype;
625     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
626     int              *vdwtype;
627     real             *vdwparam;
628     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
629     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
630     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
631     real             *ewtab;
632     _fjsp_v2r8       itab_tmp;
633     _fjsp_v2r8       dummy_mask,cutoff_mask;
634     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
635     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
636     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
637
638     x                = xx[0];
639     f                = ff[0];
640
641     nri              = nlist->nri;
642     iinr             = nlist->iinr;
643     jindex           = nlist->jindex;
644     jjnr             = nlist->jjnr;
645     shiftidx         = nlist->shift;
646     gid              = nlist->gid;
647     shiftvec         = fr->shift_vec[0];
648     fshift           = fr->fshift[0];
649     facel            = gmx_fjsp_set1_v2r8(fr->ic->epsfac);
650     charge           = mdatoms->chargeA;
651     nvdwtype         = fr->ntype;
652     vdwparam         = fr->nbfp;
653     vdwtype          = mdatoms->typeA;
654
655     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
656     ewtab            = fr->ic->tabq_coul_F;
657     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
658     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
659
660     /* Setup water-specific parameters */
661     inr              = nlist->iinr[0];
662     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
663     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
664     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
665     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
666
667     /* Avoid stupid compiler warnings */
668     jnrA = jnrB = 0;
669     j_coord_offsetA = 0;
670     j_coord_offsetB = 0;
671
672     outeriter        = 0;
673     inneriter        = 0;
674
675     /* Start outer loop over neighborlists */
676     for(iidx=0; iidx<nri; iidx++)
677     {
678         /* Load shift vector for this list */
679         i_shift_offset   = DIM*shiftidx[iidx];
680
681         /* Load limits for loop over neighbors */
682         j_index_start    = jindex[iidx];
683         j_index_end      = jindex[iidx+1];
684
685         /* Get outer coordinate index */
686         inr              = iinr[iidx];
687         i_coord_offset   = DIM*inr;
688
689         /* Load i particle coords and add shift vector */
690         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
691                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
692
693         fix0             = _fjsp_setzero_v2r8();
694         fiy0             = _fjsp_setzero_v2r8();
695         fiz0             = _fjsp_setzero_v2r8();
696         fix1             = _fjsp_setzero_v2r8();
697         fiy1             = _fjsp_setzero_v2r8();
698         fiz1             = _fjsp_setzero_v2r8();
699         fix2             = _fjsp_setzero_v2r8();
700         fiy2             = _fjsp_setzero_v2r8();
701         fiz2             = _fjsp_setzero_v2r8();
702
703         /* Start inner kernel loop */
704         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
705         {
706
707             /* Get j neighbor index, and coordinate index */
708             jnrA             = jjnr[jidx];
709             jnrB             = jjnr[jidx+1];
710             j_coord_offsetA  = DIM*jnrA;
711             j_coord_offsetB  = DIM*jnrB;
712
713             /* load j atom coordinates */
714             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
715                                               &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx00             = _fjsp_sub_v2r8(ix0,jx0);
719             dy00             = _fjsp_sub_v2r8(iy0,jy0);
720             dz00             = _fjsp_sub_v2r8(iz0,jz0);
721             dx10             = _fjsp_sub_v2r8(ix1,jx0);
722             dy10             = _fjsp_sub_v2r8(iy1,jy0);
723             dz10             = _fjsp_sub_v2r8(iz1,jz0);
724             dx20             = _fjsp_sub_v2r8(ix2,jx0);
725             dy20             = _fjsp_sub_v2r8(iy2,jy0);
726             dz20             = _fjsp_sub_v2r8(iz2,jz0);
727
728             /* Calculate squared distance and things based on it */
729             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
730             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
731             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
732
733             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
734             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
735             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
736
737             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
738             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
739             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
740
741             /* Load parameters for j particles */
742             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
743             vdwjidx0A        = 2*vdwtype[jnrA+0];
744             vdwjidx0B        = 2*vdwtype[jnrB+0];
745
746             fjx0             = _fjsp_setzero_v2r8();
747             fjy0             = _fjsp_setzero_v2r8();
748             fjz0             = _fjsp_setzero_v2r8();
749
750             /**************************
751              * CALCULATE INTERACTIONS *
752              **************************/
753
754             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
755
756             /* Compute parameters for interactions between i and j atoms */
757             qq00             = _fjsp_mul_v2r8(iq0,jq0);
758             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
759                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
760
761             /* EWALD ELECTROSTATICS */
762
763             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
764             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
765             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
766             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
767             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
768
769             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
770                                          &ewtabF,&ewtabFn);
771             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
772             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
773
774             /* LENNARD-JONES DISPERSION/REPULSION */
775
776             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
777             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
778
779             fscal            = _fjsp_add_v2r8(felec,fvdw);
780
781             /* Update vectorial force */
782             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
783             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
784             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
785             
786             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
787             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
788             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
795
796             /* Compute parameters for interactions between i and j atoms */
797             qq10             = _fjsp_mul_v2r8(iq1,jq0);
798
799             /* EWALD ELECTROSTATICS */
800
801             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
802             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
803             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
804             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
805             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
806
807             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
808                                          &ewtabF,&ewtabFn);
809             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
810             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
811
812             fscal            = felec;
813
814             /* Update vectorial force */
815             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
816             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
817             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
818             
819             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
