K-computer specific modifications
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sparc64_hpc_ace_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sparc64_hpc_ace_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sparc64_hpc_ace_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/legacyheaders/vec.h"
47 #include "nrnb.h"
48
49 #include "kernelutil_sparc64_hpc_ace_double.h"
50
51 /*
52  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
53  * Electrostatics interaction: Ewald
54  * VdW interaction:            LennardJones
55  * Geometry:                   Water3-Particle
56  * Calculate force/pot:        PotentialAndForce
57  */
58 void
59 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sparc64_hpc_ace_double
60                     (t_nblist                    * gmx_restrict       nlist,
61                      rvec                        * gmx_restrict          xx,
62                      rvec                        * gmx_restrict          ff,
63                      t_forcerec                  * gmx_restrict          fr,
64                      t_mdatoms                   * gmx_restrict     mdatoms,
65                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66                      t_nrnb                      * gmx_restrict        nrnb)
67 {
68     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69      * just 0 for non-waters.
70      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
71      * jnr indices corresponding to data put in the four positions in the SIMD register.
72      */
73     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
74     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75     int              jnrA,jnrB;
76     int              j_coord_offsetA,j_coord_offsetB;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81     int              vdwioffset0;
82     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83     int              vdwioffset1;
84     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
85     int              vdwioffset2;
86     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
87     int              vdwjidx0A,vdwjidx0B;
88     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
93     real             *charge;
94     int              nvdwtype;
95     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
99     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
100     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     _fjsp_v2r8       itab_tmp;
103     _fjsp_v2r8       dummy_mask,cutoff_mask;
104     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
105     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
106     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
128     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
133     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
134     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _fjsp_setzero_v2r8();
164         fiy0             = _fjsp_setzero_v2r8();
165         fiz0             = _fjsp_setzero_v2r8();
166         fix1             = _fjsp_setzero_v2r8();
167         fiy1             = _fjsp_setzero_v2r8();
168         fiz1             = _fjsp_setzero_v2r8();
169         fix2             = _fjsp_setzero_v2r8();
170         fiy2             = _fjsp_setzero_v2r8();
171         fiz2             = _fjsp_setzero_v2r8();
172
173         /* Reset potential sums */
174         velecsum         = _fjsp_setzero_v2r8();
175         vvdwsum          = _fjsp_setzero_v2r8();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _fjsp_sub_v2r8(ix0,jx0);
193             dy00             = _fjsp_sub_v2r8(iy0,jy0);
194             dz00             = _fjsp_sub_v2r8(iz0,jz0);
195             dx10             = _fjsp_sub_v2r8(ix1,jx0);
196             dy10             = _fjsp_sub_v2r8(iy1,jy0);
197             dz10             = _fjsp_sub_v2r8(iz1,jz0);
198             dx20             = _fjsp_sub_v2r8(ix2,jx0);
199             dy20             = _fjsp_sub_v2r8(iy2,jy0);
200             dz20             = _fjsp_sub_v2r8(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
204             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
205             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
206
207             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
208             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
209             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
210
211             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
212             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
213             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _fjsp_setzero_v2r8();
221             fjy0             = _fjsp_setzero_v2r8();
222             fjz0             = _fjsp_setzero_v2r8();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _fjsp_mul_v2r8(iq0,jq0);
232             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
239             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
240             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
241             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
242
243             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
244             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
245             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
246             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
247             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
248             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
249             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
250             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
251             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
252             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
258             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
259             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
260             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _fjsp_add_v2r8(velecsum,velec);
264             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
265
266             fscal            = _fjsp_add_v2r8(felec,fvdw);
267
268             /* Update vectorial force */
269             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
270             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
271             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
272             
273             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
274             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
275             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _fjsp_mul_v2r8(iq1,jq0);
285
286             /* EWALD ELECTROSTATICS */
287
288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
289             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
290             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
291             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
292             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
293
294             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
295             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
296             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
297             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
298             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
299             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
300             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
301             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
302             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
303             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _fjsp_add_v2r8(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Update vectorial force */
311             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
312             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
313             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
314             
315             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
316             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
317             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq20             = _fjsp_mul_v2r8(iq2,jq0);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
332             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
333             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
334             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
335
336             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
337             ewtabD           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[1] );
338             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
339             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
340             ewtabFn          = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[1] +2);
341             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
342             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
343             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
344             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
345             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _fjsp_add_v2r8(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Update vectorial force */
353             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
354             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
355             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
356             
357             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
358             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
359             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
360
361             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
362
363             /* Inner loop uses 147 flops */
364         }
365
366         if(jidx<j_index_end)
367         {
368
369             jnrA             = jjnr[jidx];
370             j_coord_offsetA  = DIM*jnrA;
371
372             /* load j atom coordinates */
373             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
374                                               &jx0,&jy0,&jz0);
375
376             /* Calculate displacement vector */
377             dx00             = _fjsp_sub_v2r8(ix0,jx0);
378             dy00             = _fjsp_sub_v2r8(iy0,jy0);
379             dz00             = _fjsp_sub_v2r8(iz0,jz0);
380             dx10             = _fjsp_sub_v2r8(ix1,jx0);
381             dy10             = _fjsp_sub_v2r8(iy1,jy0);
382             dz10             = _fjsp_sub_v2r8(iz1,jz0);
383             dx20             = _fjsp_sub_v2r8(ix2,jx0);
384             dy20             = _fjsp_sub_v2r8(iy2,jy0);
385             dz20             = _fjsp_sub_v2r8(iz2,jz0);
386
387             /* Calculate squared distance and things based on it */
388             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
389             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
390             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
391
392             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
393             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
394             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
395
396             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
397             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
398             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
399
400             /* Load parameters for j particles */
401             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
402             vdwjidx0A        = 2*vdwtype[jnrA+0];
403
404             fjx0             = _fjsp_setzero_v2r8();
405             fjy0             = _fjsp_setzero_v2r8();
406             fjz0             = _fjsp_setzero_v2r8();
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq00             = _fjsp_mul_v2r8(iq0,jq0);
416             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
417                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
418
419             /* EWALD ELECTROSTATICS */
420
421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
422             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
423             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
424             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
425             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
426
427             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
428             ewtabD           = _fjsp_setzero_v2r8();
429             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
430             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
431             ewtabFn          = _fjsp_setzero_v2r8();
432             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
433             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
434             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
435             velec            = _fjsp_mul_v2r8(qq00,_fjsp_sub_v2r8(rinv00,velec));
436             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
437
438             /* LENNARD-JONES DISPERSION/REPULSION */
439
440             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
441             vvdw6            = _fjsp_mul_v2r8(c6_00,rinvsix);
442             vvdw12           = _fjsp_mul_v2r8(c12_00,_fjsp_mul_v2r8(rinvsix,rinvsix));
443             vvdw             = _fjsp_msub_v2r8( vvdw12,one_twelfth, _fjsp_mul_v2r8(vvdw6,one_sixth) );