820             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
821             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
828
829             /* Compute parameters for interactions between i and j atoms */
830             qq20             = _fjsp_mul_v2r8(iq2,jq0);
831
832             /* EWALD ELECTROSTATICS */
833
834             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
835             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
836             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
837             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
838             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
839
840             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
841                                          &ewtabF,&ewtabFn);
842             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
843             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
844
845             fscal            = felec;
846
847             /* Update vectorial force */
848             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
849             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
850             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
851             
852             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
853             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
854             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
855
856             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
857
858             /* Inner loop uses 127 flops */
859         }
860
861         if(jidx<j_index_end)
862         {
863
864             jnrA             = jjnr[jidx];
865             j_coord_offsetA  = DIM*jnrA;
866
867             /* load j atom coordinates */
868             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
869                                               &jx0,&jy0,&jz0);
870
871             /* Calculate displacement vector */
872             dx00             = _fjsp_sub_v2r8(ix0,jx0);
873             dy00             = _fjsp_sub_v2r8(iy0,jy0);
874             dz00             = _fjsp_sub_v2r8(iz0,jz0);
875             dx10             = _fjsp_sub_v2r8(ix1,jx0);
876             dy10             = _fjsp_sub_v2r8(iy1,jy0);
877             dz10             = _fjsp_sub_v2r8(iz1,jz0);
878             dx20             = _fjsp_sub_v2r8(ix2,jx0);
879             dy20             = _fjsp_sub_v2r8(iy2,jy0);
880             dz20             = _fjsp_sub_v2r8(iz2,jz0);
881
882             /* Calculate squared distance and things based on it */
883             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
884             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
885             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
886
887             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
888             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
889             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
890
891             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
892             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
893             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
894
895             /* Load parameters for j particles */
896             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
897             vdwjidx0A        = 2*vdwtype[jnrA+0];
898
899             fjx0             = _fjsp_setzero_v2r8();
900             fjy0             = _fjsp_setzero_v2r8();
901             fjz0             = _fjsp_setzero_v2r8();
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
908
909             /* Compute parameters for interactions between i and j atoms */
910             qq00             = _fjsp_mul_v2r8(iq0,jq0);
911             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
912                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
913
914             /* EWALD ELECTROSTATICS */
915
916             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
917             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
918             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
919             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
920             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
921
922             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
923             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
924             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
925
926             /* LENNARD-JONES DISPERSION/REPULSION */
927
928             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
929             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
930
931             fscal            = _fjsp_add_v2r8(felec,fvdw);
932
933             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
934
935             /* Update vectorial force */
936             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
937             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
938             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
939             
940             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
941             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
942             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _fjsp_mul_v2r8(iq1,jq0);
952
953             /* EWALD ELECTROSTATICS */
954
955             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
957             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
958             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
959             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
960
961             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
962             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
963             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
964
965             fscal            = felec;
966
967             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
968
969             /* Update vectorial force */
970             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
971             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
972             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
973             
974             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
975             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
976             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _fjsp_mul_v2r8(iq2,jq0);
986
987             /* EWALD ELECTROSTATICS */
988
989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
990             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
991             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
992             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
993             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
994
995             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
996             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
997             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
998
999             fscal            = felec;
1000
1001             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1002
1003             /* Update vectorial force */
1004             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1005             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1006             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1007             
1008             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1009             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1010             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1011
1012             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1013
1014             /* Inner loop uses 127 flops */
1015         }
1016
1017         /* End of innermost loop */
1018
1019         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1020                                               f+i_coord_offset,fshift+i_shift_offset);
1021
1022         /* Increment number of inner iterations */
1023         inneriter                  += j_index_end - j_index_start;
1024
1025         /* Outer loop uses 18 flops */
1026     }
1027
1028     /* Increment number of outer iterations */
1029     outeriter        += nri;
1030
1031     /* Update outer/inner flops */
1032
1033     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1034 }