444             fvdw             = _fjsp_mul_v2r8(_fjsp_sub_v2r8(vvdw12,vvdw6),rinvsq00);
445
446             /* Update potential sum for this i atom from the interaction with this j atom. */
447             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
448             velecsum         = _fjsp_add_v2r8(velecsum,velec);
449             vvdw             = _fjsp_unpacklo_v2r8(vvdw,_fjsp_setzero_v2r8());
450             vvdwsum          = _fjsp_add_v2r8(vvdwsum,vvdw);
451
452             fscal            = _fjsp_add_v2r8(felec,fvdw);
453
454             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
455
456             /* Update vectorial force */
457             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
458             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
459             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
460             
461             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
462             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
463             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq10             = _fjsp_mul_v2r8(iq1,jq0);
473
474             /* EWALD ELECTROSTATICS */
475
476             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
477             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
478             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
479             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
480             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
481
482             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
483             ewtabD           = _fjsp_setzero_v2r8();
484             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
485             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
486             ewtabFn          = _fjsp_setzero_v2r8();
487             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
488             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
489             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
490             velec            = _fjsp_mul_v2r8(qq10,_fjsp_sub_v2r8(rinv10,velec));
491             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
495             velecsum         = _fjsp_add_v2r8(velecsum,velec);
496
497             fscal            = felec;
498
499             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
500
501             /* Update vectorial force */
502             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
503             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
504             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
505             
506             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
507             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
508             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq20             = _fjsp_mul_v2r8(iq2,jq0);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
522             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
523             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
524             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
525             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
526
527             ewtabF           = _fjsp_load_v2r8( ewtab + 4*ewconv.i[0] );
528             ewtabD           = _fjsp_setzero_v2r8();
529             GMX_FJSP_TRANSPOSE2_V2R8(ewtabF,ewtabD);
530             ewtabV           = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(), ewtab + 4*ewconv.i[0] +2);
531             ewtabFn          = _fjsp_setzero_v2r8();
532             GMX_FJSP_TRANSPOSE2_V2R8(ewtabV,ewtabFn);
533             felec            = _fjsp_madd_v2r8(eweps,ewtabD,ewtabF);
534             velec            = _fjsp_nmsub_v2r8(_fjsp_mul_v2r8(ewtabhalfspace,eweps) ,_fjsp_add_v2r8(ewtabF,felec), ewtabV);
535             velec            = _fjsp_mul_v2r8(qq20,_fjsp_sub_v2r8(rinv20,velec));
536             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _fjsp_unpacklo_v2r8(velec,_fjsp_setzero_v2r8());
540             velecsum         = _fjsp_add_v2r8(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
545
546             /* Update vectorial force */
547             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
548             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
549             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
550             
551             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
552             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
553             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
554
555             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
556
557             /* Inner loop uses 147 flops */
558         }
559
560         /* End of innermost loop */
561
562         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
563                                               f+i_coord_offset,fshift+i_shift_offset);
564
565         ggid                        = gid[iidx];
566         /* Update potential energies */
567         gmx_fjsp_update_1pot_v2r8(velecsum,kernel_data->energygrp_elec+ggid);
568         gmx_fjsp_update_1pot_v2r8(vvdwsum,kernel_data->energygrp_vdw+ggid);
569
570         /* Increment number of inner iterations */
571         inneriter                  += j_index_end - j_index_start;
572
573         /* Outer loop uses 20 flops */
574     }
575
576     /* Increment number of outer iterations */
577     outeriter        += nri;
578
579     /* Update outer/inner flops */
580
581     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
582 }
583 /*
584  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
585  * Electrostatics interaction: Ewald
586  * VdW interaction:            LennardJones
587  * Geometry:                   Water3-Particle
588  * Calculate force/pot:        Force
589  */
590 void
591 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sparc64_hpc_ace_double
592                     (t_nblist                    * gmx_restrict       nlist,
593                      rvec                        * gmx_restrict          xx,
594                      rvec                        * gmx_restrict          ff,
595                      t_forcerec                  * gmx_restrict          fr,
596                      t_mdatoms                   * gmx_restrict     mdatoms,
597                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
598                      t_nrnb                      * gmx_restrict        nrnb)
599 {
600     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
601      * just 0 for non-waters.
602      * Suffixes A,B refer to j loop unrolling done with double precision SIMD, e.g. for the two different
603      * jnr indices corresponding to data put in the four positions in the SIMD register.
604      */
605     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
606     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
607     int              jnrA,jnrB;
608     int              j_coord_offsetA,j_coord_offsetB;
609     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
610     real             rcutoff_scalar;
611     real             *shiftvec,*fshift,*x,*f;
612     _fjsp_v2r8       tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
613     int              vdwioffset0;
614     _fjsp_v2r8       ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
615     int              vdwioffset1;
616     _fjsp_v2r8       ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
617     int              vdwioffset2;
618     _fjsp_v2r8       ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
619     int              vdwjidx0A,vdwjidx0B;
620     _fjsp_v2r8       jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
621     _fjsp_v2r8       dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
622     _fjsp_v2r8       dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
623     _fjsp_v2r8       dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
624     _fjsp_v2r8       velec,felec,velecsum,facel,crf,krf,krf2;
625     real             *charge;
626     int              nvdwtype;
627     _fjsp_v2r8       rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
628     int              *vdwtype;
629     real             *vdwparam;
630     _fjsp_v2r8       one_sixth   = gmx_fjsp_set1_v2r8(1.0/6.0);
631     _fjsp_v2r8       one_twelfth = gmx_fjsp_set1_v2r8(1.0/12.0);
632     _fjsp_v2r8       ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
633     real             *ewtab;
634     _fjsp_v2r8       itab_tmp;
635     _fjsp_v2r8       dummy_mask,cutoff_mask;
636     _fjsp_v2r8       one     = gmx_fjsp_set1_v2r8(1.0);
637     _fjsp_v2r8       two     = gmx_fjsp_set1_v2r8(2.0);
638     union { _fjsp_v2r8 simd; long long int i[2]; } vfconv,gbconv,ewconv;
639
640     x                = xx[0];
641     f                = ff[0];
642
643     nri              = nlist->nri;
644     iinr             = nlist->iinr;
645     jindex           = nlist->jindex;
646     jjnr             = nlist->jjnr;
647     shiftidx         = nlist->shift;
648     gid              = nlist->gid;
649     shiftvec         = fr->shift_vec[0];
650     fshift           = fr->fshift[0];
651     facel            = gmx_fjsp_set1_v2r8(fr->epsfac);
652     charge           = mdatoms->chargeA;
653     nvdwtype         = fr->ntype;
654     vdwparam         = fr->nbfp;
655     vdwtype          = mdatoms->typeA;
656
657     sh_ewald         = gmx_fjsp_set1_v2r8(fr->ic->sh_ewald);
658     ewtab            = fr->ic->tabq_coul_F;
659     ewtabscale       = gmx_fjsp_set1_v2r8(fr->ic->tabq_scale);
660     ewtabhalfspace   = gmx_fjsp_set1_v2r8(0.5/fr->ic->tabq_scale);
661
662     /* Setup water-specific parameters */
663     inr              = nlist->iinr[0];
664     iq0              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+0]));
665     iq1              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+1]));
666     iq2              = _fjsp_mul_v2r8(facel,gmx_fjsp_set1_v2r8(charge[inr+2]));
667     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
668
669     /* Avoid stupid compiler warnings */
670     jnrA = jnrB = 0;
671     j_coord_offsetA = 0;
672     j_coord_offsetB = 0;
673
674     outeriter        = 0;
675     inneriter        = 0;
676
677     /* Start outer loop over neighborlists */
678     for(iidx=0; iidx<nri; iidx++)
679     {
680         /* Load shift vector for this list */
681         i_shift_offset   = DIM*shiftidx[iidx];
682
683         /* Load limits for loop over neighbors */
684         j_index_start    = jindex[iidx];
685         j_index_end      = jindex[iidx+1];
686
687         /* Get outer coordinate index */
688         inr              = iinr[iidx];
689         i_coord_offset   = DIM*inr;
690
691         /* Load i particle coords and add shift vector */
692         gmx_fjsp_load_shift_and_3rvec_broadcast_v2r8(shiftvec+i_shift_offset,x+i_coord_offset,
693                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
694
695         fix0             = _fjsp_setzero_v2r8();
696         fiy0             = _fjsp_setzero_v2r8();
697         fiz0             = _fjsp_setzero_v2r8();
698         fix1             = _fjsp_setzero_v2r8();
699         fiy1             = _fjsp_setzero_v2r8();
700         fiz1             = _fjsp_setzero_v2r8();
701         fix2             = _fjsp_setzero_v2r8();
702         fiy2             = _fjsp_setzero_v2r8();
703         fiz2             = _fjsp_setzero_v2r8();
704
705         /* Start inner kernel loop */
706         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
707         {
708
709             /* Get j neighbor index, and coordinate index */
710             jnrA             = jjnr[jidx];
711             jnrB             = jjnr[jidx+1];
712             j_coord_offsetA  = DIM*jnrA;
713             j_coord_offsetB  = DIM*jnrB;
714
715             /* load j atom coordinates */
716             gmx_fjsp_load_1rvec_2ptr_swizzle_v2r8(x+j_coord_offsetA,x+j_coord_offsetB,
717                                               &jx0,&jy0,&jz0);
718
719             /* Calculate displacement vector */
720             dx00             = _fjsp_sub_v2r8(ix0,jx0);
721             dy00             = _fjsp_sub_v2r8(iy0,jy0);
722             dz00             = _fjsp_sub_v2r8(iz0,jz0);
723             dx10             = _fjsp_sub_v2r8(ix1,jx0);
724             dy10             = _fjsp_sub_v2r8(iy1,jy0);
725             dz10             = _fjsp_sub_v2r8(iz1,jz0);
726             dx20             = _fjsp_sub_v2r8(ix2,jx0);
727             dy20             = _fjsp_sub_v2r8(iy2,jy0);
728             dz20             = _fjsp_sub_v2r8(iz2,jz0);
729
730             /* Calculate squared distance and things based on it */
731             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
732             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
733             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
734
735             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
736             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
737             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
738
739             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
740             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
741             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
742
743             /* Load parameters for j particles */
744             jq0              = gmx_fjsp_load_2real_swizzle_v2r8(charge+jnrA+0,charge+jnrB+0);
745             vdwjidx0A        = 2*vdwtype[jnrA+0];
746             vdwjidx0B        = 2*vdwtype[jnrB+0];
747
748             fjx0             = _fjsp_setzero_v2r8();
749             fjy0             = _fjsp_setzero_v2r8();
750             fjz0             = _fjsp_setzero_v2r8();
751
752             /**************************
753              * CALCULATE INTERACTIONS *
754              **************************/
755
756             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
757
758             /* Compute parameters for interactions between i and j atoms */
759             qq00             = _fjsp_mul_v2r8(iq0,jq0);
760             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
761                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
762
763             /* EWALD ELECTROSTATICS */
764
765             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
766             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
767             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
768             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
769             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
770
771             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
772                                          &ewtabF,&ewtabFn);
773             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
774             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
775
776             /* LENNARD-JONES DISPERSION/REPULSION */
777
778             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
779             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
780
781             fscal            = _fjsp_add_v2r8(felec,fvdw);
782
783             /* Update vectorial force */
784             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
785             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
786             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
787             
788             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
789             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
790             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
797
798             /* Compute parameters for interactions between i and j atoms */
799             qq10             = _fjsp_mul_v2r8(iq1,jq0);
800
801             /* EWALD ELECTROSTATICS */
802
803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
804             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
805             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
806             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
807             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
808
809             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
810                                          &ewtabF,&ewtabFn);
811             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
812             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
813
814             fscal            = felec;
815
816             /* Update vectorial force */
817             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
818             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
819             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
820             
821             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
822             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
823             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq20             = _fjsp_mul_v2r8(iq2,jq0);
833
834             /* EWALD ELECTROSTATICS */
835
836             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
837             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
838             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
839             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
840             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
841
842             gmx_fjsp_load_2pair_swizzle_v2r8(ewtab+ewconv.i[0],ewtab+ewconv.i[1],
843                                          &ewtabF,&ewtabFn);
844             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
845             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
846
847             fscal            = felec;
848
849             /* Update vectorial force */
850             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
851             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
852             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
853             
854             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
855             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
856             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
857
858             gmx_fjsp_decrement_1rvec_2ptr_swizzle_v2r8(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
859
860             /* Inner loop uses 127 flops */
861         }
862
863         if(jidx<j_index_end)
864         {
865
866             jnrA             = jjnr[jidx];
867             j_coord_offsetA  = DIM*jnrA;
868
869             /* load j atom coordinates */
870             gmx_fjsp_load_1rvec_1ptr_swizzle_v2r8(x+j_coord_offsetA,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _fjsp_sub_v2r8(ix0,jx0);
875             dy00             = _fjsp_sub_v2r8(iy0,jy0);
876             dz00             = _fjsp_sub_v2r8(iz0,jz0);
877             dx10             = _fjsp_sub_v2r8(ix1,jx0);
878             dy10             = _fjsp_sub_v2r8(iy1,jy0);
879             dz10             = _fjsp_sub_v2r8(iz1,jz0);
880             dx20             = _fjsp_sub_v2r8(ix2,jx0);
881             dy20             = _fjsp_sub_v2r8(iy2,jy0);
882             dz20             = _fjsp_sub_v2r8(iz2,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_fjsp_calc_rsq_v2r8(dx00,dy00,dz00);
886             rsq10            = gmx_fjsp_calc_rsq_v2r8(dx10,dy10,dz10);
887             rsq20            = gmx_fjsp_calc_rsq_v2r8(dx20,dy20,dz20);
888
889             rinv00           = gmx_fjsp_invsqrt_v2r8(rsq00);
890             rinv10           = gmx_fjsp_invsqrt_v2r8(rsq10);
891             rinv20           = gmx_fjsp_invsqrt_v2r8(rsq20);
892
893             rinvsq00         = _fjsp_mul_v2r8(rinv00,rinv00);
894             rinvsq10         = _fjsp_mul_v2r8(rinv10,rinv10);
895             rinvsq20         = _fjsp_mul_v2r8(rinv20,rinv20);
896
897             /* Load parameters for j particles */
898             jq0              = _fjsp_loadl_v2r8(_fjsp_setzero_v2r8(),charge+jnrA+0);
899             vdwjidx0A        = 2*vdwtype[jnrA+0];
900
901             fjx0             = _fjsp_setzero_v2r8();
902             fjy0             = _fjsp_setzero_v2r8();
903             fjz0             = _fjsp_setzero_v2r8();
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             r00              = _fjsp_mul_v2r8(rsq00,rinv00);
910
911             /* Compute parameters for interactions between i and j atoms */
912             qq00             = _fjsp_mul_v2r8(iq0,jq0);
913             gmx_fjsp_load_2pair_swizzle_v2r8(vdwparam+vdwioffset0+vdwjidx0A,
914                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
915
916             /* EWALD ELECTROSTATICS */
917
918             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
919             ewrt             = _fjsp_mul_v2r8(r00,ewtabscale);
920             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
921             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
922             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
923
924             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
925             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
926             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq00,rinv00),_fjsp_sub_v2r8(rinvsq00,felec));
927
928             /* LENNARD-JONES DISPERSION/REPULSION */
929
930             rinvsix          = _fjsp_mul_v2r8(_fjsp_mul_v2r8(rinvsq00,rinvsq00),rinvsq00);
931             fvdw             = _fjsp_mul_v2r8(_fjsp_msub_v2r8(c12_00,rinvsix,c6_00),_fjsp_mul_v2r8(rinvsix,rinvsq00));
932
933             fscal            = _fjsp_add_v2r8(felec,fvdw);
934
935             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
936
937             /* Update vectorial force */
938             fix0             = _fjsp_madd_v2r8(dx00,fscal,fix0);
939             fiy0             = _fjsp_madd_v2r8(dy00,fscal,fiy0);
940             fiz0             = _fjsp_madd_v2r8(dz00,fscal,fiz0);
941             
942             fjx0             = _fjsp_madd_v2r8(dx00,fscal,fjx0);
943             fjy0             = _fjsp_madd_v2r8(dy00,fscal,fjy0);
944             fjz0             = _fjsp_madd_v2r8(dz00,fscal,fjz0);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r10              = _fjsp_mul_v2r8(rsq10,rinv10);
951
952             /* Compute parameters for interactions between i and j atoms */
953             qq10             = _fjsp_mul_v2r8(iq1,jq0);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _fjsp_mul_v2r8(r10,ewtabscale);
959             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
960             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
961             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
962
963             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
964             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
965             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq10,rinv10),_fjsp_sub_v2r8(rinvsq10,felec));
966
967             fscal            = felec;
968
969             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
970
971             /* Update vectorial force */
972             fix1             = _fjsp_madd_v2r8(dx10,fscal,fix1);
973             fiy1             = _fjsp_madd_v2r8(dy10,fscal,fiy1);
974             fiz1             = _fjsp_madd_v2r8(dz10,fscal,fiz1);
975             
976             fjx0             = _fjsp_madd_v2r8(dx10,fscal,fjx0);
977             fjy0             = _fjsp_madd_v2r8(dy10,fscal,fjy0);
978             fjz0             = _fjsp_madd_v2r8(dz10,fscal,fjz0);
979
980             /**************************
981              * CALCULATE INTERACTIONS *
982              **************************/
983
984             r20              = _fjsp_mul_v2r8(rsq20,rinv20);
985
986             /* Compute parameters for interactions between i and j atoms */
987             qq20             = _fjsp_mul_v2r8(iq2,jq0);
988
989             /* EWALD ELECTROSTATICS */
990
991             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
992             ewrt             = _fjsp_mul_v2r8(r20,ewtabscale);
993             itab_tmp         = _fjsp_dtox_v2r8(ewrt);
994             eweps            = _fjsp_sub_v2r8(ewrt,_fjsp_xtod_v2r8(itab_tmp));
995             _fjsp_store_v2r8(&ewconv.simd,itab_tmp);
996
997             gmx_fjsp_load_1pair_swizzle_v2r8(ewtab+ewconv.i[0],&ewtabF,&ewtabFn);
998             felec            = _fjsp_madd_v2r8(eweps,ewtabFn,_fjsp_nmsub_v2r8(eweps,ewtabF,ewtabF));
999             felec            = _fjsp_mul_v2r8(_fjsp_mul_v2r8(qq20,rinv20),_fjsp_sub_v2r8(rinvsq20,felec));
1000
1001             fscal            = felec;
1002
1003             fscal            = _fjsp_unpacklo_v2r8(fscal,_fjsp_setzero_v2r8());
1004
1005             /* Update vectorial force */
1006             fix2             = _fjsp_madd_v2r8(dx20,fscal,fix2);
1007             fiy2             = _fjsp_madd_v2r8(dy20,fscal,fiy2);
1008             fiz2             = _fjsp_madd_v2r8(dz20,fscal,fiz2);
1009             
1010             fjx0             = _fjsp_madd_v2r8(dx20,fscal,fjx0);
1011             fjy0             = _fjsp_madd_v2r8(dy20,fscal,fjy0);
1012             fjz0             = _fjsp_madd_v2r8(dz20,fscal,fjz0);
1013
1014             gmx_fjsp_decrement_1rvec_1ptr_swizzle_v2r8(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1015
1016             /* Inner loop uses 127 flops */
1017         }
1018
1019         /* End of innermost loop */
1020
1021         gmx_fjsp_update_iforce_3atom_swizzle_v2r8(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1022                                               f+i_coord_offset,fshift+i_shift_offset);
1023
1024         /* Increment number of inner iterations */
1025         inneriter                  += j_index_end - j_index_start;
1026
1027         /* Outer loop uses 18 flops */
1028     }
1029
1030     /* Increment number of outer iterations */
1031     outeriter        += nri;
1032
1033     /* Update outer/inner flops */
1034
1035     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1036 }